Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_law_fp (*-------------------------------------------*
| CSP-Prover on Isabelle2004 |
| February 2005 |
| June 2005 (modified) |
| August 2005 (modified) |
| |
| CSP-Prover on Isabelle2005 |
| October 2005 (modified) |
| March 2007 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory CSP_T_law_fp
imports CSP_T_law_ufp
begin
(*****************************************************************
1. cpo fixed point theory in CSP-Prover
2.
3.
4.
*****************************************************************)
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* Union (B ` A) = (UN x:A. B x) *)
(* Inter (B ` A) = (INT x:A. B x) *)
declare Union_image_eq [simp del]
declare Inter_image_eq [simp del]
(*=======================================================*
| |
| CPO |
| |
*=======================================================*)
(*-------------*
| existency |
*-------------*)
lemma semT_hasLFP_cpo:
"Pf = PNfun ==> [[Pf]]Tfun hasLFP"
apply (rule Tarski_thm_EX)
apply (rule continuous_semTfun)
done
lemma semT_LFP_cpo:
"[| Pf = PNfun ;
FPmode = CPOmode | FPmode = MIXmode |]
==> [[$p]]T = LFP [[Pf]]Tfun p"
apply (simp add: semT_def semTf_def)
apply (simp add: traces_def)
apply (simp add: MT_def)
apply (simp add: semTfix_def)
apply (force)
done
lemma semT_LFP_fun_cpo:
"[| Pf = PNfun ;
FPmode = CPOmode | FPmode = MIXmode |]
==> (%p. [[$p]]T) = LFP [[Pf]]Tfun"
apply (simp (no_asm) add: expand_fun_eq)
apply (simp add: semT_LFP_cpo)
done
(*---------*
| MT |
*---------*)
lemma MT_fixed_point_cpo:
"[| (Pf::'p=>('p,'a) proc) = PNfun; FPmode = CPOmode | FPmode = MIXmode |]
==> [[Pf]]Tfun (MT::'p => 'a domT) = (MT::'p => 'a domT)"
apply (simp add: MT_def)
apply (simp add: semTfix_def)
apply (erule disjE)
apply (simp_all)
apply (rule LFP_fp)
apply (simp add: semT_hasLFP_cpo)
apply (rule LFP_fp)
apply (simp add: semT_hasLFP_cpo)
done
(*-------------*
| greatest |
*-------------*)
lemma ALL_cspT_greatest_cpo:
"[| Pf = PNfun ;
FPmode = CPOmode ;
ALL p. (Pf p) << f =T f p |] ==> ALL p. f p <=T $p"
apply (simp add: eqT_def refT_def)
apply (fold semT_def)
apply (simp add: expand_fun_eq[THEN sym])
apply (fold order_prod_def)
apply (insert semT_LFP_fun_cpo[of "Pf"])
apply (simp)
apply (rule LFP_least)
apply (simp add: semT_hasLFP_cpo)
apply (simp add: semT_def semTfun_def semTf_def)
apply (simp add: traces_subst)
done
lemma cspT_greatest_cpo:
"[| Pf = PNfun ;
FPmode = CPOmode ;
ALL p. (Pf p) << f =T f p |] ==> f p <=T $p"
by (simp add: ALL_cspT_greatest_cpo)
(*-------------------------------------------------------*
| |
| Fixpoint unwind (CSP-Prover rule) |
| |
*-------------------------------------------------------*)
lemma ALL_cspT_unwind_cpo:
"[| Pf = PNfun ;
FPmode = CPOmode | FPmode = MIXmode |]
==> ALL p. ($p =T Pf p)"
apply (simp add: cspT_semantics)
apply (simp add: traces_def)
apply (simp add: MT_def)
apply (simp add: semTfix_def)
apply (simp add: expand_fun_eq[THEN sym])
apply (simp add: traces_semTfun)
apply (simp add: LFP_fp semT_hasLFP_cpo)
apply (force)
done
(* csp law *)
lemma cspT_unwind_cpo:
"[| Pf = PNfun ;
FPmode = CPOmode | FPmode = MIXmode |]
==> $p =T Pf p"
by (simp add: ALL_cspT_unwind_cpo)
(*-------------------------------------------------------*
| |
| fixed point inducntion (CSP-Prover intro rule) |
| |
*-------------------------------------------------------*)
(*** right ***)
lemma cspT_fp_induct_cpo_ref_right_ALL:
"[| Pf = PNfun ;
FPmode = CPOmode | FPmode = MIXmode ;
Q <=T f p;
ALL p. f p <=T (Pf p)<<f |]
==> Q <=T $p"
apply (simp add: refT_semT)
apply (insert cpo_fixpoint_induction_rev
[of "[[Pf]]Tfun" "(%p. [[f p]]T)"])
apply (simp add: LFP_fp semT_hasLFP_cpo)
apply (simp add: fold_order_prod_def)
apply (simp add: semT_subst_semTfun)
apply (simp add: continuous_semTfun)
apply (simp add: order_prod_def)
apply (drule_tac x="p" in spec)+
apply (simp add: semT_LFP_cpo)
done
(* csp law *)
lemma cspT_fp_induct_cpo_ref_right:
"[| Pf = PNfun ;
FPmode = CPOmode | FPmode = MIXmode ;
Q <=T f p;
!! p. f p <=T (Pf p)<<f |]
==> Q <=T $p"
by (simp add: cspT_fp_induct_cpo_ref_right_ALL)
lemmas cspT_fp_induct_cpo_right
= cspT_fp_induct_cpo_ref_right
(*=======================================================*
| |
| LFP <--> UFP |
| |
| MIXmode |
| |
*=======================================================*)
lemma semT_guarded_LFP_UFP:
"[| Pf = PNfun ; guardedfun Pf |]
==> LFP [[Pf]]Tfun = UFP [[Pf]]Tfun"
by (simp add: semT_hasUFP_cms hasUFP_LFP_UFP)
(*----------- refinement -----------*)
(*** left ***)
lemma cspT_fp_induct_mix_ref_left_ALL:
"[| Pf = PNfun ;
guardedfun Pf ;
FPmode = MIXmode ;
f p <=T Q ;
ALL p. (Pf p)<<f <=T f p |]
==> $p <=T Q"
apply (simp add: refT_semT)
apply (insert cms_fixpoint_induction_ref
[of "[[Pf]]Tfun" "(%p. [[f p]]T)" "UFP [[Pf]]Tfun"])
apply (simp add: semT_guarded_LFP_UFP[THEN sym])
apply (simp add: LFP_fp semT_hasLFP_cpo)
apply (simp add: fold_order_prod_def)
apply (simp add: semT_subst_semTfun)
apply (simp add: mono_semTfun)
apply (simp add: contra_alpha_to_contst contraction_alpha_semTfun)
apply (simp add: order_prod_def)
apply (drule_tac x="p" in spec)+
apply (simp add: semT_LFP_cpo)
done
(* csp law *)
lemma cspT_fp_induct_mix_ref_left:
"[| Pf = PNfun ;
guardedfun Pf ;
FPmode = MIXmode ;
f p <=T Q ;
!! p. (Pf p)<<f <=T f p |]
==> $p <=T Q"
by (simp add: cspT_fp_induct_mix_ref_left_ALL)
(*----------- equality -----------*)
(*** left ***)
lemma cspT_fp_induct_mix_eq_left_ALL:
"[| Pf = PNfun ;
guardedfun Pf ;
FPmode = MIXmode ;
f p =T Q ;
ALL p. (Pf p)<<f =T f p |]
==> $p =T Q"
apply (simp add: eqT_semT)
apply (simp add: expand_fun_eq[THEN sym])
apply (simp add: semT_subst_semTfun)
apply (insert semT_LFP_fun_cpo[of Pf])
apply (simp add: semT_guarded_LFP_UFP)
apply (subgoal_tac "(%p. [[$p]]T) = (%p. [[f p]]T)")
apply (simp add: expand_fun_eq)
apply (rule hasUFP_unique_solution[of "[[Pf]]Tfun"])
apply (simp_all add: semT_hasUFP_cms)
apply (simp add: UFP_fp semT_hasUFP_cms)
done
(* csp law *)
lemma cspT_fp_induct_mix_eq_left:
"[| Pf = PNfun ;
guardedfun Pf ;
FPmode = MIXmode ;
f p =T Q;
!! p. (Pf p)<<f =T f p |]
==> $p =T Q"
by (simp add: cspT_fp_induct_mix_eq_left_ALL)
lemma cspT_fp_induct_mix_eq_right:
"[| Pf = PNfun ;
guardedfun Pf ;
FPmode = MIXmode ;
Q =T f p;
!! p. f p =T (Pf p)<<f |]
==> Q =T $p"
apply (rule cspT_sym)
apply (rule cspT_fp_induct_mix_eq_left[of Pf f p Q])
apply (simp_all)
apply (rule cspT_sym)
apply (simp)
apply (rule cspT_sym)
apply (simp)
done
lemmas cspT_fp_induct_mix_left
= cspT_fp_induct_mix_ref_left cspT_fp_induct_mix_eq_left
lemmas cspT_fp_induct_mix_right
= cspT_fp_induct_cpo_ref_right cspT_fp_induct_mix_eq_right
(*=======================================================*
| |
| mixing CPOmode and CMSmode |
| |
*=======================================================*)
lemma cspT_unwind:
"[| Pf = PNfun ;
FPmode = CPOmode
| FPmode = CMSmode & guardedfun Pf
| FPmode = MIXmode |]
==> $p =T Pf p"
apply (erule disjE)
apply (simp add: cspT_unwind_cpo)
apply (erule disjE)
apply (simp add: cspT_unwind_cms)
apply (simp add: cspT_unwind_cpo)
done
lemma cspT_fp_induct_ref_right:
"[| Pf = PNfun ;
FPmode = CPOmode
| FPmode = CMSmode & guardedfun Pf
| FPmode = MIXmode ;
Q <=T f p;
!! p. f p <=T (Pf p)<<f |]
==> Q <=T $p"
apply (erule disjE)
apply (simp add: cspT_fp_induct_cpo_right)
apply (erule disjE)
apply (simp add: cspT_fp_induct_cms_right)
apply (simp add: cspT_fp_induct_cpo_right)
done
lemma cspT_fp_induct_ref_left:
"[| Pf = PNfun ;
FPmode = CMSmode
| FPmode = MIXmode ;
guardedfun Pf ;
f p <=T Q ;
!! p. (Pf p)<<f <=T f p |]
==> $p <=T Q"
apply (erule disjE)
apply (simp add: cspT_fp_induct_cms_left)
apply (simp add: cspT_fp_induct_mix_left)
done
lemma cspT_fp_induct_eq_left:
"[| Pf = PNfun ;
FPmode = CMSmode
| FPmode = MIXmode ;
guardedfun Pf ;
f p =T Q ;
!! p. (Pf p)<<f =T f p |]
==> $p =T Q"
apply (erule disjE)
apply (simp add: cspT_fp_induct_cms_left)
apply (simp add: cspT_fp_induct_mix_left)
done
lemma cspT_fp_induct_eq_right:
"[| Pf = PNfun ;
FPmode = CMSmode
| FPmode = MIXmode ;
guardedfun Pf ;
Q =T f p;
!! p. f p =T (Pf p)<<f |]
==> Q =T $p"
apply (erule disjE)
apply (simp add: cspT_fp_induct_cms_right)
apply (simp add: cspT_fp_induct_mix_right)
done
(*** cpo and cms ***)
lemmas cspT_fp_induct_right = cspT_fp_induct_ref_right cspT_fp_induct_eq_right
lemmas cspT_fp_induct_left = cspT_fp_induct_ref_left cspT_fp_induct_eq_left
(****************** to add them again ******************)
declare Union_image_eq [simp]
declare Inter_image_eq [simp]
end
lemma semT_hasLFP_cpo:
Pf = PNfun ==> [[Pf]]Tfun hasLFP
lemma semT_LFP_cpo:
[| Pf = PNfun; FPmode = CPOmode ∨ FPmode = MIXmode |] ==> [[$p]]T = LFP [[Pf]]Tfun p
lemma semT_LFP_fun_cpo:
[| Pf = PNfun; FPmode = CPOmode ∨ FPmode = MIXmode |] ==> (%p. [[$p]]T) = LFP [[Pf]]Tfun
lemma MT_fixed_point_cpo:
[| Pf = PNfun; FPmode = CPOmode ∨ FPmode = MIXmode |] ==> [[Pf]]Tfun MT = MT
lemma ALL_cspT_greatest_cpo:
[| Pf = PNfun; FPmode = CPOmode; ∀p. (Pf p) << f =T f p |] ==> ∀p. f p <=T $p
lemma cspT_greatest_cpo:
[| Pf = PNfun; FPmode = CPOmode; ∀p. (Pf p) << f =T f p |] ==> f p <=T $p
lemma ALL_cspT_unwind_cpo:
[| Pf = PNfun; FPmode = CPOmode ∨ FPmode = MIXmode |] ==> ∀p. $p =T Pf p
lemma cspT_unwind_cpo:
[| Pf = PNfun; FPmode = CPOmode ∨ FPmode = MIXmode |] ==> $p =T Pf p
lemma cspT_fp_induct_cpo_ref_right_ALL:
[| Pf = PNfun; FPmode = CPOmode ∨ FPmode = MIXmode; Q <=T f p; ∀p. f p <=T (Pf p) << f |] ==> Q <=T $p
lemma cspT_fp_induct_cpo_ref_right:
[| Pf = PNfun; FPmode = CPOmode ∨ FPmode = MIXmode; Q <=T f p; !!p. f p <=T (Pf p) << f |] ==> Q <=T $p
lemmas cspT_fp_induct_cpo_right:
[| Pf = PNfun; FPmode = CPOmode ∨ FPmode = MIXmode; Q <=T f p; !!p. f p <=T (Pf p) << f |] ==> Q <=T $p
lemmas cspT_fp_induct_cpo_right:
[| Pf = PNfun; FPmode = CPOmode ∨ FPmode = MIXmode; Q <=T f p; !!p. f p <=T (Pf p) << f |] ==> Q <=T $p
lemma semT_guarded_LFP_UFP:
[| Pf = PNfun; guardedfun Pf |] ==> LFP [[Pf]]Tfun = UFP [[Pf]]Tfun
lemma cspT_fp_induct_mix_ref_left_ALL:
[| Pf = PNfun; guardedfun Pf; FPmode = MIXmode; f p <=T Q; ∀p. (Pf p) << f <=T f p |] ==> $p <=T Q
lemma cspT_fp_induct_mix_ref_left:
[| Pf = PNfun; guardedfun Pf; FPmode = MIXmode; f p <=T Q; !!p. (Pf p) << f <=T f p |] ==> $p <=T Q
lemma cspT_fp_induct_mix_eq_left_ALL:
[| Pf = PNfun; guardedfun Pf; FPmode = MIXmode; f p =T Q; ∀p. (Pf p) << f =T f p |] ==> $p =T Q
lemma cspT_fp_induct_mix_eq_left:
[| Pf = PNfun; guardedfun Pf; FPmode = MIXmode; f p =T Q; !!p. (Pf p) << f =T f p |] ==> $p =T Q
lemma cspT_fp_induct_mix_eq_right:
[| Pf = PNfun; guardedfun Pf; FPmode = MIXmode; Q =T f p; !!p. f p =T (Pf p) << f |] ==> Q =T $p
lemmas cspT_fp_induct_mix_left:
[| Pf = PNfun; guardedfun Pf; FPmode = MIXmode; f p <=T Q; !!p. (Pf p) << f <=T f p |] ==> $p <=T Q
[| Pf = PNfun; guardedfun Pf; FPmode = MIXmode; f p =T Q; !!p. (Pf p) << f =T f p |] ==> $p =T Q
lemmas cspT_fp_induct_mix_left:
[| Pf = PNfun; guardedfun Pf; FPmode = MIXmode; f p <=T Q; !!p. (Pf p) << f <=T f p |] ==> $p <=T Q
[| Pf = PNfun; guardedfun Pf; FPmode = MIXmode; f p =T Q; !!p. (Pf p) << f =T f p |] ==> $p =T Q
lemmas cspT_fp_induct_mix_right:
[| Pf = PNfun; FPmode = CPOmode ∨ FPmode = MIXmode; Q <=T f p; !!p. f p <=T (Pf p) << f |] ==> Q <=T $p
[| Pf = PNfun; guardedfun Pf; FPmode = MIXmode; Q =T f p; !!p. f p =T (Pf p) << f |] ==> Q =T $p
lemmas cspT_fp_induct_mix_right:
[| Pf = PNfun; FPmode = CPOmode ∨ FPmode = MIXmode; Q <=T f p; !!p. f p <=T (Pf p) << f |] ==> Q <=T $p
[| Pf = PNfun; guardedfun Pf; FPmode = MIXmode; Q =T f p; !!p. f p =T (Pf p) << f |] ==> Q =T $p
lemma cspT_unwind:
[| Pf = PNfun; FPmode = CPOmode ∨ FPmode = CMSmode ∧ guardedfun Pf ∨ FPmode = MIXmode |] ==> $p =T Pf p
lemma cspT_fp_induct_ref_right:
[| Pf = PNfun; FPmode = CPOmode ∨ FPmode = CMSmode ∧ guardedfun Pf ∨ FPmode = MIXmode; Q <=T f p; !!p. f p <=T (Pf p) << f |] ==> Q <=T $p
lemma cspT_fp_induct_ref_left:
[| Pf = PNfun; FPmode = CMSmode ∨ FPmode = MIXmode; guardedfun Pf; f p <=T Q; !!p. (Pf p) << f <=T f p |] ==> $p <=T Q
lemma cspT_fp_induct_eq_left:
[| Pf = PNfun; FPmode = CMSmode ∨ FPmode = MIXmode; guardedfun Pf; f p =T Q; !!p. (Pf p) << f =T f p |] ==> $p =T Q
lemma cspT_fp_induct_eq_right:
[| Pf = PNfun; FPmode = CMSmode ∨ FPmode = MIXmode; guardedfun Pf; Q =T f p; !!p. f p =T (Pf p) << f |] ==> Q =T $p
lemmas cspT_fp_induct_right:
[| Pf = PNfun; FPmode = CPOmode ∨ FPmode = CMSmode ∧ guardedfun Pf ∨ FPmode = MIXmode; Q <=T f p; !!p. f p <=T (Pf p) << f |] ==> Q <=T $p
[| Pf = PNfun; FPmode = CMSmode ∨ FPmode = MIXmode; guardedfun Pf; Q =T f p; !!p. f p =T (Pf p) << f |] ==> Q =T $p
lemmas cspT_fp_induct_right:
[| Pf = PNfun; FPmode = CPOmode ∨ FPmode = CMSmode ∧ guardedfun Pf ∨ FPmode = MIXmode; Q <=T f p; !!p. f p <=T (Pf p) << f |] ==> Q <=T $p
[| Pf = PNfun; FPmode = CMSmode ∨ FPmode = MIXmode; guardedfun Pf; Q =T f p; !!p. f p =T (Pf p) << f |] ==> Q =T $p
lemmas cspT_fp_induct_left:
[| Pf = PNfun; FPmode = CMSmode ∨ FPmode = MIXmode; guardedfun Pf; f p <=T Q; !!p. (Pf p) << f <=T f p |] ==> $p <=T Q
[| Pf = PNfun; FPmode = CMSmode ∨ FPmode = MIXmode; guardedfun Pf; f p =T Q; !!p. (Pf p) << f =T f p |] ==> $p =T Q
lemmas cspT_fp_induct_left:
[| Pf = PNfun; FPmode = CMSmode ∨ FPmode = MIXmode; guardedfun Pf; f p <=T Q; !!p. (Pf p) << f <=T f p |] ==> $p <=T Q
[| Pf = PNfun; FPmode = CMSmode ∨ FPmode = MIXmode; guardedfun Pf; f p =T Q; !!p. (Pf p) << f =T f p |] ==> $p =T Q