Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_continuous (*-------------------------------------------*
| CSP-Prover on Isabelle2004 |
| December 2004 |
| July 2005 (modified) |
| August 2005 (modified) |
| |
| CSP-Prover on Isabelle2005 |
| October 2005 (modified) |
| March 2007 (modified) |
| August 2007 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory CSP_T_continuous
imports CSP_T_traces Domain_T_cpo CPO_prod
begin
(*****************************************************************
1. continuous traces
2. continuous [[ ]]Tfun
*****************************************************************)
(*--------------------------------*
| STOP,SKIP,DIV |
*--------------------------------*)
(*** Constant_continuous ***)
lemma continuous_Constant: "continuous (%p. C)"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (insert complete_cpo_lm)
apply (drule_tac x="X" in spec, simp)
apply (simp add: hasLUB_def)
apply (elim exE)
apply (simp add: image_def isLUB_def isUB_def)
apply (intro allI impI)
apply (elim conjE exE)
apply (drule mp)
apply (simp add: directed_def)
apply (auto)
done
lemma continuous_traces_STOP: "continuous (traces (STOP))"
by (simp add: traces_def continuous_Constant)
lemma continuous_traces_SKIP: "continuous (traces (SKIP))"
by (simp add: traces_def continuous_Constant)
lemma continuous_traces_DIV: "continuous (traces (DIV))"
by (simp add: traces_def continuous_Constant)
(*--------------------------------*
| Act_prefix |
*--------------------------------*)
lemma continuous_traces_Act_prefix:
"continuous (traces P) ==> continuous (traces (a -> P))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "X ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_traces)
apply (erule disjE, fast)
apply (elim conjE exE)
apply (simp)
(* => *)
apply (rule)
apply (simp)
apply (erule bexE)
apply (simp add: in_traces)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (rule disjI2)
apply (rule_tac x="s" in exI, simp)
apply (rule_tac x="xa" in bexI)
apply (simp_all)
by (simp add: directed_def)
(*--------------------------------*
| Ext_pre_choice |
*--------------------------------*)
lemma continuous_traces_Ext_pre_choice:
"ALL a. continuous (traces (Pf a))
==> continuous (traces (? a:X -> (Pf a)))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (subgoal_tac "Xa ~= {}")
apply (erule exchange_forall_orderE)
apply (drule_tac x="Xa" in spec)
apply (simp add: isLUB_UnionT)
apply (rule_tac x="LUB Xa" in exI)
apply (rule conjI)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_traces)
apply (erule disjE, fast)
apply (elim conjE exE)
apply (simp)
apply (drule_tac x="a" in spec)
apply (elim conjE exE)
apply (subgoal_tac "LUB Xa = x", simp)
apply (simp add: isLUB_LUB)
(* => *)
apply (rule)
apply (simp)
apply (erule bexE)
apply (simp add: in_traces)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (rule disjI2)
apply (rule_tac x="a" in exI)
apply (rule_tac x="s" in exI, simp)
apply (drule_tac x="a" in spec)
apply (elim conjE exE)
apply (subgoal_tac "LUB Xa = xa", simp)
apply (rule_tac x="x" in bexI)
apply (simp)
apply (simp)
apply (simp add: isLUB_LUB)
apply (drule_tac x="a" in spec)
apply (elim conjE exE)
apply (simp add: isLUB_LUB)
by (simp add: directed_def)
(*--------------------------------*
| Ext_choice |
*--------------------------------*)
lemma continuous_traces_Ext_choice:
"[| continuous (traces P) ; continuous (traces Q) |]
==> continuous (traces (P [+] Q))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (subgoal_tac "xa = x")
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "X ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)
apply (rule, simp add: in_traces, fast)
apply (simp add: directed_def)
by (rule LUB_unique, simp_all)
(*--------------------------------*
| Int_choice |
*--------------------------------*)
lemma continuous_traces_Int_choice:
"[| continuous (traces P) ; continuous (traces Q) |]
==> continuous (traces (P |~| Q))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (subgoal_tac "xa = x")
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "X ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)
apply (rule, simp add: in_traces, fast)
apply (simp add: directed_def)
by (rule LUB_unique, simp_all)
(*--------------------------------*
| Rep_int_choice |
*--------------------------------*)
lemma continuous_traces_Rep_int_choice:
"ALL c. continuous (traces(Pf c))
==> continuous (traces (!! :C .. Pf))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (subgoal_tac "X ~= {}")
apply (erule exchange_forall_orderE)
apply (drule_tac x="X" in spec)
apply (simp add: isLUB_UnionT)
apply (rule_tac x="LUB X" in exI)
apply (rule conjI)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_traces)
apply (erule disjE, fast)
apply (elim conjE bexE)
apply (drule_tac x="c" in spec)
apply (elim conjE exE)
apply (subgoal_tac "LUB X = x", simp)
apply (elim bexE)
apply (rule_tac x="xa" in bexI)
apply (fast)
apply (simp)
apply (simp add: isLUB_LUB)
(* => *)
apply (rule)
apply (simp)
apply (erule bexE)
apply (simp add: in_traces)
apply (erule disjE, simp)
apply (elim conjE bexE)
apply (rule disjI2)
apply (rule_tac x="c" in bexI)
apply (drule_tac x="c" in spec)
apply (elim conjE exE)
apply (subgoal_tac "LUB X = xa", simp)
apply (rule_tac x="x" in bexI)
apply (simp)
apply (simp)
apply (simp add: isLUB_LUB)
apply (simp)
apply (drule_tac x="c" in spec)
apply (elim conjE exE)
apply (simp add: isLUB_LUB)
by (simp add: directed_def)
(*--------------------------------*
| IF |
*--------------------------------*)
lemma continuous_traces_IF:
"[| continuous (traces P) ; continuous (traces Q) |]
==> continuous (traces (IF b THEN P ELSE Q))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (case_tac "b")
apply (rule_tac x="x" in exI, simp)
apply (simp add: traces_def)
apply (rule_tac x="xa" in exI, simp)
apply (simp add: traces_def)
done
(*--------------------------------*
| Parallel |
*--------------------------------*)
lemma continuous_traces_Parallel:
"[| continuous (traces P) ; continuous (traces Q) |]
==> continuous (traces (P |[X]| Q))"
apply (subgoal_tac "mono (traces P) & mono (traces Q)")
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="Xa" in spec, simp)
apply (drule_tac x="Xa" in spec, simp)
apply (elim conjE exE)
apply (subgoal_tac "xa = x")
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "Xa ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_traces)
apply (elim exE bexE conjE)
apply (simp add: directed_def)
apply (drule_tac x="xb" in spec)
apply (drule_tac x="xc" in spec)
apply (simp, elim conjE exE)
apply (rule_tac x="z" in bexI)
apply (rule_tac x="s" in exI)
apply (rule_tac x="ta" in exI)
apply (simp)
apply (rule conjI)
apply (rule memT_subdomT, simp)
apply (simp add: mono_def)
apply (rotate_tac -4)
apply (rule memT_subdomT, simp)
apply (simp add: mono_def)
apply (simp)
(* => *)
apply (rule)
apply (simp add: in_traces)
apply (fast)
apply (simp add: directed_def)
apply (simp add: LUB_unique)
by (simp add: continuous_mono)
(*--------------------------------*
| Hiding |
*--------------------------------*)
lemma continuous_traces_Hiding:
"continuous (traces P)
==> continuous (traces (P -- X))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="Xa" in spec, simp)
apply (elim conjE exE)
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "Xa ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_traces)
apply (fast)
(* => *)
apply (rule)
apply (simp add: in_traces)
apply (fast)
by (simp add: directed_def)
(*--------------------------------*
| Renaming |
*--------------------------------*)
lemma continuous_traces_Renaming:
"continuous (traces P)
==> continuous (traces (P [[r]]))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "X ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)
apply (rule, simp add: in_traces, fast)
by (simp add: directed_def)
(*--------------------------------*
| Seq_compo |
*--------------------------------*)
lemma continuous_traces_Seq_compo:
"[| continuous (traces P) ; continuous (traces Q) |]
==> continuous (traces (P ;; Q))"
apply (subgoal_tac "mono (traces P) & mono (traces Q)")
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (subgoal_tac "xa = x")
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "X ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule order_antisym)
(* <= *)
apply (rule)
apply (simp add: in_traces)
apply (elim bexE exE conjE disjE)
apply (rule_tac x="xb" in bexI)
apply (fast)
apply (simp)
apply (simp add: directed_def)
apply (drule_tac x="xb" in spec)
apply (drule_tac x="xc" in spec)
apply (simp, elim conjE exE)
apply (rule_tac x="z" in bexI)
apply (rule disjI2)
apply (rule_tac x="s" in exI)
apply (rule_tac x="ta" in exI)
apply (simp)
apply (rule conjI)
apply (rule memT_subdomT, simp)
apply (simp add: mono_def)
apply (rotate_tac -4)
apply (rule memT_subdomT, simp)
apply (simp add: mono_def)
apply (simp)
(* => *)
apply (rule)
apply (simp add: in_traces)
apply (fast)
apply (simp add: directed_def)
apply (simp add: LUB_unique)
by (simp add: continuous_mono)
(*--------------------------------*
| Depth_rest |
*--------------------------------*)
lemma continuous_traces_Depth_rest:
"continuous (traces P)
==> continuous (traces (P |. n))"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "X ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule order_antisym)
apply (rule, simp add: in_traces)
apply (rule, simp add: in_traces)
by (simp add: directed_def)
(*--------------------------------*
| variable |
*--------------------------------*)
lemma continuous_traces_variable:
"continuous (traces ($p))"
apply (simp add: traces_def)
apply (simp add: continuous_prod_variable)
done
(*--------------------------------*
| Procfun |
*--------------------------------*)
lemma continuous_traces:
"continuous (traces P)"
apply (induct_tac P)
apply (simp add: continuous_traces_STOP)
apply (simp add: continuous_traces_SKIP)
apply (simp add: continuous_traces_DIV)
apply (simp add: continuous_traces_Act_prefix)
apply (simp add: continuous_traces_Ext_pre_choice)
apply (simp add: continuous_traces_Ext_choice)
apply (simp add: continuous_traces_Int_choice)
apply (simp add: continuous_traces_Rep_int_choice)
apply (simp add: continuous_traces_IF)
apply (simp add: continuous_traces_Parallel)
apply (simp add: continuous_traces_Hiding)
apply (simp add: continuous_traces_Renaming)
apply (simp add: continuous_traces_Seq_compo)
apply (simp add: continuous_traces_Depth_rest)
apply (simp add: continuous_traces_variable)
done
(*=============================================================*
| [[P]]Tf |
*=============================================================*)
lemma continuous_semTf:
"continuous [[P]]Tf"
apply (simp add: semTf_def)
apply (simp add: continuous_traces)
done
(*=============================================================*
| [[P]]Tfun |
*=============================================================*)
lemma continuous_semTfun: "continuous [[Pf]]Tfun"
apply (simp add: prod_continuous)
apply (simp add: semTfun_def)
apply (simp add: proj_fun_def)
apply (simp add: comp_def)
apply (simp add: continuous_semTf)
done
end
lemma continuous_Constant:
continuous (%p. C)
lemma continuous_traces_STOP:
continuous (traces STOP)
lemma continuous_traces_SKIP:
continuous (traces SKIP)
lemma continuous_traces_DIV:
continuous (traces DIV)
lemma continuous_traces_Act_prefix:
continuous (traces P) ==> continuous (traces (a -> P))
lemma continuous_traces_Ext_pre_choice:
∀a. continuous (traces (Pf a)) ==> continuous (traces (? :X -> Pf))
lemma continuous_traces_Ext_choice:
[| continuous (traces P); continuous (traces Q) |] ==> continuous (traces (P [+] Q))
lemma continuous_traces_Int_choice:
[| continuous (traces P); continuous (traces Q) |] ==> continuous (traces (P |~| Q))
lemma continuous_traces_Rep_int_choice:
∀c. continuous (traces (Pf c)) ==> continuous (traces (!! :C .. Pf))
lemma continuous_traces_IF:
[| continuous (traces P); continuous (traces Q) |] ==> continuous (traces (IF b THEN P ELSE Q))
lemma continuous_traces_Parallel:
[| continuous (traces P); continuous (traces Q) |] ==> continuous (traces (P |[X]| Q))
lemma continuous_traces_Hiding:
continuous (traces P) ==> continuous (traces (P -- X))
lemma continuous_traces_Renaming:
continuous (traces P) ==> continuous (traces (P [[r]]))
lemma continuous_traces_Seq_compo:
[| continuous (traces P); continuous (traces Q) |] ==> continuous (traces (P ;; Q))
lemma continuous_traces_Depth_rest:
continuous (traces P) ==> continuous (traces (P |. n))
lemma continuous_traces_variable:
continuous (traces ($p))
lemma continuous_traces:
continuous (traces P)
lemma continuous_semTf:
continuous [[P]]Tf
lemma continuous_semTfun:
continuous [[Pf]]Tfun