Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F/FNF_F
theory FNF_F_sf_seq(*-------------------------------------------* | CSP-Prover on Isabelle2005 | | February 2006 | | April 2006 (modified) | | March 2007 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory FNF_F_sf_seq imports FNF_F_sf_induct FNF_F_sf_ext begin (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* disj_not1: (~ P | Q) = (P --> Q) *) declare disj_not1 [simp del] (* The following simplification rules are deleted in this theory file *) (* P (if Q then x else y) = ((Q --> P x) & (~ Q --> P y)) *) declare split_if [split del] (***************************************************************** 1. full sequentialization for Sequential composition (P1 ;; P2) 2. 3. *****************************************************************) (*============================================================* | | | Seq_compo P ;; Q | | | *============================================================*) consts Pfun_Seq_compo :: "('p,'a) proc => (('p,'a) proc => ('p,'a) proc)" SP_step_Seq_compo :: "('p,'a) proc => ('a set => ('a => ('p,'a) proc) => ('p,'a) proc => ('a => ('p,'a) proc) => ('p,'a) proc)" fsfF_Seq_compo :: "('p,'a) proc => ('p,'a) proc => ('p,'a) proc" ("(1_ /;;seq _)" [79,78] 78) defs Pfun_Seq_compo_def : "Pfun_Seq_compo P2 == (%P1. P1 ;; P2)" SP_step_Seq_compo_def : "SP_step_Seq_compo P2 == (%Y1 Pf1 Q1 SPf. (if (Q1 = SKIP) then (((? x:Y1 -> SPf x) [+] STOP) [>seq P2) else if (Q1 = DIV) then (((? x:Y1 -> SPf x) [+] STOP) [>seq SDIV) else ((? x:Y1 -> SPf x) [+] STOP)))" fsfF_Seq_compo_def : "fsfF_Seq_compo == (%P1 P2. (fsfF_induct1 (Pfun_Seq_compo P2) (SP_step_Seq_compo P2) P1))" (************************************************************* function fsfF fsfF -> fsfF *************************************************************) lemma fsfF_Seq_compo_in: "[| P1 : fsfF_proc ; P2 : fsfF_proc |] ==> P1 ;;seq P2 : fsfF_proc" apply (simp add: fsfF_Seq_compo_def) apply (rule fsfF_induct1_in) apply (simp_all add: SP_step_Seq_compo_def) apply (simp split: split_if) apply (intro conjI impI) apply (rule fsfF_Timeout_in) apply (simp_all add: fsfF_proc.intros) apply (rule fsfF_Timeout_in) apply (simp_all add: fsfF_proc.intros) done (*------------------------------------------------------------* | syntactical transformation to fsfF | *------------------------------------------------------------*) lemma cspF_fsfF_Seq_compo_eqF: "P1 ;; P2 =F P1 ;;seq P2" apply (simp add: fsfF_Seq_compo_def) apply (rule cspF_rw_right) apply (rule cspF_fsfF_induct1_eqF[THEN cspF_sym]) apply (simp_all add: Pfun_Seq_compo_def SP_step_Seq_compo_def) apply (erule disjE) (* SKIP *) apply (simp) apply (rule cspF_rw_left) apply (rule cspF_SKIP_DIV_Seq_compo_step_resolve) apply (rule cspF_rw_right) apply (rule cspF_fsfF_Timeout_eqF[THEN cspF_sym]) apply (rule cspF_decompo) apply (rule cspF_decompo) apply (rule cspF_rw_right) apply (rule cspF_unit) apply (rule cspF_reflex) apply (rule cspF_reflex) apply (rule cspF_reflex) apply (erule disjE) (* DIV *) apply (simp) apply (rule cspF_rw_left) apply (rule cspF_SKIP_DIV_Seq_compo_step_resolve) apply (rule cspF_rw_right) apply (rule cspF_fsfF_Timeout_eqF[THEN cspF_sym]) apply (rule cspF_rw_left) apply (rule cspF_Ext_choice_SKIP_or_DIV_resolve) apply (simp) apply (rule cspF_decompo) apply (rule cspF_decompo) apply (rule cspF_rw_right) apply (rule cspF_unit) apply (rule cspF_reflex) apply (rule cspF_reflex) apply (rule cspF_SDIV_eqF) (* STOP *) apply (simp) apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (rule cspF_unit) apply (rule cspF_reflex) apply (rule cspF_rw_left) apply (rule cspF_step) apply (rule cspF_rw_right) apply (rule cspF_unit) apply (rule cspF_reflex) (* congruence *) apply (rule cspF_rw_left, (simp | rule cspF_IF_split[THEN cspF_sym] | rule cspF_fsfF_Timeout_eqF[THEN cspF_sym] | rule cspF_decompo | rule cspF_reflex)+ , rule cspF_rw_right, (simp | rule cspF_IF_split[THEN cspF_sym] | rule cspF_fsfF_Timeout_eqF[THEN cspF_sym] | rule cspF_decompo | rule cspF_reflex)+)+ done (****************** to add them again ******************) declare split_if [split] declare disj_not1 [simp] end
lemma fsfF_Seq_compo_in:
[| P1.0 ∈ fsfF_proc; P2.0 ∈ fsfF_proc |] ==> P1.0 ;;seq P2.0 ∈ fsfF_proc
lemma cspF_fsfF_Seq_compo_eqF:
P1.0 ;; P2.0 =F P1.0 ;;seq P2.0