Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F/FNF_F
theory FNF_F_sf_def(*-------------------------------------------* | CSP-Prover on Isabelle2005 | | January 2006 | | April 2006 (modified) | | March 2007 (modified) | | August 2007 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory FNF_F_sf_def imports CSP_F begin (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* disj_not1: (~ P | Q) = (P --> Q) *) declare disj_not1 [simp del] (* The following simplification rules are deleted in this theory file *) (* P (if Q then x else y) = ((Q --> P x) & (~ Q --> P y)) *) declare split_if [split del] (***************************************************************** 1. definition of full sequential-formed process 2. 3. *****************************************************************) (*==========================================================* | | | Definition of fsfF | | | *==========================================================*) consts fsfF_proc :: "('p,'a) proc set" inductive "fsfF_proc" intros fsfF_proc_int: "[| sumset C ~= {} ; ALL c: sumset C. Rf c : fsfF_proc |] ==> (!! :C .. Rf) : fsfF_proc" fsfF_proc_ext: "[| ALL a:A. Pf a : fsfF_proc ; Q = SKIP | Q = DIV | Q = STOP |] ==> ((? :A -> Pf) [+] Q) : fsfF_proc" (*-------------------------------------------* | sequential-formed SSKIP, SDIV, SSTOP | *-------------------------------------------*) consts SSKIP :: "('p,'a) proc" SDIV :: "('p,'a) proc" SSTOP :: "('p,'a) proc" defs SSKIP_def : "SSKIP == (? y:{} -> DIV) [+] SKIP" SDIV_def : "SDIV == (? y:{} -> DIV) [+] DIV" SSTOP_def : "SSTOP == (? y:{} -> DIV) [+] STOP" (*** small lemmas ***) (* in *) lemma fsfF_SSKIP_in[simp]: "SSKIP : fsfF_proc" apply (simp add: SSKIP_def) apply (simp add: fsfF_proc.intros) done lemma fsfF_SDIV_in[simp]: "SDIV : fsfF_proc" apply (simp add: SDIV_def) apply (simp add: fsfF_proc.intros) done lemma fsfF_SSTOP_in[simp]: "SSTOP : fsfF_proc" apply (simp add: SSTOP_def) apply (simp add: fsfF_proc.intros) done (* eqF *) lemma cspF_SSKIP_eqF: "SKIP =F SSKIP" apply (simp add: SSKIP_def) apply (rule cspF_rw_right) apply (rule cspF_Ext_choice_rule) apply (simp) done lemma cspF_SDIV_eqF: "DIV =F SDIV" apply (simp add: SDIV_def) apply (rule cspF_rw_right) apply (rule cspF_Ext_choice_rule) apply (simp) done lemma cspF_SSTOP_eqF: "STOP =F SSTOP" apply (simp add: SSTOP_def) apply (rule cspF_rw_right) apply (rule cspF_Ext_choice_rule) apply (simp) done (*----------------------------------------------------------* | iff | *----------------------------------------------------------*) (* proc *) lemma fsfF_proc_iff: "(SP : fsfF_proc) = ((EX C Rf. sumset C ~= {} & SP = !! :C .. Rf & (ALL c: sumset C. Rf c : fsfF_proc)) | (EX A Pf Q. SP = (? :A -> Pf) [+] Q & (ALL a:A. Pf a : fsfF_proc) & (Q = SKIP | Q = DIV | Q = STOP)))" apply (rule iffI) (* => *) apply (erule fsfF_proc.elims) apply (simp_all) (* <= *) apply (elim conjE exE disjE) apply (simp_all add: fsfF_proc.intros) done lemma fsfF_procI: "((EX C Rf. sumset C ~= {} & SP = !! :C .. Rf & (ALL c: sumset C. Rf c : fsfF_proc)) | (EX A Pf Q. SP = (? :A -> Pf) [+] Q & (ALL a:A. Pf a : fsfF_proc) & (Q = SKIP | Q = DIV | Q = STOP))) ==> SP : fsfF_proc" apply (simp add: fsfF_proc_iff[of SP]) done lemma fsfF_procE: "[| SP : fsfF_proc ; ((EX C Rf. sumset C ~= {} & SP = !! :C .. Rf & (ALL c: sumset C. Rf c : fsfF_proc)) | (EX A Pf Q. SP = (? :A -> Pf) [+] Q & (ALL a:A. Pf a : fsfF_proc) & (Q = SKIP | Q = DIV | Q = STOP))) ==> S |] ==> S" apply (simp add: fsfF_proc_iff[of SP]) done (*----------------------------------------------------------* | subexpression | *----------------------------------------------------------*) (* proc *) lemma Rf_fsfF_proc: "[| !! :C .. Rf : fsfF_proc ; c: sumset C |] ==> Rf c : fsfF_proc" apply (erule fsfF_procE) apply (elim disjE conjE exE) apply (simp_all) done lemma Pf_fsfF_proc: "[| (? :A -> Pf) [+] Q : fsfF_proc ; a:A |] ==> Pf a : fsfF_proc" apply (erule fsfF_procE) apply (simp) done lemma Qf_range: "(? :A -> Pf) [+] Q : fsfF_proc ==> Q = SKIP | Q = DIV | Q = STOP" apply (erule fsfF_procE) apply (simp) done (*======================================================* | | | function to decompose : fsfF_decompo_int, ext | | | *======================================================*) consts fsfF_C :: "('p,'a) proc => 'a sets_nats" fsfF_Rf :: "('p,'a) proc => ('a aset_anat => ('p,'a) proc)" fsfF_A :: "('p,'a) proc => 'a set" fsfF_Pf :: "('p,'a) proc => ('a => ('p,'a) proc)" fsfF_Q :: "('p,'a) proc => ('p,'a) proc" (* they are partial functions *) recdef fsfF_C "{}" "fsfF_C (!! :C .. Rf) = C" recdef fsfF_Rf "{}" "fsfF_Rf (!! :C .. Rf) = Rf" recdef fsfF_A "{}" "fsfF_A ((? :A -> Pf) [+] Q) = A" recdef fsfF_Pf "{}" "fsfF_Pf ((? :A -> Pf) [+] Q) = Pf" recdef fsfF_Q "{}" "fsfF_Q ((? :A -> Pf) [+] Q) = Q" (*------------------------* | decomposition | *------------------------*) lemma cspF_fsfF_proc_decompo: "P : fsfF_proc ==> ((P = (!! : fsfF_C P .. fsfF_Rf P)) | (P = (? : fsfF_A P -> fsfF_Pf P [+] fsfF_Q P)))" apply (erule fsfF_proc.elims) apply (simp_all) done (****************** to add them again ******************) declare split_if [split] declare disj_not1 [simp] end
lemma fsfF_SSKIP_in:
SSKIP ∈ fsfF_proc
lemma fsfF_SDIV_in:
SDIV ∈ fsfF_proc
lemma fsfF_SSTOP_in:
SSTOP ∈ fsfF_proc
lemma cspF_SSKIP_eqF:
SKIP =F SSKIP
lemma cspF_SDIV_eqF:
DIV =F SDIV
lemma cspF_SSTOP_eqF:
STOP =F SSTOP
lemma fsfF_proc_iff:
(SP ∈ fsfF_proc) = ((∃C Rf. sumset C ≠ {} ∧ SP = !! :C .. Rf ∧ (∀c∈sumset C. Rf c ∈ fsfF_proc)) ∨ (∃A Pf Q. SP = ? :A -> Pf [+] Q ∧ (∀a∈A. Pf a ∈ fsfF_proc) ∧ (Q = SKIP ∨ Q = DIV ∨ Q = STOP)))
lemma fsfF_procI:
(∃C Rf. sumset C ≠ {} ∧ SP = !! :C .. Rf ∧ (∀c∈sumset C. Rf c ∈ fsfF_proc)) ∨ (∃A Pf Q. SP = ? :A -> Pf [+] Q ∧ (∀a∈A. Pf a ∈ fsfF_proc) ∧ (Q = SKIP ∨ Q = DIV ∨ Q = STOP)) ==> SP ∈ fsfF_proc
lemma fsfF_procE:
[| SP ∈ fsfF_proc; (∃C Rf. sumset C ≠ {} ∧ SP = !! :C .. Rf ∧ (∀c∈sumset C. Rf c ∈ fsfF_proc)) ∨ (∃A Pf Q. SP = ? :A -> Pf [+] Q ∧ (∀a∈A. Pf a ∈ fsfF_proc) ∧ (Q = SKIP ∨ Q = DIV ∨ Q = STOP)) ==> S |] ==> S
lemma Rf_fsfF_proc:
[| !! :C .. Rf ∈ fsfF_proc; c ∈ sumset C |] ==> Rf c ∈ fsfF_proc
lemma Pf_fsfF_proc:
[| ? :A -> Pf [+] Q ∈ fsfF_proc; a ∈ A |] ==> Pf a ∈ fsfF_proc
lemma Qf_range:
? :A -> Pf [+] Q ∈ fsfF_proc ==> Q = SKIP ∨ Q = DIV ∨ Q = STOP
lemma cspF_fsfF_proc_decompo:
P ∈ fsfF_proc ==> P = !! :fsfF_C P .. fsfF_Rf P ∨ P = ? :fsfF_A P -> fsfF_Pf P [+] fsfF_Q P