Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F_surj(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | August 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | April 2006 (modified) | | March 2007 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_F_surj imports CSP_F_domain CSP_T_surj begin (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* disj_not1: (~ P | Q) = (P --> Q) *) declare disj_not1 [simp del] (********************************************************* inverse function : DomT => proc *********************************************************) consts head_failures :: "'a setF => 'a set" tail_failures :: "'a setF => 'a => 'a setF" Proc_F_rec :: "nat => 'a domF => ('p,'a) proc" Proc_F :: "'a domF => ('p,'a) proc" defs head_failures_def : "head_failures F == {a. EX t X. (<Ev a> ^^ t, X) :f F}" tail_failures_def : "tail_failures F == (%a. {(t,X). (<Ev a> ^^ t, X) :f F}f)" primrec "Proc_F_rec 0 = (%SF. !set X:{X. EX Y. (<>,Y) :f sndF SF & Ev ` X = Evset - Y & Tick : Y & (ALL a:X. <Ev a> :t fstF SF)} .. (? x:X -> DIV))" "Proc_F_rec (Suc n) = (%SF. (! a:(head_failures (sndF SF)) .. a -> Proc_F_rec n (tail_traces (fstF SF) a ,, tail_failures (sndF SF) a)) [+] DIV)" defs Proc_F_def : "Proc_F SF == Proc_T (fstF SF) |~| (!nat n .. Proc_F_rec n SF)" (********************************************************* lemmas *********************************************************) (* tail in setF *) lemma tail_failures_setF: "{(t,X). (<Ev a> ^^ t, X) :f F} : setF" apply (simp add: setF_def) apply (simp add: HC_F2_def) apply (intro allI impI) apply (rule memF_F2) by (auto) (* tail *) lemma in_tail_failures: "((s,X) :f tail_failures F a) = ((<Ev a> ^^ s, X) :f F)" apply (simp add: tail_failures_def) apply (simp add: tail_failures_setF CollectF_open_memF) done (* head & tail *) lemma head_tail_failures_only_if: "(<Ev a> ^^ s, X) :f F ==> a : head_failures F & (s,X) :f tail_failures F a" apply (simp add: in_tail_failures) apply (auto simp add: head_failures_def) done (* iff *) lemma head_tail_failures: "(<Ev a> ^^ s, X) :f F = (a : head_failures F & (s,X) :f tail_failures F a)" apply (rule iffI) apply (simp add: head_tail_failures_only_if) apply (simp add: in_tail_failures) done (*** domF ***) (* head *) lemma head_failures_traces: "a : head_failures (sndF SF) ==> a : head_traces (fstF SF)" apply (simp add: head_failures_def) apply (simp add: head_traces_def) apply (elim exE) apply (rule_tac x="t" in exI) apply (simp add: pairF_domF_T2) done (* T2 *) lemma tail_traces_failures_T2: "HC_T2 (tail_traces (fstF SF) a , tail_failures (sndF SF) a)" apply (simp add: HC_T2_def in_traces in_failures) apply (intro allI impI) apply (elim exE) apply (simp add: in_tail_failures) apply (subgoal_tac "a : head_traces (fstF SF)") apply (simp add: in_tail_traces) apply (simp add: pairF_domF_T2) apply (simp add: head_tail_failures) apply (simp add: head_failures_traces) done (* F3 *) lemma tail_traces_failures_F3: "a : head_traces (fstF SF) ==> HC_F3 (tail_traces (fstF SF) a , tail_failures (sndF SF) a)" apply (simp add: HC_F3_def in_traces in_failures) apply (intro allI impI) apply (elim conjE) apply (simp add: in_tail_failures) apply (simp add: in_tail_traces) apply (rule pairF_domF_F3) apply (simp) apply (simp) apply (simp add: appt_assoc_sym) done (* T3_F4 *) lemma tail_traces_failures_T3_F4: "a : head_traces (fstF SF) ==> HC_T3_F4 (tail_traces (fstF SF) a , tail_failures (sndF SF) a)" apply (simp add: HC_T3_F4_def in_traces in_failures) apply (intro allI impI) apply (elim conjE) apply (simp add: in_tail_failures) apply (simp add: in_tail_traces) apply (simp add: appt_assoc_sym) apply (simp add: pairF_domF_F4) apply (simp add: pairF_domF_T3) done lemma tail_traces_failures_domF: "a : head_traces (fstF SF) | a : head_failures (sndF SF) ==> (tail_traces (fstF SF) a , tail_failures (sndF SF) a) : domF" apply (simp add: domF_iff) apply (subgoal_tac "a : head_traces (fstF SF)") apply (simp add: tail_traces_failures_T2) apply (simp add: tail_traces_failures_F3) apply (simp add: tail_traces_failures_T3_F4) apply (auto simp add: head_failures_traces) done (*-------------------------------------* | failures (Proc_T_rec n) --> Tick | *-------------------------------------*) lemma failures_Proc_T_rec_noTick_lm: "ALL s T. ((s, X) :f failures (Proc_T_rec n T) M & noTick s) --> (EX t. s ^^ t ^^ <Tick> :t T & noTick t)" apply (induct_tac n) (* base *) apply (simp add: in_traces) apply (simp add: in_failures) (* step *) apply (intro allI impI) apply (simp add: in_failures) apply (elim conjE exE disjE bexE) apply (simp_all) apply (drule_tac x="sa" in spec) apply (drule_tac x="(tail_traces T a)" in spec) apply (simp) apply (elim conjE exE) apply (rule_tac x="t" in exI) apply (simp add: appt_assoc) apply (simp add: head_tail_traces) apply (simp add: in_traces) apply (simp add: in_traces) apply (case_tac "<Tick> :t T") apply (simp add: in_failures) apply (erule disjE) apply (rule_tac x="<>" in exI) apply (simp) apply (simp) apply (simp add: in_failures) done lemma failures_Proc_T_rec_noTick: "[| (s, X) :f failures (Proc_T_rec n T) M ; noTick s|] ==> (EX t. s ^^ t ^^ <Tick> :t T & noTick t)" by (simp add: failures_Proc_T_rec_noTick_lm) lemma failures_Proc_T_rec_lm: "ALL s T. ((s, X) :f failures (Proc_T_rec n T) M) --> s :t T" apply (induct_tac n) (* base *) apply (simp add: in_traces) apply (simp add: in_failures) (* step *) apply (intro allI impI) apply (simp add: in_failures) apply (elim conjE exE disjE bexE) apply (simp_all) apply (drule_tac x="sa" in spec) apply (drule_tac x="(tail_traces T a)" in spec) apply (simp add: head_tail_traces) apply (case_tac "<Tick> :t T") apply (auto simp add: in_failures) done lemma failures_Proc_T_rec: "(s, X) :f failures (Proc_T_rec n T) M ==> s :t T" by (simp add: failures_Proc_T_rec_lm) lemma failures_Proc_T_rec_T3: "[| (s, X) :f failures (Proc_T_rec n (fstF SF)) M ; noTick s |] ==> (EX t. (s ^^ t ^^ <Tick>,Y) :f (sndF SF) & noTick t)" apply (insert failures_Proc_T_rec_noTick_lm[of X n M]) apply (drule_tac x="s" in spec) apply (drule_tac x="fstF SF" in spec) apply (simp) apply (elim conjE exE) apply (rule_tac x="t" in exI) apply (simp) apply (simp add: appt_assoc_sym) apply (simp add: pairF_domF_T3) done (*** head T --> head F **) lemma head_traces_failures_noTick: "[| a : head_traces (fstF SF); (s, X) :f failures (Proc_T_rec n (tail_traces (fstF SF) a)) M; noTick s|] ==> a : head_failures (sndF SF)" apply (insert failures_Proc_T_rec_noTick_lm[of X n M]) apply (drule_tac x="s" in spec) apply (drule_tac x="tail_traces (fstF SF) a" in spec) apply (simp) apply (elim conjE exE) apply (simp add: in_tail_traces) apply (simp add: head_failures_def) apply (rule_tac x="s ^^ t ^^ <Tick>" in exI) apply (rule_tac x="X" in exI) apply (simp add: appt_assoc_sym) apply (simp add: pairF_domF_T3) done (*** head_traces_failures ***) lemma head_traces_failures: (* not used *) "[| a : head_traces (fstF SF); (s, X) :f failures (Proc_T_rec n (tail_traces (fstF SF) a)) M |] ==> a : head_failures (sndF SF)" apply (case_tac "noTick s") apply (simp add: head_traces_failures_noTick) apply (simp add: noTick_def) apply (simp add: Tick_in_sett) apply (elim conjE exE) apply (insert failures_Proc_T_rec_lm[of X n M]) apply (drule_tac x="s" in spec) apply (drule_tac x="tail_traces (fstF SF) a" in spec) apply (simp add: in_tail_traces) apply (simp add: appt_assoc_sym) apply (simp add: head_failures_def) apply (rule_tac x="t ^^ <Tick>" in exI) apply (rule_tac x="X" in exI) apply (simp add: appt_assoc_sym) apply (simp add: pairF_domF_T3) done (*----------------------------* | Proc_T lemma | *----------------------------*) (* traces(Proc_F_rec) => fst SF (lm) *) lemma Proc_F_to_T_lm: "ALL SF t. t :t traces (Proc_F_rec n SF) M --> t :t fstF SF" apply (induct_tac n) (* base *) apply (simp add: in_traces) apply (intro allI impI) apply (elim conjE exE) apply (erule disjE, simp) apply (elim conjE exE) apply (simp) (* step *) apply (intro allI impI) apply (simp add: in_traces) apply (elim conjE exE disjE bexE) apply (simp_all) apply (drule_tac x="(tail_traces (fstF SF) a ,, tail_failures (sndF SF) a)" in spec) apply (drule_tac x="s" in spec) apply (simp) apply (simp add: tail_traces_failures_domF pairF_fstF) apply (simp add: in_tail_traces head_failures_traces) done (* traces(Proc_F_rec) => fst SF *) lemma Proc_F_to_T: "t :t traces (Proc_F_rec n SF) M ==> t :t fstF SF" by (simp add: Proc_F_to_T_lm) (* traces(Proc_F_rec) => fst SF (lm) *) lemma Proc_T_to_F_lm: "ALL SF s X. (s, X) :f failures (Proc_T_rec n (fstF SF)) M --> (s, X) :f sndF SF" apply (induct_tac n) (* base *) apply (simp add: in_failures) (* step *) apply (intro allI impI) apply (simp add: in_failures) apply (elim conjE exE disjE bexE) apply (simp_all) apply (drule_tac x="(tail_traces (fstF SF) a ,, tail_failures (sndF SF) a)" in spec) apply (drule_tac x="sa" in spec) apply (drule_tac x="X" in spec) apply (simp add: tail_traces_failures_domF pairF_fstF) apply (simp add: tail_traces_failures_domF pairF_sndF) apply (simp add: in_tail_failures) apply (simp add: in_traces) apply (simp add: in_traces) apply (case_tac "<Tick> :t fstF SF") apply (simp add: in_failures) apply (erule disjE) apply (simp add: pairF_domF_F2_F4) apply (simp add: pairF_domF_T3_Tick) apply (simp add: in_failures) done (* traces(Proc_F_rec) => fst SF *) lemma Proc_T_to_F: "(s, X) :f failures (Proc_T_rec n (fstF SF)) M ==> (s, X) :f sndF SF" by (simp add: Proc_T_to_F_lm) (* failures(Proc_F_rec) => snd SF (lm) *) lemma Proc_F_to_F_lm: "ALL SF s X. (s, X) :f failures (Proc_F_rec n SF) M --> (s, X) :f sndF SF" apply (induct_tac n) (* base *) apply (simp add: in_failures) apply (intro allI impI) apply (elim conjE exE) apply (rule memF_F2) apply (simp) apply (simp add: Evset_def) apply (blast) (* step *) apply (intro allI impI) apply (simp add: in_failures) apply (elim conjE exE bexE disjE) apply (simp_all) apply (drule_tac x="(tail_traces (fstF SF) a ,, tail_failures (sndF SF) a)" in spec) apply (drule_tac x="sa" in spec) apply (drule_tac x="X" in spec) apply (simp add: tail_traces_failures_domF pairF_fstF) apply (simp add: tail_traces_failures_domF pairF_sndF) apply (simp add: head_tail_failures) apply (simp add: in_traces) apply (simp add: in_traces) done lemma Proc_F_to_F: "(s, X) :f failures (Proc_F_rec n SF) M ==> (s, X) :f sndF SF" by (simp add: Proc_F_to_F_lm) (* sndF SF => failures (Proc_F_rec) lm *) lemma F_Proc_F_lm: "ALL SF X. ((s, X) :f sndF SF & noTick s & (Tick : X | s ^^ <Tick> ~:t fstF SF)) --> (s, X) :f failures (Proc_F_rec (lengtht s) SF) M" apply (induct_tac s rule: induct_trace) (* <> *) apply (intro allI impI) apply (simp add: in_failures) apply (rule_tac x="{a. Ev a ~: X & <Ev a> :t fstF SF}" in exI) apply (rule) apply (elim conjE) apply (erule disjE) (* Tick : X *) apply (rule_tac x="X Un {Ev a|a. <Ev a> ~:t fstF SF}" in exI) apply (simp) apply (rule) apply (rule pairF_domF_F3) apply (simp) apply (simp) apply (force) apply (simp add: Evset_def not_Tick_to_Ev) apply (force) (* <Tick> ~:t fstF SF *) apply (rule_tac x="X Un ({Tick} Un {Ev a|a. <Ev a> ~:t fstF SF})" in exI) apply (rule) apply (rule pairF_domF_F3) apply (simp) apply (simp) apply (force) apply (simp add: Evset_def not_Tick_to_Ev) apply (force) apply (force) (* <Tick> *) apply (simp) (* <Ev a> ^^ s *) apply (intro allI impI) apply (simp add: in_failures) apply (simp add: head_tail_failures) apply (drule_tac x="(tail_traces (fstF SF) a ,, tail_failures (sndF SF) a)" in spec) apply (drule_tac x="X" in spec) apply (simp add: tail_traces_failures_domF pairF_fstF pairF_sndF) apply (elim conjE exE disjE) apply (simp) apply (simp add: appt_assoc) apply (simp add: head_failures_traces head_tail_traces) done (* sndF SF => failures (Proc_F_rec) *) lemma F_Proc_F: "[| (s, X) :f sndF SF ; noTick s ; Tick : X | s ^^ <Tick> ~:t fstF SF |] ==> (s, X) :f failures (Proc_F_rec (lengtht s) SF) M" by (simp add: F_Proc_F_lm) (* sndF SF => failures (Proc_T_rec) (noTick) lm *) declare lengtht_app_event_Suc_head [simp del] declare lengtht_app_decompo1 [simp del] declare lengtht_app_decompo2 [simp del] declare Proc_T_rec.simps [simp del] lemma F_Proc_T_noTick_lm: "ALL SF X. (s, X) :f sndF SF & noTick s & Tick ~: X & s ^^ <Tick> :t fstF SF --> (s, X) :f failures (Proc_T_rec (Suc (lengtht s)) (fstF SF)) M" apply (induct_tac s rule: induct_trace) (* <> *) apply (intro allI impI) apply (simp add: Proc_T_rec.simps in_failures) apply (simp add: Evset_def) apply (fast) (* <Tick> *) apply (intro allI impI) apply (simp add: Proc_T_rec.simps in_failures) (* <Ev a> ^^ s *) apply (intro allI impI) apply (simp (no_asm) add: Proc_T_rec.simps) apply (simp add: in_failures) apply (elim conjE) apply (simp add: appt_assoc) apply (simp add: head_tail_traces) apply (drule_tac x="(tail_traces (fstF SF) a ,, tail_failures (sndF SF) a)" in spec) apply (drule_tac x="X" in spec) apply (simp) apply (elim conjE) apply (simp add: tail_traces_failures_domF pairF_fstF pairF_sndF) apply (simp add: head_tail_failures) apply (simp add: lengtht_app_event_Suc_head) done (* sndF SF => failures (Proc_T_rec) noTick *) lemma F_Proc_T_noTick: "[| (s, X) :f sndF SF ; noTick s ; Tick ~: X ; s ^^ <Tick> :t fstF SF |] ==> (s, X) :f failures (Proc_T_rec (Suc (lengtht s)) (fstF SF)) M" by (simp add: F_Proc_T_noTick_lm) declare lengtht_app_event_Suc_head [simp] declare lengtht_app_decompo1 [simp] declare lengtht_app_decompo2 [simp] declare Proc_T_rec.simps [simp] (* sndF SF => failures (Proc_T_rec) (Tick) lm *) lemma F_Proc_T_Tick_lm: "ALL SF X. ((s, X) :f sndF SF & ~ noTick s) --> (s, X) :f failures (Proc_T_rec (lengtht s) (fstF SF)) M" apply (induct_tac s rule: induct_trace) (* <> *) apply (intro allI impI) apply (simp add: in_failures) (* <Tick> *) apply (intro allI impI) apply (simp add: in_failures) apply (simp add: pairF_domF_T2) (* <Ev a> ^^ s *) apply (intro allI impI) apply (simp add: in_failures) apply (elim conjE) apply (simp add: head_tail_failures) apply (drule_tac x="(tail_traces (fstF SF) a ,, tail_failures (sndF SF) a)" in spec) apply (drule_tac x="X" in spec) apply (simp add: tail_traces_failures_domF pairF_fstF pairF_sndF) apply (elim conjE) apply (simp add: head_failures_traces) done (* sndF SF => failures (Proc_T_rec) noTick *) lemma F_Proc_T_Tick: "[| (s, X) :f sndF SF; ~ noTick s |] ==> (s, X) :f failures (Proc_T_rec (lengtht s) (fstF SF)) M" by (simp add: F_Proc_T_Tick_lm) (*==================================================* | Proc_F lemma (main) | *==================================================*) lemma semF_Proc_F: "[[ Proc_F SF ]]Ff M = SF" apply (simp add: Proc_F_def) apply (rule order_antisym) (* <= *) apply (simp add: subdomF_decompo) apply (rule conjI) (* Proc <= fstF SF *) apply (rule) apply (simp add: in_traces) apply (simp add: semT_Proc_T[simplified semTf_def]) apply (erule disjE, simp) apply (erule disjE, simp) apply (elim conjE exE) apply (simp add: Proc_F_to_T) (* Proc <= sndF SF *) apply (rule) apply (simp add: in_failures) apply (erule disjE) (* Proc T <= sndF SF *) apply (simp add: Proc_T_def) apply (simp add: in_failures) apply (erule exE) apply (simp add: Proc_T_to_F) (* Proc F <= sndF SF *) apply (erule exE) apply (simp add: Proc_F_to_F) (* <= *) apply (simp add: subdomF_decompo) apply (rule conjI) (* fstF SF <= Proc *) apply (rule) apply (simp add: in_traces) apply (simp add: semT_Proc_T[simplified semTf_def]) (* sndF SF <= Proc *) apply (rule) apply (simp add: in_failures) apply (case_tac "noTick s & (Tick : X | s ^^ <Tick> ~:t fstF SF)") apply (rule disjI2) apply (rule_tac x="lengtht s" in exI) apply (simp add: F_Proc_F) apply (simp) apply (rule disjI1) apply (simp add: Proc_T_def) apply (simp add: in_failures) apply (case_tac "noTick s") (* noTick s & s ^^ <Tick> :t fstF SF *) apply (simp) apply (rule_tac x="Suc (lengtht s)" in exI) apply (simp add: F_Proc_T_noTick del: Proc_T_rec.simps) (* ~ noTick s *) apply (rule_tac x="lengtht s" in exI) apply (simp add: F_Proc_T_Tick) done (*----------------------------* | [[ ]]F is surjective | *----------------------------*) theorem EX_proc_domF: "ALL SF. EX P::('p,'a) proc. [[P]]F = SF" apply (rule allI) apply (rule_tac x="Proc_F SF" in exI) apply (simp add: semF_def semF_Proc_F) done theorem surj_domF: "surj (%P::('p,'a) proc. [[P]]F)" apply (simp add: surj_def) apply (rule allI) apply (rule_tac x="Proc_F y" in exI) apply (simp add: semF_def semF_Proc_F) done (*----------------------------* | failures and Proc_F SF | *----------------------------*) lemma failures_Proc_F: "failures (Proc_F SF) M = sndF SF" apply (insert semF_Proc_F[of SF M]) apply (simp add: semFf_def) apply (simp add: eqF_decompo) done (*----------------------------* | traces and Proc_F SF | *----------------------------*) lemma make_failures_from_T: "(T , failures (Proc_T T) M) : domF" apply (subgoal_tac "(traces (Proc_T T) (fstF o M) , failures (Proc_T T) M) : domF") apply (simp only: traces_Proc_T) apply (simp) done lemma traces_Proc_F: "traces ((Proc_F SF)::('p,'a) proc) M = fstF SF" apply (insert semF_Proc_F[of SF "(%p. (traces ((Proc_T (M p))::('p,'a) proc) (fstF o M'),,failures(Proc_T (M p)) M'))"]) apply (simp add: semFf_def) apply (simp add: eqF_decompo) apply (simp add: fstF_proc_domF_fun) apply (simp add: traces_Proc_T) done lemma traces_Proc_T_F: "traces (Proc_T (fstF SF)) M = traces (Proc_F SF) M" apply (simp add: traces_Proc_T) apply (simp add: traces_Proc_F) done (*==========================================================* | | | Generic Internal Choice | | | *==========================================================*) consts Gen_int_choice_F_plus :: "('p,'a) proc set => ('p,'a) proc" ("(1|~~|F _)" [900] 68) defs Gen_int_choice_F_plus_def: "|~~|F Ps == Proc_F( (UnionT {traces(P) (fstF o MF)|P. P:Ps},, UnionF {failures(P) MF |P. P:Ps}))" (* lemmas *) lemma traces_Gen_int_choice_F_plus: "Ps ~= {} ==> traces ( |~~|F Ps ) M = (UnionT {traces(P) (fstF o MF) |P. P:Ps})" apply (simp add: Gen_int_choice_F_plus_def) apply (simp add: traces_Proc_F) apply (simp add: pairF non_empty_UnionT_UnionF_domF) done lemma failures_Gen_int_choice_F_plus: "Ps ~= {} ==> failures ( |~~|F Ps ) M = (UnionF {failures(P) MF |P. P:Ps})" apply (simp add: Gen_int_choice_F_plus_def) apply (simp add: failures_Proc_F) apply (simp add: pairF non_empty_UnionT_UnionF_domF) done lemma semF_Gen_int_choice_F_plus: "Ps ~= {} ==> [[ |~~|F Ps ]]F = (UnionT {traces(P) (fstF o MF) |P. P:Ps} ,, (UnionF {failures(P) MF |P. P:Ps}))" apply (simp add: semF_def semFf_def) apply (simp add: traces_Gen_int_choice_F_plus failures_Gen_int_choice_F_plus) done lemma in_traces_Gen_int_choice_F_plus: "Ps ~= {} ==> t :t traces ( |~~|F Ps ) M = (EX P:Ps. t :t traces(P) (fstF o MF))" apply (simp add: traces_Gen_int_choice_F_plus) apply (subgoal_tac "{traces P |P. P : Ps} ~= {}") apply (auto) done lemma in_failures_Gen_int_choice_F_plus: "Ps ~= {} ==> f :f failures ( |~~|F Ps ) M = (EX P:Ps. f :f failures(P) MF)" apply (simp add: failures_Gen_int_choice_F_plus) apply (subgoal_tac "{traces P |P. P : Ps} ~= {}") apply (auto) done (****************** to add them again ******************) declare disj_not1 [simp] end
lemma tail_failures_setF:
{(t, X). (<Ev a> ^^ t, X) :f F} ∈ setF
lemma in_tail_failures:
((s, X) :f tail_failures F a) = ((<Ev a> ^^ s, X) :f F)
lemma head_tail_failures_only_if:
(<Ev a> ^^ s, X) :f F ==> a ∈ head_failures F ∧ (s, X) :f tail_failures F a
lemma head_tail_failures:
((<Ev a> ^^ s, X) :f F) = (a ∈ head_failures F ∧ (s, X) :f tail_failures F a)
lemma head_failures_traces:
a ∈ head_failures (sndF SF) ==> a ∈ head_traces (fstF SF)
lemma tail_traces_failures_T2:
HC_T2 (tail_traces (fstF SF) a, tail_failures (sndF SF) a)
lemma tail_traces_failures_F3:
a ∈ head_traces (fstF SF) ==> HC_F3 (tail_traces (fstF SF) a, tail_failures (sndF SF) a)
lemma tail_traces_failures_T3_F4:
a ∈ head_traces (fstF SF) ==> HC_T3_F4 (tail_traces (fstF SF) a, tail_failures (sndF SF) a)
lemma tail_traces_failures_domF:
a ∈ head_traces (fstF SF) ∨ a ∈ head_failures (sndF SF) ==> (tail_traces (fstF SF) a, tail_failures (sndF SF) a) ∈ domF
lemma failures_Proc_T_rec_noTick_lm:
∀s T. (s, X) :f failures (Proc_T_rec n T) M ∧ noTick s --> (∃t. s ^^ t ^^ <Tick> :t T ∧ noTick t)
lemma failures_Proc_T_rec_noTick:
[| (s, X) :f failures (Proc_T_rec n T) M; noTick s |] ==> ∃t. s ^^ t ^^ <Tick> :t T ∧ noTick t
lemma failures_Proc_T_rec_lm:
∀s T. (s, X) :f failures (Proc_T_rec n T) M --> s :t T
lemma failures_Proc_T_rec:
(s, X) :f failures (Proc_T_rec n T) M ==> s :t T
lemma failures_Proc_T_rec_T3:
[| (s, X) :f failures (Proc_T_rec n (fstF SF)) M; noTick s |] ==> ∃t. (s ^^ t ^^ <Tick>, Y) :f sndF SF ∧ noTick t
lemma head_traces_failures_noTick:
[| a ∈ head_traces (fstF SF); (s, X) :f failures (Proc_T_rec n (tail_traces (fstF SF) a)) M; noTick s |] ==> a ∈ head_failures (sndF SF)
lemma head_traces_failures:
[| a ∈ head_traces (fstF SF); (s, X) :f failures (Proc_T_rec n (tail_traces (fstF SF) a)) M |] ==> a ∈ head_failures (sndF SF)
lemma Proc_F_to_T_lm:
∀SF t. t :t traces (Proc_F_rec n SF) M --> t :t fstF SF
lemma Proc_F_to_T:
t :t traces (Proc_F_rec n SF) M ==> t :t fstF SF
lemma Proc_T_to_F_lm:
∀SF s X. (s, X) :f failures (Proc_T_rec n (fstF SF)) M --> (s, X) :f sndF SF
lemma Proc_T_to_F:
(s, X) :f failures (Proc_T_rec n (fstF SF)) M ==> (s, X) :f sndF SF
lemma Proc_F_to_F_lm:
∀SF s X. (s, X) :f failures (Proc_F_rec n SF) M --> (s, X) :f sndF SF
lemma Proc_F_to_F:
(s, X) :f failures (Proc_F_rec n SF) M ==> (s, X) :f sndF SF
lemma F_Proc_F_lm:
∀SF X. (s, X) :f sndF SF ∧ noTick s ∧ (Tick ∈ X ∨ s ^^ <Tick> ~:t fstF SF) --> (s, X) :f failures (Proc_F_rec (lengtht s) SF) M
lemma F_Proc_F:
[| (s, X) :f sndF SF; noTick s; Tick ∈ X ∨ s ^^ <Tick> ~:t fstF SF |] ==> (s, X) :f failures (Proc_F_rec (lengtht s) SF) M
lemma F_Proc_T_noTick_lm:
∀SF X. (s, X) :f sndF SF ∧ noTick s ∧ Tick ∉ X ∧ s ^^ <Tick> :t fstF SF --> (s, X) :f failures (Proc_T_rec (Suc (lengtht s)) (fstF SF)) M
lemma F_Proc_T_noTick:
[| (s, X) :f sndF SF; noTick s; Tick ∉ X; s ^^ <Tick> :t fstF SF |] ==> (s, X) :f failures (Proc_T_rec (Suc (lengtht s)) (fstF SF)) M
lemma F_Proc_T_Tick_lm:
∀SF X. (s, X) :f sndF SF ∧ ¬ noTick s --> (s, X) :f failures (Proc_T_rec (lengtht s) (fstF SF)) M
lemma F_Proc_T_Tick:
[| (s, X) :f sndF SF; ¬ noTick s |] ==> (s, X) :f failures (Proc_T_rec (lengtht s) (fstF SF)) M
lemma semF_Proc_F:
[[Proc_F SF]]Ff M = SF
theorem EX_proc_domF:
∀SF. ∃P. [[P]]F = SF
theorem surj_domF:
surj semF
lemma failures_Proc_F:
failures (Proc_F SF) M = sndF SF
lemma make_failures_from_T:
(T, failures (Proc_T T) M) ∈ domF
lemma traces_Proc_F:
traces (Proc_F SF) M = fstF SF
lemma traces_Proc_T_F:
traces (Proc_T (fstF SF)) M = traces (Proc_F SF) M
lemma traces_Gen_int_choice_F_plus:
Ps ≠ {} ==> traces (|~~|F Ps) M = UnionT {traces P (fstF o MF) |P. P ∈ Ps}
lemma failures_Gen_int_choice_F_plus:
Ps ≠ {} ==> failures (|~~|F Ps) M = UnionF {failures P MF |P. P ∈ Ps}
lemma semF_Gen_int_choice_F_plus:
Ps ≠ {} ==> [[|~~|F Ps]]F = (UnionT {traces P (fstF o MF) |P. P ∈ Ps} ,, UnionF {failures P MF |P. P ∈ Ps})
lemma in_traces_Gen_int_choice_F_plus:
Ps ≠ {} ==> (t :t traces (|~~|F Ps) M) = (∃P∈Ps. t :t traces P (fstF o MF))
lemma in_failures_Gen_int_choice_F_plus:
Ps ≠ {} ==> (f :f failures (|~~|F Ps) M) = (∃P∈Ps. f :f failures P MF)