(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | November 2004 | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | March 2006 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory Norm_seq imports CMS begin (***************************************************************** 1. Definition of Normarized sequences 2. Properties of Normarized sequences 3. How to transform each Cauchy sequence to NF 4. The same limit between xs and NF(xs) *****************************************************************) consts normal :: "'a::ms infinite_seq => bool" Nset :: "'a::ms infinite_seq => real => nat set" Nmin :: "'a::ms infinite_seq => real => nat" NF :: "'a::ms infinite_seq => 'a::ms infinite_seq" defs normal_def : "normal xs == ALL (n::nat) (m::nat). distance(xs n, xs m) <= (1/2)^(min n m)" Nset_def : "Nset xs delta == {N. ALL n m. (N <= m & N <= n) --> distance(xs n, xs m) <= delta}" Nmin_def : "Nmin xs delta == MIN (Nset xs delta)" NF_def : "NF xs == (%n. xs (Nmin xs ((1/2)^n)))" (******************************************************************** Normalization ********************************************************************) (*** normalized sequence --> Cauchy sequence ***) lemma normal_cauchy: "normal xs ==> cauchy xs" apply (simp add: cauchy_def) apply (intro allI impI) apply (subgoal_tac "EX n. (1/2) ^ n < delta") apply (erule exE) apply (rule_tac x="n" in exI) apply (intro allI impI) apply (simp add: normal_def) apply (drule_tac x="i" in spec) apply (drule_tac x="j" in spec) apply (subgoal_tac "((1::real) / 2) ^ min i j <= (1 / 2) ^ n") apply (simp) apply (case_tac "i <= j") apply (simp add: min_def power_decreasing) apply (simp add: min_def power_decreasing) apply (simp add: pow_convergence) done declare realpow_Suc [simp del] lemma normal_Limit: "[| normal xs ; xs convergeTo y |] ==> distance(xs (Suc n), y) < (1/2)^n" apply (simp add: convergeTo_def) apply (drule_tac x="(1/2)^(Suc n)" in spec) apply (simp) apply (erule exE) apply (rename_tac N) apply (case_tac "N <= Suc n") apply (drule_tac x="Suc n" in spec) apply (simp add: symmetry_ms) apply (subgoal_tac "((1::real) / 2) ^ Suc n <= (1 / 2) ^ n") apply (simp) apply (simp add: power_decreasing) (* else (i.e. Suc n < N *) apply (drule_tac x="N" in spec) apply (simp) apply (insert triangle_inequality_ms) apply (drule_tac x="xs (Suc n)" in spec) apply (drule_tac x="xs N" in spec) apply (drule_tac x="y" in spec) apply (simp add: normal_def) apply (drule_tac x="Suc n" in spec) apply (drule_tac x="N" in spec) apply (simp add: symmetry_ms) apply (simp add: min_def) apply (simp add: realpow_Suc) done declare realpow_Suc [simp] (******************************************************************** Nmin ********************************************************************) (*** Nmin exists ***) lemma Nmin_exists: "[| 0 < delta ; cauchy xs |] ==> EX N. N isMIN (Nset xs delta)" apply (simp add: cauchy_def) apply (drule_tac x="delta" in spec) apply (simp) apply (erule exE) apply (rule EX_MIN_nat) apply (simp add: Nset_def) apply (rule_tac x="n" in exI) apply (intro allI impI) apply (drule_tac x="na" in spec) apply (drule_tac x="m" in spec) by (simp) lemma Nset_hasMIN: "[| 0 < delta ; cauchy xs |] ==> (Nset xs delta) hasMIN" apply (simp add: hasMIN_def) apply (rule Nmin_exists) by (simp) (*** Nmin unique ***) lemma Nmin_unique: "[| N isMIN (Nset xs delta) ; M isMIN (Nset xs delta) |] ==> N = M" by (simp add: MIN_unique) (*-----------------------* | the Nmin | *-----------------------*) lemma Nset_to_Nmin : "[| 0 < delta ; cauchy xs |] ==> (N isMIN (Nset xs delta)) = (Nmin xs delta = N)" apply (simp add: Nmin_def) apply (rule iffI) apply (simp add: MIN_def Nset_hasMIN) apply (rule the_equality) apply (simp) apply (simp add: Nmin_unique) by (simp add: MIN_iff Nset_hasMIN) lemmas Nmin_to_Nset = Nset_to_Nmin[THEN sym] lemma Nmin_to_Nset_sym : "[| 0 < delta ; cauchy xs |] ==> (N = Nmin xs delta) = (N isMIN (Nset xs delta))" by (auto simp add: Nset_to_Nmin) lemmas Nmin_iff = Nmin_to_Nset Nmin_to_Nset_sym (*-----------------------* | property | *-----------------------*) lemma Nmin_cauchy_lm: "[| 0 < delta ; cauchy xs ; Nmin xs delta = N |] ==> (ALL n m. (N <= m & N <= n) --> distance(xs n, xs m) <= delta)" by (simp add: Nmin_iff Nset_def isMIN_def) lemma Nmin_cauchy: "[| 0 < delta ; cauchy xs ; Nmin xs delta <= m ; Nmin xs delta <= n |] ==> distance(xs n, xs m) <= delta" by (simp add: Nmin_cauchy_lm) (*-----------------------* | min_number_cauchy | *-----------------------*) (*** Nmin order (check) ***) lemma min_number_cauchy_lm: "[| 0 < delta1 ; delta1 <= delta2 ; cauchy xs |] ==> Nset xs delta1 <= Nset xs delta2" apply (simp add: Nset_def) apply (rule subsetI) apply (simp) apply (intro allI impI) apply (drule_tac x="n" in spec) apply (drule_tac x="m" in spec) by (simp) (*** Nmin order ***) lemma min_number_cauchy: "[| 0 < delta1 ; delta1 <= delta2 ; cauchy xs ; Nmin xs delta1 = N1 ; Nmin xs delta2 = N2 |] ==> N2 <= N1" apply (simp add: Nmin_iff) by (simp add: isMIN_subset min_number_cauchy_lm) (*** Nmin order half ***) lemma min_number_cauchy_half: "[| n <= m ; cauchy xs ; Nmin xs ((1/2)^n) = N1 ; Nmin xs ((1/2)^m) = N2 |] ==> N1 <= N2" apply (rule min_number_cauchy) by (simp_all add: power_decreasing) (*------------------------* | normal_form_seq_normal | *------------------------*) lemma normal_form_seq_normal: "cauchy xs ==> normal (NF(xs))" apply (simp add: normal_def NF_def) apply (intro allI) apply (case_tac "n <= m") apply (simp add: min_def) apply (rule Nmin_cauchy, simp_all) apply (rule min_number_cauchy_half, simp_all) (* else *) apply (simp add: min_def) apply (rule Nmin_cauchy, simp_all) apply (rule min_number_cauchy_half, simp_all) done (*----------------------------* | normal_form_seq_same_Limit | *----------------------------*) (*** only if part ***) lemma normal_form_seq_same_Limit_only_if: "[| cauchy xs ; xs convergeTo y |] ==> NF(xs) convergeTo y" apply (simp add: convergeTo_def) apply (intro allI impI) apply (drule_tac x="eps/2" in spec) apply (simp) apply (erule exE) apply (subgoal_tac "EX n. (1 / 2) ^ n < eps/2") apply (erule exE) apply (rename_tac eps N M) apply (rule_tac x="M" in exI) apply (intro allI impI) apply (case_tac "N <= Nmin xs ((1/2)^m)") apply (drule_tac x="Nmin xs ((1/2)^m)" in spec) apply (simp add: NF_def) (* else *) apply (insert triangle_inequality_ms) apply (drule_tac x="y" in spec) apply (drule_tac x="xs N" in spec) apply (drule_tac x="(NF xs) m" in spec) apply (drule_tac x="N" in spec) apply (simp add: NF_def) apply (subgoal_tac "distance (xs N, xs (Nmin xs ((1 / 2) ^ m))) <= (1 / 2) ^ m") apply (subgoal_tac "((1::real) / 2) ^ m <= (1 / 2) ^ M") apply (simp) apply (simp add: power_decreasing) apply (rule Nmin_cauchy) apply (simp, simp, simp, simp) apply (rule pow_convergence) apply (simp_all) done (*** if part ***) lemma normal_form_seq_same_Limit_if: "[| cauchy xs ; NF (xs) convergeTo y |] ==> xs convergeTo y" apply (simp add: convergeTo_def) apply (intro allI impI) apply (drule_tac x="eps/2" in spec) apply (simp) apply (erule exE) apply (subgoal_tac "EX n. (1 / 2) ^ n < eps/2") apply (erule exE) apply (rename_tac eps N M) apply (rule_tac x="Nmin xs ((1/2)^(max N M))" in exI) apply (intro allI impI) apply (insert triangle_inequality_ms) apply (drule_tac x="y" in spec) apply (drule_tac x="xs (Nmin xs ((1/2)^(max N M)))" in spec) apply (drule_tac x="xs m" in spec) apply (drule_tac x="max N M" in spec) (* apply (simp add: le_maxI1) *) apply (simp add: NF_def) (* *) apply (subgoal_tac "distance(xs (Nmin xs ((1 / 2) ^ max N M)), xs m) <= (1 / 2) ^ max N M") apply (subgoal_tac "((1::real) / 2) ^ max N M <= (1 / 2) ^ M") apply (simp) apply (simp add: max_def power_decreasing) apply (rule Nmin_cauchy) apply (simp, simp, simp, simp) apply (rule pow_convergence) apply (simp_all) done (*** iff ***) lemma normal_form_seq_same_Limit: "cauchy xs ==> xs convergeTo y = NF(xs) convergeTo y" apply (rule iffI) apply (simp add: normal_form_seq_same_Limit_only_if) apply (simp add: normal_form_seq_same_Limit_if) done end
lemma normal_cauchy:
normal xs ==> cauchy xs
lemma normal_Limit:
[| normal xs; xs convergeTo y |] ==> distance (xs (Suc n), y) < (1 / 2) ^ n
lemma Nmin_exists:
[| 0 < delta; cauchy xs |] ==> ∃N. N isMIN Nset xs delta
lemma Nset_hasMIN:
[| 0 < delta; cauchy xs |] ==> (Nset xs delta) hasMIN
lemma Nmin_unique:
[| N isMIN Nset xs delta; M isMIN Nset xs delta |] ==> N = M
lemma Nset_to_Nmin:
[| 0 < delta; cauchy xs |] ==> N isMIN Nset xs delta = (Nmin xs delta = N)
lemma Nmin_to_Nset:
[| 0 < delta1; cauchy xs1 |]
==> (Nmin xs1 delta1 = N1) = N1 isMIN Nset xs1 delta1
lemma Nmin_to_Nset_sym:
[| 0 < delta; cauchy xs |] ==> (N = Nmin xs delta) = N isMIN Nset xs delta
lemma Nmin_iff:
[| 0 < delta; cauchy xs |] ==> (Nmin xs delta = N) = N isMIN Nset xs delta
[| 0 < delta; cauchy xs |] ==> (N = Nmin xs delta) = N isMIN Nset xs delta
lemma Nmin_cauchy_lm:
[| 0 < delta; cauchy xs; Nmin xs delta = N |]
==> ∀n m. N ≤ m ∧ N ≤ n --> distance (xs n, xs m) ≤ delta
lemma Nmin_cauchy:
[| 0 < delta; cauchy xs; Nmin xs delta ≤ m; Nmin xs delta ≤ n |]
==> distance (xs n, xs m) ≤ delta
lemma min_number_cauchy_lm:
[| 0 < delta1.0; delta1.0 ≤ delta2.0; cauchy xs |]
==> Nset xs delta1.0 ⊆ Nset xs delta2.0
lemma min_number_cauchy:
[| 0 < delta1.0; delta1.0 ≤ delta2.0; cauchy xs; Nmin xs delta1.0 = N1.0;
Nmin xs delta2.0 = N2.0 |]
==> N2.0 ≤ N1.0
lemma min_number_cauchy_half:
[| n ≤ m; cauchy xs; Nmin xs ((1 / 2) ^ n) = N1.0;
Nmin xs ((1 / 2) ^ m) = N2.0 |]
==> N1.0 ≤ N2.0
lemma normal_form_seq_normal:
cauchy xs ==> normal (NF xs)
lemma normal_form_seq_same_Limit_only_if:
[| cauchy xs; xs convergeTo y |] ==> NF xs convergeTo y
lemma normal_form_seq_same_Limit_if:
[| cauchy xs; NF xs convergeTo y |] ==> xs convergeTo y
lemma normal_form_seq_same_Limit:
cauchy xs ==> xs convergeTo y = NF xs convergeTo y