Up to index of Isabelle/HOL/HOL-Complex/CSP
theory Infra_common(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | November 2004 | | June 2005 (modified) | | July 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory Infra_common imports Complex_Main begin (***************************************************** Convenient technique for proofs *****************************************************) (*--------------------------* | remove assumeption | *--------------------------*) lemma rem_asmE: "[| A ; R |] ==> R" by simp (*--------------------------* | !!x. ==> ALL x. | *--------------------------*) lemma rev_all1E: "[| !!x. P x ; ALL x. P x ==> S |] ==> S" by (auto) lemma rev_all2E: "[| !!x y. P x y ; ALL x y. P x y ==> S |] ==> S" by (auto) lemma rev_all3E: "[| !!x y z. P x y z ; ALL x y z. P x y z ==> S |] ==> S" by (auto) lemmas rev_allE = rev_all1E rev_all2E rev_all3E lemma rev_allI: "ALL x. P x ==> (!!x. P x)" by (auto) end
lemma rem_asmE:
[| A; R |] ==> R
lemma rev_all1E:
[| !!x. P x; ∀x. P x ==> S |] ==> S
lemma rev_all2E:
[| !!x y. P x y; ∀x y. P x y ==> S |] ==> S
lemma rev_all3E:
[| !!x y z. P x y z; ∀x y z. P x y z ==> S |] ==> S
lemma rev_allE:
[| !!x. P x; ∀x. P x ==> S |] ==> S
[| !!x y. P x y; ∀x y. P x y ==> S |] ==> S
[| !!x y z. P x y z; ∀x y z. P x y z ==> S |] ==> S
lemma rev_allI:
All P ==> P x