Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory Domain_T_cpo(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | December 2004 | | July 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | April 2006 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory Domain_T_cpo imports Domain_T CPO begin (***************************************************************** 1. Domain_T is a pointed cpo. 2. 3. 4. *****************************************************************) (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* Union (B ` A) = (UN x:A. B x) *) (* Inter (B ` A) = (INT x:A. B x) *) declare Union_image_eq [simp del] declare Inter_image_eq [simp del] (********************************************************* Bottom in Dom_T *********************************************************) instance domT :: (type) bot0 by (intro_classes) defs (overloaded) bottom_domT_def : "Bot == {<>}t" lemma bottom_domT : "Bot <= (T::'a domT)" by (simp add: bottom_domT_def) instance domT :: (type) bot apply (intro_classes) by (simp add: bottom_domT) (********************************************************** lemmas used in a proof that domain_T is a cpo. **********************************************************) (* UnionT Ts is an upper bound of Ts *) lemma UnionT_isUB : "(UnionT Ts) isUB Ts" apply (simp add: isUB_def) apply (simp add: subdomT_iff) apply (intro allI impI) apply (subgoal_tac "Ts ~= {}") apply (simp) apply (rule_tac x=y in bexI) by (auto) (* UnionT Ts is the least upper bound of Ts *) lemma UnionT_isLUB : "Ts ~= {} ==> UnionT Ts isLUB Ts" apply (simp add: isLUB_def UnionT_isUB) apply (simp add: isUB_def) apply (simp add: subdomT_iff) apply (intro allI impI) apply (erule bexE) apply (drule_tac x="T" in spec) by (simp) (* the least upper bound of Ts is UnionT Ts *) lemma isLUB_UnionT_only_if: "[| Ts ~= {} ; T isLUB Ts |] ==> T = UnionT Ts" apply (insert UnionT_isLUB[of Ts]) apply (simp) apply (rule LUB_unique) by (simp_all) (* iff *) lemma isLUB_UnionT : "Ts ~= {} ==> (T isLUB Ts) = (T = UnionT Ts)" apply (rule iffI) apply (simp add: isLUB_UnionT_only_if) apply (simp add: UnionT_isLUB) done (* LUB is UnionT Ts *) lemma LUB_UnionT : "Ts ~= {} ==> LUB Ts = UnionT Ts" by (simp add: isLUB_LUB UnionT_isLUB) (********************************************************** ( domT, <= ) is a CPO **********************************************************) instance domT :: (type) cpo apply (intro_classes) apply (simp add: hasLUB_def) apply (rule_tac x="UnionT X" in exI) apply (simp add: directed_def UnionT_isLUB) done (********************************************************** ( domT, <= ) is a pointed CPO **********************************************************) instance domT :: (type) cpo_bot by (intro_classes) (****************** to add them again ******************) declare Union_image_eq [simp] declare Inter_image_eq [simp] end
lemma bottom_domT:
Bot ≤ T
lemma UnionT_isUB:
UnionT Ts isUB Ts
lemma UnionT_isLUB:
Ts ≠ {} ==> UnionT Ts isLUB Ts
lemma isLUB_UnionT_only_if:
[| Ts ≠ {}; T isLUB Ts |] ==> T = UnionT Ts
lemma isLUB_UnionT:
Ts ≠ {} ==> T isLUB Ts = (T = UnionT Ts)
lemma LUB_UnionT:
Ts ≠ {} ==> LUB Ts = UnionT Ts