Theory CSP_T_semantics

Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T

theory CSP_T_semantics
imports Trace_par Trace_hide Trace_ren Trace_seq CSP_syntax Domain_T_cms
begin

           (*-------------------------------------------*
            |        CSP-Prover on Isabelle2004         |
            |               December 2004               |
            |                   July 2005  (modified)   |
            |                                           |
            |        CSP-Prover on Isabelle2005         |
            |                October 2005  (modified)   |
            |                  April 2006  (modified)   |
            |                  March 2007  (modified)   | 
            |                 August 2007  (modified)   |
            |                                           |
            |        CSP-Prover on Isabelle2008         |
            |                   June 2008  (modified)   |
            |                                           |
            |        Yoshinao Isobe (AIST JAPAN)        |
            *-------------------------------------------*)

theory CSP_T_semantics
imports Trace_par Trace_hide Trace_ren Trace_seq
        CSP_syntax Domain_T_cms

begin

(*****************************************************************

         1. semantic clause
         2. 
         3. 
         4. 

 *****************************************************************)

(*********************************************************
                    semantic clause
 *********************************************************)

consts
  traces  :: "('p,'a) proc => ('p => 'a domT) => ('a domT)"

primrec
  "traces(STOP)   = (%M. {<>}t)"
  "traces(SKIP)   = (%M. {<>, <Tick>}t)"
  "traces(DIV)    = (%M. {<>}t)"
  "traces(a -> P) = (%M. {t. t = <> | (EX s. t = <Ev a> ^^ s & s :t traces(P) M) }t)"

  "traces(? :X -> Pf) = (%M. {t. t = <> | 
                             (EX a s. t = <Ev a> ^^ s & s :t traces(Pf a) M & a : X) }t)"

  "traces(P [+] Q) = (%M. traces(P) M UnT traces(Q) M)"
  "traces(P |~| Q) = (%M. traces(P) M UnT traces(Q) M)"
  "traces(!! :C .. Pf) = (%M. {t. t = <> | 
                               (EX c : sumset C. t :t traces(Pf c) M) }t)"

  "traces(IF b THEN P ELSE Q) = (%M. (if b then traces(P) M else traces(Q) M))"

  "traces(P |[X]| Q) = (%M. {u. EX s t. u : s |[X]|tr t & 
                                  s :t traces(P) M & t :t traces(Q) M }t)"
  "traces(P -- X)    = (%M. {t. EX s. t = s --tr X & s :t traces(P) M }t)"

  "traces(P [[r]])   = (%M. {t. EX s. s [[r]]* t & s :t traces(P) M }t)"

  "traces(P ;; Q)    = (%M. {u. (EX s. u = rmTick s & s :t traces(P) M ) |
                             (EX s t. u = s ^^ t & s ^^ <Tick> :t traces(P) M &
                                      t :t traces(Q) M & noTick s) }t)"
  "traces(P |. n)    = (%M. traces(P) M .|. n)"
  "traces($p)        = (%M. M p)"

declare traces.simps [simp del]

(*** for dealing with both !nat and !set ***)

lemma traces_inv_inj[simp]:
   "inj f ==> (EX c. (EX n. c = f n & n : N) & t :t traces (Pf (inv f c)) x)
            = (EX z:N. t :t traces (Pf z) x)"
by (auto)

lemma Rep_int_choice_traces_nat:
  "traces(!nat :N .. Pf) = (%M. {t. t = <> | (EX n:N. t :t traces(Pf n) M) }t)"
apply (simp add: Rep_int_choice_ss_def)
apply (simp add: traces.simps)
done

lemma Rep_int_choice_traces_set:
  "traces(!set :Xs .. Pf) = (%M. {t. t = <> | (EX X:Xs. t :t traces(Pf X) M) }t)"
apply (simp add: Rep_int_choice_ss_def)
apply (simp add: traces.simps)
done

lemma Rep_int_choice_traces_com_lm:
   "(EX z. (EX a. z = {a} & a : X) & t :t traces (Pf (contents z)) M)
    = (EX a:X. t :t traces (Pf a) M)"
apply (auto)
apply (rule_tac x="{a}" in exI)
apply (auto)
done

lemma Rep_int_choice_traces_com: 
  "traces(! :X .. Pf) = (%M. {t. t = <> | (EX a:X. t :t traces(Pf a) M) }t)"
apply (simp add: Rep_int_choice_com_def)
apply (simp add: Rep_int_choice_traces_set)
apply (simp add: Rep_int_choice_traces_com_lm)
done

lemma Rep_int_choice_traces_f: 
  "inj f ==> traces(!<f> :X .. Pf) = (%M. {t. t = <> | (EX a:X. t :t traces(Pf a) M) }t)"
apply (simp add: Rep_int_choice_f_def)
apply (simp add: Rep_int_choice_traces_com)
done

lemmas Rep_int_choice_traces =
       Rep_int_choice_traces_nat
       Rep_int_choice_traces_set
       Rep_int_choice_traces_com
       Rep_int_choice_traces_f

lemmas traces_def = traces.simps Rep_int_choice_traces

(*==================================================================*
                            traces model
 *==================================================================*)

lemma traces_Int_choice_Ext_choice: "traces(P |~| Q) = traces(P [+] Q)"
apply (simp add: expand_fun_eq)
by (simp add: traces_def)

(*************************************************************
                   set of length of traces+
  lengthset is related to Depth restriction operator (P |. n) 
 *************************************************************)

consts
  lengthset   :: "('p,'a) proc =>  ('p => 'a domT) => nat set"

defs
  lengthset_def:
    "lengthset P == (%M. {n. EX t. t :t traces P M & 
                      (n = lengtht t | n = Suc (lengtht t) & noTick t)})"

(*********************************************************
                     semantics
 *********************************************************)

(*** M-parametarized semantics ***)

consts
  semTf  :: "('p,'a) proc => ('p => 'a domT) => 'a domT" ("[[_]]Tf")
  semTfun  :: "('p => ('p,'a) proc) =>  ('p => 'a domT) => ('p => 'a domT)" 
                                                         ("[[_]]Tfun")

defs
  semTf_def : "[[P]]Tf == (%M. traces(P) M)"
  semTfun_def : "[[Pf]]Tfun == (%M. %p. [[Pf p]]Tf M)"

(*
notation (xsymbols) semTf   ("[|_|]Tf")
notation (xsymbols) semTfun ("[|_|]Tfun")
*)

(*** relation ***)

lemma semTf_semTfun:
  "(%p. [[Pf p]]Tf M) = [[Pf]]Tfun M"
by (simp add: semTfun_def semTf_def)

lemma traces_semTfun:
  "(%p. traces (Pf p) M) = [[Pf]]Tfun M"
by (simp add: semTfun_def semTf_def)

(*------------------------------------------------------------------*
        M such that [[p]]T M = [[PNfun(p)]]T M
   such M is the fixed point of the function [[PNfun(p)]]Tfun
 *------------------------------------------------------------------*)

consts
  semTfix  :: "('p => ('p,'a) proc) => ('p => 'a domT)"      ("[[_]]Tfix")

defs
  semTfix_def : 
   "[[Pf]]Tfix == (if (FPmode = CMSmode) then (UFP ([[Pf]]Tfun))
                                         else (LFP ([[Pf]]Tfun)))"
(*
notation (xsymbols) semTfix ("[|_|]Tfix")
*)

consts
 MT :: "('p => 'a domT)"

defs
 MT_def : "MT == [[PNfun]]Tfix"

(*** semantics ***)

consts
  semT  :: "('p,'a) proc => 'a domT"      ("[[_]]T")

defs
  semT_def : "[[P]]T == [[P]]Tf MT"

(*
notation (xsymbols) semT ("[|_|]T")
*)

(*********************************************************
              relations over processes
 *********************************************************)

consts
  refT :: "('p,'a) proc => ('p => 'a domT) => 
           ('q => 'a domT) => ('q,'a) proc => bool"
                               ("(0_ /<=T[_,_] /_)" [51,0,0,50] 50)

  eqT :: "('p,'a) proc => ('p => 'a domT) => 
           ('q => 'a domT) => ('q,'a) proc => bool"
                               ("(0_ /=T[_,_] /_)" [51,0,0,50] 50)

defs
  refT_def : "P1 <=T[M1,M2] P2 == [[P2]]Tf M2 <= [[P1]]Tf M1"
  eqT_def  : "P1  =T[M1,M2] P2 == [[P1]]Tf M1  = [[P2]]Tf M2"

(*------------------------------------*
 |              X-Symbols             |
 *------------------------------------*)
(*
notation (xsymbols) refT ("(0_ /\<sqsubseteq>T[_,_] /_)" [51,0,0,50] 50)
*)
(*********************************************************
        relations over processes (fixed point)
 *********************************************************)

abbreviation
 refTfix :: "('p,'a) proc => ('q,'a) proc => bool" ("(0_ /<=T /_)" [51,50] 50)
 where "P1 <=T P2 == P1 <=T[MT,MT] P2"

abbreviation
 eqTfix :: "('p,'a) proc => ('q,'a) proc => bool"  ("(0_ /=T /_)" [51,50] 50)
 where "P1  =T P2 == P1  =T[MT,MT] P2"

(* =T and <=T *)

lemma refT_semT: "P1 <=T P2 == [[P2]]T <= [[P1]]T"
apply (simp add: refT_def)
apply (simp add: semT_def)
done

lemma eqT_semT: "P1 =T P2 == [[P1]]T = [[P2]]T"
apply (simp add: eqT_def)
apply (simp add: semT_def)
done

(*------------------------------------*
 |              X-Symbols             |
 *------------------------------------*)

(*
notation (xsymbols) refTfix ("(0_ /\<sqsubseteq>T /_)" [51,50] 50)
*)

(*------------------*
 |      csp law     |
 *------------------*)

(*** semantics ***)

lemma cspT_eqT_semantics:
  "(P =T[M1,M2] Q) = (traces P M1 = traces Q M2)"
by (simp add: eqT_def semT_def semTf_def)

lemma cspT_refT_semantics:
  "(P <=T[M1,M2] Q) = (traces Q M2 <= traces P M1)"
by (simp add: refT_def semT_def semTf_def)

lemmas cspT_semantics = cspT_eqT_semantics  cspT_refT_semantics

(*** eq and ref ***)

lemma cspT_eq_ref_iff:
  "(P1 =T[M1,M2] P2) = (P1 <=T[M1,M2] P2 & P2 <=T[M2,M1] P1)"
by (auto simp add: refT_def eqT_def intro:order_antisym)

lemma cspT_eq_ref:
  "P1 =T[M1,M2] P2 ==> P1 <=T[M1,M2] P2"
by (simp add: cspT_eq_ref_iff)

lemma cspT_ref_eq:
  "[| P1 <=T[M1,M2] P2 ; P2 <=T[M2,M1] P1 |] ==> P1 =T[M1,M2] P2"
by (simp add: cspT_eq_ref_iff)

(*** reflexivity ***)

lemma cspT_reflex_eq_P[simp]: "P =T[M,M] P"
by (simp add: eqT_def)

lemma cspT_reflex_eq_STOP[simp]: "STOP =T[M1,M2] STOP"   
apply (simp add: cspT_semantics)
apply (simp add: traces_def)
done

lemma cspT_reflex_eq_SKIP[simp]: "SKIP =T[M1,M2] SKIP"   
apply (simp add: cspT_semantics)
apply (simp add: traces_def)
done

lemma cspT_reflex_eq_DIV[simp]: "DIV =T[M1,M2] DIV"   
apply (simp add: cspT_semantics)
apply (simp add: traces_def)
done

lemmas cspT_reflex_eq = cspT_reflex_eq_P
                        cspT_reflex_eq_STOP
                        cspT_reflex_eq_SKIP
                        cspT_reflex_eq_DIV


lemma cspT_reflex_ref_P[simp]: "P <=T[M,M] P"
by (simp add: refT_def)

lemma cspT_reflex_ref_STOP[simp]: "STOP <=T[M1,M2] STOP"   
apply (simp add: cspT_semantics)
apply (simp add: traces_def)
done

lemma cspT_reflex_ref_SKIP[simp]: "SKIP <=T[M1,M2] SKIP"   
apply (simp add: cspT_semantics)
apply (simp add: traces_def)
done

lemma cspT_reflex_ref_DIV[simp]: "DIV <=T[M1,M2] DIV"   
apply (simp add: cspT_semantics)
apply (simp add: traces_def)
done

lemmas cspT_reflex_ref = cspT_reflex_ref_P
                         cspT_reflex_ref_STOP
                         cspT_reflex_ref_SKIP
                         cspT_reflex_ref_DIV

lemmas cspT_reflex = cspT_reflex_eq cspT_reflex_ref

(*** symmetry ***)

lemma cspT_sym: "P1 =T[M1,M2] P2 ==> P2 =T[M2,M1] P1"
by (simp add: eqT_def)

lemma cspT_symE:
  "[| P1 =T[M1,M2] P2 ; P2 =T[M2,M1] P1 ==> Z |] ==> Z"
by (simp add: eqT_def)

(*** transitivity ***)

lemma cspT_trans_left_eq: 
  "[| P1 =T[M1,M2] P2 ; P2 =T[M2,M3] P3 |] ==> P1 =T[M1,M3] P3"
by (simp add: eqT_def)

lemma cspT_trans_left_ref: 
  "[| P1 <=T[M1,M2] P2 ; P2 <=T[M2,M3] P3 |] ==> P1 <=T[M1,M3] P3"
by (simp add: refT_def)

lemmas cspT_trans_left = cspT_trans_left_eq cspT_trans_left_ref
lemmas cspT_trans = cspT_trans_left

lemma cspT_trans_right_eq: 
  "[| P2 =T[M2,M3] P3 ; P1 =T[M1,M2] P2 |] ==> P1 =T[M1,M3] P3"
by (simp add: eqT_def)

lemma cspT_trans_right_ref: 
  "[| P2 <=T[M2,M3] P3 ;  P1 <=T[M1,M2] P2 |] ==> P1 <=T[M1,M3] P3"
by (simp add: refT_def)

lemmas cspT_trans_right = cspT_trans_right_eq cspT_trans_right_ref

(*** rewrite (eq) ***)

lemma cspT_rw_left_eq_MT:
  "[| P1 =T P2 ; P2 =T P3 |] ==> P1 =T P3"
by (simp add: eqT_def)

lemma cspT_rw_left_eq:
  "[| P1 =T[M1,M1] P2 ; P2 =T[M1,M3] P3 |] ==> P1 =T[M1,M3] P3"
by (simp add: eqT_def)

lemma cspT_rw_left_ref_MT:
  "[| P1 =T P2 ; P2 <=T P3 |] ==> P1 <=T P3"
by (simp add: refT_def eqT_def)

lemma cspT_rw_left_ref:
  "[| P1 =T[M1,M1] P2 ; P2 <=T[M1,M3] P3 |] ==> P1 <=T[M1,M3] P3"
by (simp add: refT_def eqT_def)

lemmas cspT_rw_left = 
   cspT_rw_left_eq_MT cspT_rw_left_ref_MT
   cspT_rw_left_eq cspT_rw_left_ref

lemma cspT_rw_right_eq:
  "[| P3 =T[M3,M3] P2 ; P1 =T[M1,M3] P2 |] ==> P1 =T[M1,M3] P3"
by (simp add: eqT_def)

lemma cspT_rw_right_eq_MT:
  "[| P3 =T P2 ; P1 =T P2 |] ==> P1 =T P3"
by (simp add: eqT_def)

lemma cspT_rw_right_ref:
  "[| P3 =T[M3,M3] P2 ; P1 <=T[M1,M3] P2 |] ==> P1 <=T[M1,M3] P3"
by (simp add: refT_def eqT_def)

lemma cspT_rw_right_ref_MT:
  "[| P3 =T P2 ; P1 <=T P2 |] ==> P1 <=T P3"
by (simp add: refT_def eqT_def)

lemmas cspT_rw_right =
   cspT_rw_right_eq_MT cspT_rw_right_ref_MT
   cspT_rw_right_eq cspT_rw_right_ref

(*** rewrite (ref) ***)

lemma cspT_tr_left_eq:
   "[| P1 =T[M1,M1] P2 ; P2 =T[M1,M3] P3 |] ==> P1 =T[M1,M3] P3"
by (simp add: eqT_def)

lemma cspT_tr_left_ref:
   "[| P1 <=T[M1,M1] P2 ; P2 <=T[M1,M3] P3 |] ==> P1 <=T[M1,M3] P3"
by (simp add: refT_def eqT_def)

lemmas cspT_tr_left = cspT_tr_left_eq cspT_tr_left_ref

lemma cspT_tr_right_eq:
   "[| P2 =T[M3,M3] P3 ; P1 =T[M1,M3] P2 |] ==> P1 =T[M1,M3] P3"
by (simp add: eqT_def)

lemma cspT_tr_right_ref:
  "[| P2 <=T[M3,M3] P3 ; P1 <=T[M1,M3] P2 |] ==> P1 <=T[M1,M3] P3"
by (simp add: refT_def eqT_def)

lemmas cspT_tr_right = cspT_tr_right_eq cspT_tr_right_ref

(*-----------------------------------------*
 |                   noPN                  |
 *-----------------------------------------*)

lemma traces_noPN_Constant_lm:
  "noPN P --> (EX T. traces P = (%M. T))"
apply (induct_tac P)
apply (simp add: traces_def, force)
apply (simp add: traces_def, force)
apply (simp add: traces_def, force)
apply (simp add: traces_def, force)

(* Ext_pre_choice *)
 apply (intro impI)
 apply (simp)
 apply (subgoal_tac "ALL x. EX T. traces (fun2 x) = (%M. T)")
 apply (simp add: choice_ALL_EX)
 apply (erule exE)
 apply (simp add: traces_def)
 apply (force) 
 apply (simp)

apply (simp add: traces_def, force)
apply (simp add: traces_def, force)

(* Rep_int_choice *)
 apply (intro impI)
 apply (simp)
 apply (subgoal_tac "ALL x. EX T. traces (fun x) = (%M. T)")
 apply (simp add: choice_ALL_EX)
 apply (erule exE)
 apply (simp add: traces_def)
 apply (force)
 apply (simp)

(* IF *)
 apply (simp add: traces_def)
 apply (case_tac "bool")
 apply (simp)
 apply (simp)

apply (simp add: traces_def, force)
apply (simp add: traces_def, force)
apply (simp add: traces_def, force)
apply (simp add: traces_def, force)
apply (simp add: traces_def, force)
apply (simp add: traces_def)
done

lemma traces_noPN_Constant:
  "noPN P ==> (EX T. traces P = (%M. T))"
apply (simp add: traces_noPN_Constant_lm)
done

(*-----------------------------------------*
 |              substitution               |
 *-----------------------------------------*)

lemma semT_subst:
  "[[P<<f]]T = [[P]]Tf (%q. [[f q]]T)"
apply (induct_tac P)
apply (simp_all add: semT_def semTf_def traces_def)
done

lemma semT_subst_semTfun:
  "(%q. [[ (Pf q)<<f ]]T) = ([[Pf]]Tfun (%q. [[f q]]T))"
apply (simp add: semTfun_def)
apply (simp add: expand_fun_eq)
apply (rule allI)
apply (simp add: semT_subst)
done

lemma traces_subst:
  "traces(P<<f) M = traces P (%q. traces(f q) M)"
apply (induct_tac P)
apply (simp_all add: semT_def traces_def)
done

end

lemma traces_inv_inj:

  inj f
  ==> (∃c. (∃n. c = f nnN) ∧ t :t traces (Pf (inv f c)) x) =
      (∃zN. t :t traces (Pf z) x)

lemma Rep_int_choice_traces_nat:

  traces (!nat :N .. Pf) = (λM. {t. t = <> ∨ (∃nN. t :t traces (Pf n) M)}t)

lemma Rep_int_choice_traces_set:

  traces (!set :Xs .. Pf) = (λM. {t. t = <> ∨ (∃XXs. t :t traces (Pf X) M)}t)

lemma Rep_int_choice_traces_com_lm:

  (∃z. (∃a. z = {a} ∧ aX) ∧ t :t traces (Pf (contents z)) M) =
  (∃aX. t :t traces (Pf a) M)

lemma Rep_int_choice_traces_com:

  traces (! :X .. Pf) = (λM. {t. t = <> ∨ (∃aX. t :t traces (Pf a) M)}t)

lemma Rep_int_choice_traces_f:

  inj f
  ==> traces (!<f> :X .. Pf) = (λM. {t. t = <> ∨ (∃aX. t :t traces (Pf a) M)}t)

lemma Rep_int_choice_traces:

  traces (!nat :N .. Pf) = (λM. {t. t = <> ∨ (∃nN. t :t traces (Pf n) M)}t)
  traces (!set :Xs .. Pf) = (λM. {t. t = <> ∨ (∃XXs. t :t traces (Pf X) M)}t)
  traces (! :X .. Pf) = (λM. {t. t = <> ∨ (∃aX. t :t traces (Pf a) M)}t)
  inj f
  ==> traces (!<f> :X .. Pf) = (λM. {t. t = <> ∨ (∃aX. t :t traces (Pf a) M)}t)

lemma traces_def:

  traces STOP = (λM. {<>}t)
  traces SKIP = (λM. {<>, <Tick>}t)
  traces DIV = (λM. {<>}t)
  traces (a -> P) = (λM. {t. t = <> ∨ (∃s. t = <Ev a> ^^ ss :t traces P M)}t)
  traces (? :X -> Pf) =
  (λM. {t. t = <> ∨ (∃a s. t = <Ev a> ^^ ss :t traces (Pf a) MaX)}t)
  traces (P [+] Q) = (λM. traces P M UnT traces Q M)
  traces (P |~| Q) = (λM. traces P M UnT traces Q M)
  traces (!! :C .. Pf) = (λM. {t. t = <> ∨ (∃c∈sumset C. t :t traces (Pf c) M)}t)
  traces (IF b THEN P ELSE Q) = (λM. if b then traces P M else traces Q M)
  traces (P |[X]| Q) =
  (λM. {u. ∃s t. us |[X]|tr ts :t traces P Mt :t traces Q M}t)
  traces (P -- X) = (λM. Abs_domT {s --tr X |s. s :t traces P M})
  traces (P [[r]]) = (λM. {t. ∃s. s [[r]]* ts :t traces P M}t)
  traces (P ;; Q) =
  (λM. {u. (∃s. u = rmTick ss :t traces P M) ∨
           (∃s t. u = s ^^ ts ^^ <Tick> :t traces P Mt :t traces Q M ∧ noTick s)}t)
  traces (P |. n) = (λM. traces P M .|. n)
  traces ($p) = (λM. M p)
  traces (!nat :N .. Pf) = (λM. {t. t = <> ∨ (∃nN. t :t traces (Pf n) M)}t)
  traces (!set :Xs .. Pf) = (λM. {t. t = <> ∨ (∃XXs. t :t traces (Pf X) M)}t)
  traces (! :X .. Pf) = (λM. {t. t = <> ∨ (∃aX. t :t traces (Pf a) M)}t)
  inj f
  ==> traces (!<f> :X .. Pf) = (λM. {t. t = <> ∨ (∃aX. t :t traces (Pf a) M)}t)

lemma traces_Int_choice_Ext_choice:

  traces (P |~| Q) = traces (P [+] Q)

lemma semTf_semTfun:

  p. [[Pf p]]Tf M) = [[Pf]]Tfun M

lemma traces_semTfun:

  p. traces (Pf p) M) = [[Pf]]Tfun M

lemma refT_semT:

  P1.0 <=T P2.0 == [[P2.0]]T  [[P1.0]]T

lemma eqT_semT:

  P1.0 =T P2.0 == [[P1.0]]T = [[P2.0]]T

lemma cspT_eqT_semantics:

  (P =T[M1.0,M2.0] Q) = (traces P M1.0 = traces Q M2.0)

lemma cspT_refT_semantics:

  (P <=T[M1.0,M2.0] Q) = (traces Q M2.0  traces P M1.0)

lemma cspT_semantics:

  (P =T[M1.0,M2.0] Q) = (traces P M1.0 = traces Q M2.0)
  (P <=T[M1.0,M2.0] Q) = (traces Q M2.0  traces P M1.0)

lemma cspT_eq_ref_iff:

  (P1.0 =T[M1.0,M2.0] P2.0) =
  (P1.0 <=T[M1.0,M2.0] P2.0P2.0 <=T[M2.0,M1.0] P1.0)

lemma cspT_eq_ref:

  P1.0 =T[M1.0,M2.0] P2.0 ==> P1.0 <=T[M1.0,M2.0] P2.0

lemma cspT_ref_eq:

  [| P1.0 <=T[M1.0,M2.0] P2.0; P2.0 <=T[M2.0,M1.0] P1.0 |]
  ==> P1.0 =T[M1.0,M2.0] P2.0

lemma cspT_reflex_eq_P:

  P =T[M,M] P

lemma cspT_reflex_eq_STOP:

  STOP =T[M1.0,M2.0] STOP

lemma cspT_reflex_eq_SKIP:

  SKIP =T[M1.0,M2.0] SKIP

lemma cspT_reflex_eq_DIV:

  DIV =T[M1.0,M2.0] DIV

lemma cspT_reflex_eq:

  P =T[M,M] P
  STOP =T[M1.0,M2.0] STOP
  SKIP =T[M1.0,M2.0] SKIP
  DIV =T[M1.0,M2.0] DIV

lemma cspT_reflex_ref_P:

  P <=T[M,M] P

lemma cspT_reflex_ref_STOP:

  STOP <=T[M1.0,M2.0] STOP

lemma cspT_reflex_ref_SKIP:

  SKIP <=T[M1.0,M2.0] SKIP

lemma cspT_reflex_ref_DIV:

  DIV <=T[M1.0,M2.0] DIV

lemma cspT_reflex_ref:

  P <=T[M,M] P
  STOP <=T[M1.0,M2.0] STOP
  SKIP <=T[M1.0,M2.0] SKIP
  DIV <=T[M1.0,M2.0] DIV

lemma cspT_reflex:

  P =T[M,M] P
  STOP =T[M1.0,M2.0] STOP
  SKIP =T[M1.0,M2.0] SKIP
  DIV =T[M1.0,M2.0] DIV
  P <=T[M,M] P
  STOP <=T[M1.0,M2.0] STOP
  SKIP <=T[M1.0,M2.0] SKIP
  DIV <=T[M1.0,M2.0] DIV

lemma cspT_sym:

  P1.0 =T[M1.0,M2.0] P2.0 ==> P2.0 =T[M2.0,M1.0] P1.0

lemma cspT_symE:

  [| P1.0 =T[M1.0,M2.0] P2.0; P2.0 =T[M2.0,M1.0] P1.0 ==> Z |] ==> Z

lemma cspT_trans_left_eq:

  [| P1.0 =T[M1.0,M2.0] P2.0; P2.0 =T[M2.0,M3.0] P3.0 |]
  ==> P1.0 =T[M1.0,M3.0] P3.0

lemma cspT_trans_left_ref:

  [| P1.0 <=T[M1.0,M2.0] P2.0; P2.0 <=T[M2.0,M3.0] P3.0 |]
  ==> P1.0 <=T[M1.0,M3.0] P3.0

lemma cspT_trans_left:

  [| P1.0 =T[M1.0,M2.0] P2.0; P2.0 =T[M2.0,M3.0] P3.0 |]
  ==> P1.0 =T[M1.0,M3.0] P3.0
  [| P1.0 <=T[M1.0,M2.0] P2.0; P2.0 <=T[M2.0,M3.0] P3.0 |]
  ==> P1.0 <=T[M1.0,M3.0] P3.0

lemma cspT_trans:

  [| P1.0 =T[M1.0,M2.0] P2.0; P2.0 =T[M2.0,M3.0] P3.0 |]
  ==> P1.0 =T[M1.0,M3.0] P3.0
  [| P1.0 <=T[M1.0,M2.0] P2.0; P2.0 <=T[M2.0,M3.0] P3.0 |]
  ==> P1.0 <=T[M1.0,M3.0] P3.0

lemma cspT_trans_right_eq:

  [| P2.0 =T[M2.0,M3.0] P3.0; P1.0 =T[M1.0,M2.0] P2.0 |]
  ==> P1.0 =T[M1.0,M3.0] P3.0

lemma cspT_trans_right_ref:

  [| P2.0 <=T[M2.0,M3.0] P3.0; P1.0 <=T[M1.0,M2.0] P2.0 |]
  ==> P1.0 <=T[M1.0,M3.0] P3.0

lemma cspT_trans_right:

  [| P2.0 =T[M2.0,M3.0] P3.0; P1.0 =T[M1.0,M2.0] P2.0 |]
  ==> P1.0 =T[M1.0,M3.0] P3.0
  [| P2.0 <=T[M2.0,M3.0] P3.0; P1.0 <=T[M1.0,M2.0] P2.0 |]
  ==> P1.0 <=T[M1.0,M3.0] P3.0

lemma cspT_rw_left_eq_MT:

  [| P1.0 =T P2.0; P2.0 =T P3.0 |] ==> P1.0 =T P3.0

lemma cspT_rw_left_eq:

  [| P1.0 =T[M1.0,M1.0] P2.0; P2.0 =T[M1.0,M3.0] P3.0 |]
  ==> P1.0 =T[M1.0,M3.0] P3.0

lemma cspT_rw_left_ref_MT:

  [| P1.0 =T P2.0; P2.0 <=T P3.0 |] ==> P1.0 <=T P3.0

lemma cspT_rw_left_ref:

  [| P1.0 =T[M1.0,M1.0] P2.0; P2.0 <=T[M1.0,M3.0] P3.0 |]
  ==> P1.0 <=T[M1.0,M3.0] P3.0

lemma cspT_rw_left:

  [| P1.0 =T P2.0; P2.0 =T P3.0 |] ==> P1.0 =T P3.0
  [| P1.0 =T P2.0; P2.0 <=T P3.0 |] ==> P1.0 <=T P3.0
  [| P1.0 =T[M1.0,M1.0] P2.0; P2.0 =T[M1.0,M3.0] P3.0 |]
  ==> P1.0 =T[M1.0,M3.0] P3.0
  [| P1.0 =T[M1.0,M1.0] P2.0; P2.0 <=T[M1.0,M3.0] P3.0 |]
  ==> P1.0 <=T[M1.0,M3.0] P3.0

lemma cspT_rw_right_eq:

  [| P3.0 =T[M3.0,M3.0] P2.0; P1.0 =T[M1.0,M3.0] P2.0 |]
  ==> P1.0 =T[M1.0,M3.0] P3.0

lemma cspT_rw_right_eq_MT:

  [| P3.0 =T P2.0; P1.0 =T P2.0 |] ==> P1.0 =T P3.0

lemma cspT_rw_right_ref:

  [| P3.0 =T[M3.0,M3.0] P2.0; P1.0 <=T[M1.0,M3.0] P2.0 |]
  ==> P1.0 <=T[M1.0,M3.0] P3.0

lemma cspT_rw_right_ref_MT:

  [| P3.0 =T P2.0; P1.0 <=T P2.0 |] ==> P1.0 <=T P3.0

lemma cspT_rw_right:

  [| P3.0 =T P2.0; P1.0 =T P2.0 |] ==> P1.0 =T P3.0
  [| P3.0 =T P2.0; P1.0 <=T P2.0 |] ==> P1.0 <=T P3.0
  [| P3.0 =T[M3.0,M3.0] P2.0; P1.0 =T[M1.0,M3.0] P2.0 |]
  ==> P1.0 =T[M1.0,M3.0] P3.0
  [| P3.0 =T[M3.0,M3.0] P2.0; P1.0 <=T[M1.0,M3.0] P2.0 |]
  ==> P1.0 <=T[M1.0,M3.0] P3.0

lemma cspT_tr_left_eq:

  [| P1.0 =T[M1.0,M1.0] P2.0; P2.0 =T[M1.0,M3.0] P3.0 |]
  ==> P1.0 =T[M1.0,M3.0] P3.0

lemma cspT_tr_left_ref:

  [| P1.0 <=T[M1.0,M1.0] P2.0; P2.0 <=T[M1.0,M3.0] P3.0 |]
  ==> P1.0 <=T[M1.0,M3.0] P3.0

lemma cspT_tr_left:

  [| P1.0 =T[M1.0,M1.0] P2.0; P2.0 =T[M1.0,M3.0] P3.0 |]
  ==> P1.0 =T[M1.0,M3.0] P3.0
  [| P1.0 <=T[M1.0,M1.0] P2.0; P2.0 <=T[M1.0,M3.0] P3.0 |]
  ==> P1.0 <=T[M1.0,M3.0] P3.0

lemma cspT_tr_right_eq:

  [| P2.0 =T[M3.0,M3.0] P3.0; P1.0 =T[M1.0,M3.0] P2.0 |]
  ==> P1.0 =T[M1.0,M3.0] P3.0

lemma cspT_tr_right_ref:

  [| P2.0 <=T[M3.0,M3.0] P3.0; P1.0 <=T[M1.0,M3.0] P2.0 |]
  ==> P1.0 <=T[M1.0,M3.0] P3.0

lemma cspT_tr_right:

  [| P2.0 =T[M3.0,M3.0] P3.0; P1.0 =T[M1.0,M3.0] P2.0 |]
  ==> P1.0 =T[M1.0,M3.0] P3.0
  [| P2.0 <=T[M3.0,M3.0] P3.0; P1.0 <=T[M1.0,M3.0] P2.0 |]
  ==> P1.0 <=T[M1.0,M3.0] P3.0

lemma traces_noPN_Constant_lm:

  noPN P --> (∃T. traces P = (λM. T))

lemma traces_noPN_Constant:

  noPN P ==> ∃T. traces P = (λM. T)

lemma semT_subst:

  [[P << f]]T = [[P]]Tf (λq. [[f q]]T)

lemma semT_subst_semTfun:

  q. [[(Pf q) << f]]T) = [[Pf]]Tfun (λq. [[f q]]T)

lemma traces_subst:

  traces (P << f) M = traces Pq. traces (f q) M)