Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_semantics (*-------------------------------------------*
| CSP-Prover on Isabelle2004 |
| December 2004 |
| July 2005 (modified) |
| |
| CSP-Prover on Isabelle2005 |
| October 2005 (modified) |
| April 2006 (modified) |
| March 2007 (modified) |
| August 2007 (modified) |
| |
| CSP-Prover on Isabelle2008 |
| June 2008 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory CSP_T_semantics
imports Trace_par Trace_hide Trace_ren Trace_seq
CSP_syntax Domain_T_cms
begin
(*****************************************************************
1. semantic clause
2.
3.
4.
*****************************************************************)
(*********************************************************
semantic clause
*********************************************************)
consts
traces :: "('p,'a) proc => ('p => 'a domT) => ('a domT)"
primrec
"traces(STOP) = (%M. {<>}t)"
"traces(SKIP) = (%M. {<>, <Tick>}t)"
"traces(DIV) = (%M. {<>}t)"
"traces(a -> P) = (%M. {t. t = <> | (EX s. t = <Ev a> ^^ s & s :t traces(P) M) }t)"
"traces(? :X -> Pf) = (%M. {t. t = <> |
(EX a s. t = <Ev a> ^^ s & s :t traces(Pf a) M & a : X) }t)"
"traces(P [+] Q) = (%M. traces(P) M UnT traces(Q) M)"
"traces(P |~| Q) = (%M. traces(P) M UnT traces(Q) M)"
"traces(!! :C .. Pf) = (%M. {t. t = <> |
(EX c : sumset C. t :t traces(Pf c) M) }t)"
"traces(IF b THEN P ELSE Q) = (%M. (if b then traces(P) M else traces(Q) M))"
"traces(P |[X]| Q) = (%M. {u. EX s t. u : s |[X]|tr t &
s :t traces(P) M & t :t traces(Q) M }t)"
"traces(P -- X) = (%M. {t. EX s. t = s --tr X & s :t traces(P) M }t)"
"traces(P [[r]]) = (%M. {t. EX s. s [[r]]* t & s :t traces(P) M }t)"
"traces(P ;; Q) = (%M. {u. (EX s. u = rmTick s & s :t traces(P) M ) |
(EX s t. u = s ^^ t & s ^^ <Tick> :t traces(P) M &
t :t traces(Q) M & noTick s) }t)"
"traces(P |. n) = (%M. traces(P) M .|. n)"
"traces($p) = (%M. M p)"
declare traces.simps [simp del]
(*** for dealing with both !nat and !set ***)
lemma traces_inv_inj[simp]:
"inj f ==> (EX c. (EX n. c = f n & n : N) & t :t traces (Pf (inv f c)) x)
= (EX z:N. t :t traces (Pf z) x)"
by (auto)
lemma Rep_int_choice_traces_nat:
"traces(!nat :N .. Pf) = (%M. {t. t = <> | (EX n:N. t :t traces(Pf n) M) }t)"
apply (simp add: Rep_int_choice_ss_def)
apply (simp add: traces.simps)
done
lemma Rep_int_choice_traces_set:
"traces(!set :Xs .. Pf) = (%M. {t. t = <> | (EX X:Xs. t :t traces(Pf X) M) }t)"
apply (simp add: Rep_int_choice_ss_def)
apply (simp add: traces.simps)
done
lemma Rep_int_choice_traces_com_lm:
"(EX z. (EX a. z = {a} & a : X) & t :t traces (Pf (contents z)) M)
= (EX a:X. t :t traces (Pf a) M)"
apply (auto)
apply (rule_tac x="{a}" in exI)
apply (auto)
done
lemma Rep_int_choice_traces_com:
"traces(! :X .. Pf) = (%M. {t. t = <> | (EX a:X. t :t traces(Pf a) M) }t)"
apply (simp add: Rep_int_choice_com_def)
apply (simp add: Rep_int_choice_traces_set)
apply (simp add: Rep_int_choice_traces_com_lm)
done
lemma Rep_int_choice_traces_f:
"inj f ==> traces(!<f> :X .. Pf) = (%M. {t. t = <> | (EX a:X. t :t traces(Pf a) M) }t)"
apply (simp add: Rep_int_choice_f_def)
apply (simp add: Rep_int_choice_traces_com)
done
lemmas Rep_int_choice_traces =
Rep_int_choice_traces_nat
Rep_int_choice_traces_set
Rep_int_choice_traces_com
Rep_int_choice_traces_f
lemmas traces_def = traces.simps Rep_int_choice_traces
(*==================================================================*
traces model
*==================================================================*)
lemma traces_Int_choice_Ext_choice: "traces(P |~| Q) = traces(P [+] Q)"
apply (simp add: expand_fun_eq)
by (simp add: traces_def)
(*************************************************************
set of length of traces+
lengthset is related to Depth restriction operator (P |. n)
*************************************************************)
consts
lengthset :: "('p,'a) proc => ('p => 'a domT) => nat set"
defs
lengthset_def:
"lengthset P == (%M. {n. EX t. t :t traces P M &
(n = lengtht t | n = Suc (lengtht t) & noTick t)})"
(*********************************************************
semantics
*********************************************************)
(*** M-parametarized semantics ***)
consts
semTf :: "('p,'a) proc => ('p => 'a domT) => 'a domT" ("[[_]]Tf")
semTfun :: "('p => ('p,'a) proc) => ('p => 'a domT) => ('p => 'a domT)"
("[[_]]Tfun")
defs
semTf_def : "[[P]]Tf == (%M. traces(P) M)"
semTfun_def : "[[Pf]]Tfun == (%M. %p. [[Pf p]]Tf M)"
(*
notation (xsymbols) semTf ("[|_|]Tf")
notation (xsymbols) semTfun ("[|_|]Tfun")
*)
(*** relation ***)
lemma semTf_semTfun:
"(%p. [[Pf p]]Tf M) = [[Pf]]Tfun M"
by (simp add: semTfun_def semTf_def)
lemma traces_semTfun:
"(%p. traces (Pf p) M) = [[Pf]]Tfun M"
by (simp add: semTfun_def semTf_def)
(*------------------------------------------------------------------*
M such that [[p]]T M = [[PNfun(p)]]T M
such M is the fixed point of the function [[PNfun(p)]]Tfun
*------------------------------------------------------------------*)
consts
semTfix :: "('p => ('p,'a) proc) => ('p => 'a domT)" ("[[_]]Tfix")
defs
semTfix_def :
"[[Pf]]Tfix == (if (FPmode = CMSmode) then (UFP ([[Pf]]Tfun))
else (LFP ([[Pf]]Tfun)))"
(*
notation (xsymbols) semTfix ("[|_|]Tfix")
*)
consts
MT :: "('p => 'a domT)"
defs
MT_def : "MT == [[PNfun]]Tfix"
(*** semantics ***)
consts
semT :: "('p,'a) proc => 'a domT" ("[[_]]T")
defs
semT_def : "[[P]]T == [[P]]Tf MT"
(*
notation (xsymbols) semT ("[|_|]T")
*)
(*********************************************************
relations over processes
*********************************************************)
consts
refT :: "('p,'a) proc => ('p => 'a domT) =>
('q => 'a domT) => ('q,'a) proc => bool"
("(0_ /<=T[_,_] /_)" [51,0,0,50] 50)
eqT :: "('p,'a) proc => ('p => 'a domT) =>
('q => 'a domT) => ('q,'a) proc => bool"
("(0_ /=T[_,_] /_)" [51,0,0,50] 50)
defs
refT_def : "P1 <=T[M1,M2] P2 == [[P2]]Tf M2 <= [[P1]]Tf M1"
eqT_def : "P1 =T[M1,M2] P2 == [[P1]]Tf M1 = [[P2]]Tf M2"
(*------------------------------------*
| X-Symbols |
*------------------------------------*)
(*
notation (xsymbols) refT ("(0_ /\<sqsubseteq>T[_,_] /_)" [51,0,0,50] 50)
*)
(*********************************************************
relations over processes (fixed point)
*********************************************************)
abbreviation
refTfix :: "('p,'a) proc => ('q,'a) proc => bool" ("(0_ /<=T /_)" [51,50] 50)
where "P1 <=T P2 == P1 <=T[MT,MT] P2"
abbreviation
eqTfix :: "('p,'a) proc => ('q,'a) proc => bool" ("(0_ /=T /_)" [51,50] 50)
where "P1 =T P2 == P1 =T[MT,MT] P2"
(* =T and <=T *)
lemma refT_semT: "P1 <=T P2 == [[P2]]T <= [[P1]]T"
apply (simp add: refT_def)
apply (simp add: semT_def)
done
lemma eqT_semT: "P1 =T P2 == [[P1]]T = [[P2]]T"
apply (simp add: eqT_def)
apply (simp add: semT_def)
done
(*------------------------------------*
| X-Symbols |
*------------------------------------*)
(*
notation (xsymbols) refTfix ("(0_ /\<sqsubseteq>T /_)" [51,50] 50)
*)
(*------------------*
| csp law |
*------------------*)
(*** semantics ***)
lemma cspT_eqT_semantics:
"(P =T[M1,M2] Q) = (traces P M1 = traces Q M2)"
by (simp add: eqT_def semT_def semTf_def)
lemma cspT_refT_semantics:
"(P <=T[M1,M2] Q) = (traces Q M2 <= traces P M1)"
by (simp add: refT_def semT_def semTf_def)
lemmas cspT_semantics = cspT_eqT_semantics cspT_refT_semantics
(*** eq and ref ***)
lemma cspT_eq_ref_iff:
"(P1 =T[M1,M2] P2) = (P1 <=T[M1,M2] P2 & P2 <=T[M2,M1] P1)"
by (auto simp add: refT_def eqT_def intro:order_antisym)
lemma cspT_eq_ref:
"P1 =T[M1,M2] P2 ==> P1 <=T[M1,M2] P2"
by (simp add: cspT_eq_ref_iff)
lemma cspT_ref_eq:
"[| P1 <=T[M1,M2] P2 ; P2 <=T[M2,M1] P1 |] ==> P1 =T[M1,M2] P2"
by (simp add: cspT_eq_ref_iff)
(*** reflexivity ***)
lemma cspT_reflex_eq_P[simp]: "P =T[M,M] P"
by (simp add: eqT_def)
lemma cspT_reflex_eq_STOP[simp]: "STOP =T[M1,M2] STOP"
apply (simp add: cspT_semantics)
apply (simp add: traces_def)
done
lemma cspT_reflex_eq_SKIP[simp]: "SKIP =T[M1,M2] SKIP"
apply (simp add: cspT_semantics)
apply (simp add: traces_def)
done
lemma cspT_reflex_eq_DIV[simp]: "DIV =T[M1,M2] DIV"
apply (simp add: cspT_semantics)
apply (simp add: traces_def)
done
lemmas cspT_reflex_eq = cspT_reflex_eq_P
cspT_reflex_eq_STOP
cspT_reflex_eq_SKIP
cspT_reflex_eq_DIV
lemma cspT_reflex_ref_P[simp]: "P <=T[M,M] P"
by (simp add: refT_def)
lemma cspT_reflex_ref_STOP[simp]: "STOP <=T[M1,M2] STOP"
apply (simp add: cspT_semantics)
apply (simp add: traces_def)
done
lemma cspT_reflex_ref_SKIP[simp]: "SKIP <=T[M1,M2] SKIP"
apply (simp add: cspT_semantics)
apply (simp add: traces_def)
done
lemma cspT_reflex_ref_DIV[simp]: "DIV <=T[M1,M2] DIV"
apply (simp add: cspT_semantics)
apply (simp add: traces_def)
done
lemmas cspT_reflex_ref = cspT_reflex_ref_P
cspT_reflex_ref_STOP
cspT_reflex_ref_SKIP
cspT_reflex_ref_DIV
lemmas cspT_reflex = cspT_reflex_eq cspT_reflex_ref
(*** symmetry ***)
lemma cspT_sym: "P1 =T[M1,M2] P2 ==> P2 =T[M2,M1] P1"
by (simp add: eqT_def)
lemma cspT_symE:
"[| P1 =T[M1,M2] P2 ; P2 =T[M2,M1] P1 ==> Z |] ==> Z"
by (simp add: eqT_def)
(*** transitivity ***)
lemma cspT_trans_left_eq:
"[| P1 =T[M1,M2] P2 ; P2 =T[M2,M3] P3 |] ==> P1 =T[M1,M3] P3"
by (simp add: eqT_def)
lemma cspT_trans_left_ref:
"[| P1 <=T[M1,M2] P2 ; P2 <=T[M2,M3] P3 |] ==> P1 <=T[M1,M3] P3"
by (simp add: refT_def)
lemmas cspT_trans_left = cspT_trans_left_eq cspT_trans_left_ref
lemmas cspT_trans = cspT_trans_left
lemma cspT_trans_right_eq:
"[| P2 =T[M2,M3] P3 ; P1 =T[M1,M2] P2 |] ==> P1 =T[M1,M3] P3"
by (simp add: eqT_def)
lemma cspT_trans_right_ref:
"[| P2 <=T[M2,M3] P3 ; P1 <=T[M1,M2] P2 |] ==> P1 <=T[M1,M3] P3"
by (simp add: refT_def)
lemmas cspT_trans_right = cspT_trans_right_eq cspT_trans_right_ref
(*** rewrite (eq) ***)
lemma cspT_rw_left_eq_MT:
"[| P1 =T P2 ; P2 =T P3 |] ==> P1 =T P3"
by (simp add: eqT_def)
lemma cspT_rw_left_eq:
"[| P1 =T[M1,M1] P2 ; P2 =T[M1,M3] P3 |] ==> P1 =T[M1,M3] P3"
by (simp add: eqT_def)
lemma cspT_rw_left_ref_MT:
"[| P1 =T P2 ; P2 <=T P3 |] ==> P1 <=T P3"
by (simp add: refT_def eqT_def)
lemma cspT_rw_left_ref:
"[| P1 =T[M1,M1] P2 ; P2 <=T[M1,M3] P3 |] ==> P1 <=T[M1,M3] P3"
by (simp add: refT_def eqT_def)
lemmas cspT_rw_left =
cspT_rw_left_eq_MT cspT_rw_left_ref_MT
cspT_rw_left_eq cspT_rw_left_ref
lemma cspT_rw_right_eq:
"[| P3 =T[M3,M3] P2 ; P1 =T[M1,M3] P2 |] ==> P1 =T[M1,M3] P3"
by (simp add: eqT_def)
lemma cspT_rw_right_eq_MT:
"[| P3 =T P2 ; P1 =T P2 |] ==> P1 =T P3"
by (simp add: eqT_def)
lemma cspT_rw_right_ref:
"[| P3 =T[M3,M3] P2 ; P1 <=T[M1,M3] P2 |] ==> P1 <=T[M1,M3] P3"
by (simp add: refT_def eqT_def)
lemma cspT_rw_right_ref_MT:
"[| P3 =T P2 ; P1 <=T P2 |] ==> P1 <=T P3"
by (simp add: refT_def eqT_def)
lemmas cspT_rw_right =
cspT_rw_right_eq_MT cspT_rw_right_ref_MT
cspT_rw_right_eq cspT_rw_right_ref
(*** rewrite (ref) ***)
lemma cspT_tr_left_eq:
"[| P1 =T[M1,M1] P2 ; P2 =T[M1,M3] P3 |] ==> P1 =T[M1,M3] P3"
by (simp add: eqT_def)
lemma cspT_tr_left_ref:
"[| P1 <=T[M1,M1] P2 ; P2 <=T[M1,M3] P3 |] ==> P1 <=T[M1,M3] P3"
by (simp add: refT_def eqT_def)
lemmas cspT_tr_left = cspT_tr_left_eq cspT_tr_left_ref
lemma cspT_tr_right_eq:
"[| P2 =T[M3,M3] P3 ; P1 =T[M1,M3] P2 |] ==> P1 =T[M1,M3] P3"
by (simp add: eqT_def)
lemma cspT_tr_right_ref:
"[| P2 <=T[M3,M3] P3 ; P1 <=T[M1,M3] P2 |] ==> P1 <=T[M1,M3] P3"
by (simp add: refT_def eqT_def)
lemmas cspT_tr_right = cspT_tr_right_eq cspT_tr_right_ref
(*-----------------------------------------*
| noPN |
*-----------------------------------------*)
lemma traces_noPN_Constant_lm:
"noPN P --> (EX T. traces P = (%M. T))"
apply (induct_tac P)
apply (simp add: traces_def, force)
apply (simp add: traces_def, force)
apply (simp add: traces_def, force)
apply (simp add: traces_def, force)
(* Ext_pre_choice *)
apply (intro impI)
apply (simp)
apply (subgoal_tac "ALL x. EX T. traces (fun2 x) = (%M. T)")
apply (simp add: choice_ALL_EX)
apply (erule exE)
apply (simp add: traces_def)
apply (force)
apply (simp)
apply (simp add: traces_def, force)
apply (simp add: traces_def, force)
(* Rep_int_choice *)
apply (intro impI)
apply (simp)
apply (subgoal_tac "ALL x. EX T. traces (fun x) = (%M. T)")
apply (simp add: choice_ALL_EX)
apply (erule exE)
apply (simp add: traces_def)
apply (force)
apply (simp)
(* IF *)
apply (simp add: traces_def)
apply (case_tac "bool")
apply (simp)
apply (simp)
apply (simp add: traces_def, force)
apply (simp add: traces_def, force)
apply (simp add: traces_def, force)
apply (simp add: traces_def, force)
apply (simp add: traces_def, force)
apply (simp add: traces_def)
done
lemma traces_noPN_Constant:
"noPN P ==> (EX T. traces P = (%M. T))"
apply (simp add: traces_noPN_Constant_lm)
done
(*-----------------------------------------*
| substitution |
*-----------------------------------------*)
lemma semT_subst:
"[[P<<f]]T = [[P]]Tf (%q. [[f q]]T)"
apply (induct_tac P)
apply (simp_all add: semT_def semTf_def traces_def)
done
lemma semT_subst_semTfun:
"(%q. [[ (Pf q)<<f ]]T) = ([[Pf]]Tfun (%q. [[f q]]T))"
apply (simp add: semTfun_def)
apply (simp add: expand_fun_eq)
apply (rule allI)
apply (simp add: semT_subst)
done
lemma traces_subst:
"traces(P<<f) M = traces P (%q. traces(f q) M)"
apply (induct_tac P)
apply (simp_all add: semT_def traces_def)
done
end
lemma traces_inv_inj:
inj f
==> (∃c. (∃n. c = f n ∧ n ∈ N) ∧ t :t traces (Pf (inv f c)) x) =
(∃z∈N. t :t traces (Pf z) x)
lemma Rep_int_choice_traces_nat:
traces (!nat :N .. Pf) = (λM. {t. t = <> ∨ (∃n∈N. t :t traces (Pf n) M)}t)
lemma Rep_int_choice_traces_set:
traces (!set :Xs .. Pf) = (λM. {t. t = <> ∨ (∃X∈Xs. t :t traces (Pf X) M)}t)
lemma Rep_int_choice_traces_com_lm:
(∃z. (∃a. z = {a} ∧ a ∈ X) ∧ t :t traces (Pf (contents z)) M) =
(∃a∈X. t :t traces (Pf a) M)
lemma Rep_int_choice_traces_com:
traces (! :X .. Pf) = (λM. {t. t = <> ∨ (∃a∈X. t :t traces (Pf a) M)}t)
lemma Rep_int_choice_traces_f:
inj f
==> traces (!<f> :X .. Pf) = (λM. {t. t = <> ∨ (∃a∈X. t :t traces (Pf a) M)}t)
lemma Rep_int_choice_traces:
traces (!nat :N .. Pf) = (λM. {t. t = <> ∨ (∃n∈N. t :t traces (Pf n) M)}t)
traces (!set :Xs .. Pf) = (λM. {t. t = <> ∨ (∃X∈Xs. t :t traces (Pf X) M)}t)
traces (! :X .. Pf) = (λM. {t. t = <> ∨ (∃a∈X. t :t traces (Pf a) M)}t)
inj f
==> traces (!<f> :X .. Pf) = (λM. {t. t = <> ∨ (∃a∈X. t :t traces (Pf a) M)}t)
lemma traces_def:
traces STOP = (λM. {<>}t)
traces SKIP = (λM. {<>, <Tick>}t)
traces DIV = (λM. {<>}t)
traces (a -> P) = (λM. {t. t = <> ∨ (∃s. t = <Ev a> ^^ s ∧ s :t traces P M)}t)
traces (? :X -> Pf) =
(λM. {t. t = <> ∨ (∃a s. t = <Ev a> ^^ s ∧ s :t traces (Pf a) M ∧ a ∈ X)}t)
traces (P [+] Q) = (λM. traces P M UnT traces Q M)
traces (P |~| Q) = (λM. traces P M UnT traces Q M)
traces (!! :C .. Pf) = (λM. {t. t = <> ∨ (∃c∈sumset C. t :t traces (Pf c) M)}t)
traces (IF b THEN P ELSE Q) = (λM. if b then traces P M else traces Q M)
traces (P |[X]| Q) =
(λM. {u. ∃s t. u ∈ s |[X]|tr t ∧ s :t traces P M ∧ t :t traces Q M}t)
traces (P -- X) = (λM. Abs_domT {s --tr X |s. s :t traces P M})
traces (P [[r]]) = (λM. {t. ∃s. s [[r]]* t ∧ s :t traces P M}t)
traces (P ;; Q) =
(λM. {u. (∃s. u = rmTick s ∧ s :t traces P M) ∨
(∃s t. u = s ^^ t ∧
s ^^ <Tick> :t traces P M ∧ t :t traces Q M ∧ noTick s)}t)
traces (P |. n) = (λM. traces P M .|. n)
traces ($p) = (λM. M p)
traces (!nat :N .. Pf) = (λM. {t. t = <> ∨ (∃n∈N. t :t traces (Pf n) M)}t)
traces (!set :Xs .. Pf) = (λM. {t. t = <> ∨ (∃X∈Xs. t :t traces (Pf X) M)}t)
traces (! :X .. Pf) = (λM. {t. t = <> ∨ (∃a∈X. t :t traces (Pf a) M)}t)
inj f
==> traces (!<f> :X .. Pf) = (λM. {t. t = <> ∨ (∃a∈X. t :t traces (Pf a) M)}t)
lemma traces_Int_choice_Ext_choice:
traces (P |~| Q) = traces (P [+] Q)
lemma semTf_semTfun:
(λp. [[Pf p]]Tf M) = [[Pf]]Tfun M
lemma traces_semTfun:
(λp. traces (Pf p) M) = [[Pf]]Tfun M
lemma refT_semT:
P1.0 <=T P2.0 == [[P2.0]]T ≤ [[P1.0]]T
lemma eqT_semT:
P1.0 =T P2.0 == [[P1.0]]T = [[P2.0]]T
lemma cspT_eqT_semantics:
(P =T[M1.0,M2.0] Q) = (traces P M1.0 = traces Q M2.0)
lemma cspT_refT_semantics:
(P <=T[M1.0,M2.0] Q) = (traces Q M2.0 ≤ traces P M1.0)
lemma cspT_semantics:
(P =T[M1.0,M2.0] Q) = (traces P M1.0 = traces Q M2.0)
(P <=T[M1.0,M2.0] Q) = (traces Q M2.0 ≤ traces P M1.0)
lemma cspT_eq_ref_iff:
(P1.0 =T[M1.0,M2.0] P2.0) =
(P1.0 <=T[M1.0,M2.0] P2.0 ∧ P2.0 <=T[M2.0,M1.0] P1.0)
lemma cspT_eq_ref:
P1.0 =T[M1.0,M2.0] P2.0 ==> P1.0 <=T[M1.0,M2.0] P2.0
lemma cspT_ref_eq:
[| P1.0 <=T[M1.0,M2.0] P2.0; P2.0 <=T[M2.0,M1.0] P1.0 |]
==> P1.0 =T[M1.0,M2.0] P2.0
lemma cspT_reflex_eq_P:
P =T[M,M] P
lemma cspT_reflex_eq_STOP:
STOP =T[M1.0,M2.0] STOP
lemma cspT_reflex_eq_SKIP:
SKIP =T[M1.0,M2.0] SKIP
lemma cspT_reflex_eq_DIV:
DIV =T[M1.0,M2.0] DIV
lemma cspT_reflex_eq:
P =T[M,M] P
STOP =T[M1.0,M2.0] STOP
SKIP =T[M1.0,M2.0] SKIP
DIV =T[M1.0,M2.0] DIV
lemma cspT_reflex_ref_P:
P <=T[M,M] P
lemma cspT_reflex_ref_STOP:
STOP <=T[M1.0,M2.0] STOP
lemma cspT_reflex_ref_SKIP:
SKIP <=T[M1.0,M2.0] SKIP
lemma cspT_reflex_ref_DIV:
DIV <=T[M1.0,M2.0] DIV
lemma cspT_reflex_ref:
P <=T[M,M] P
STOP <=T[M1.0,M2.0] STOP
SKIP <=T[M1.0,M2.0] SKIP
DIV <=T[M1.0,M2.0] DIV
lemma cspT_reflex:
P =T[M,M] P
STOP =T[M1.0,M2.0] STOP
SKIP =T[M1.0,M2.0] SKIP
DIV =T[M1.0,M2.0] DIV
P <=T[M,M] P
STOP <=T[M1.0,M2.0] STOP
SKIP <=T[M1.0,M2.0] SKIP
DIV <=T[M1.0,M2.0] DIV
lemma cspT_sym:
P1.0 =T[M1.0,M2.0] P2.0 ==> P2.0 =T[M2.0,M1.0] P1.0
lemma cspT_symE:
[| P1.0 =T[M1.0,M2.0] P2.0; P2.0 =T[M2.0,M1.0] P1.0 ==> Z |] ==> Z
lemma cspT_trans_left_eq:
[| P1.0 =T[M1.0,M2.0] P2.0; P2.0 =T[M2.0,M3.0] P3.0 |]
==> P1.0 =T[M1.0,M3.0] P3.0
lemma cspT_trans_left_ref:
[| P1.0 <=T[M1.0,M2.0] P2.0; P2.0 <=T[M2.0,M3.0] P3.0 |]
==> P1.0 <=T[M1.0,M3.0] P3.0
lemma cspT_trans_left:
[| P1.0 =T[M1.0,M2.0] P2.0; P2.0 =T[M2.0,M3.0] P3.0 |]
==> P1.0 =T[M1.0,M3.0] P3.0
[| P1.0 <=T[M1.0,M2.0] P2.0; P2.0 <=T[M2.0,M3.0] P3.0 |]
==> P1.0 <=T[M1.0,M3.0] P3.0
lemma cspT_trans:
[| P1.0 =T[M1.0,M2.0] P2.0; P2.0 =T[M2.0,M3.0] P3.0 |]
==> P1.0 =T[M1.0,M3.0] P3.0
[| P1.0 <=T[M1.0,M2.0] P2.0; P2.0 <=T[M2.0,M3.0] P3.0 |]
==> P1.0 <=T[M1.0,M3.0] P3.0
lemma cspT_trans_right_eq:
[| P2.0 =T[M2.0,M3.0] P3.0; P1.0 =T[M1.0,M2.0] P2.0 |]
==> P1.0 =T[M1.0,M3.0] P3.0
lemma cspT_trans_right_ref:
[| P2.0 <=T[M2.0,M3.0] P3.0; P1.0 <=T[M1.0,M2.0] P2.0 |]
==> P1.0 <=T[M1.0,M3.0] P3.0
lemma cspT_trans_right:
[| P2.0 =T[M2.0,M3.0] P3.0; P1.0 =T[M1.0,M2.0] P2.0 |]
==> P1.0 =T[M1.0,M3.0] P3.0
[| P2.0 <=T[M2.0,M3.0] P3.0; P1.0 <=T[M1.0,M2.0] P2.0 |]
==> P1.0 <=T[M1.0,M3.0] P3.0
lemma cspT_rw_left_eq_MT:
[| P1.0 =T P2.0; P2.0 =T P3.0 |] ==> P1.0 =T P3.0
lemma cspT_rw_left_eq:
[| P1.0 =T[M1.0,M1.0] P2.0; P2.0 =T[M1.0,M3.0] P3.0 |]
==> P1.0 =T[M1.0,M3.0] P3.0
lemma cspT_rw_left_ref_MT:
[| P1.0 =T P2.0; P2.0 <=T P3.0 |] ==> P1.0 <=T P3.0
lemma cspT_rw_left_ref:
[| P1.0 =T[M1.0,M1.0] P2.0; P2.0 <=T[M1.0,M3.0] P3.0 |]
==> P1.0 <=T[M1.0,M3.0] P3.0
lemma cspT_rw_left:
[| P1.0 =T P2.0; P2.0 =T P3.0 |] ==> P1.0 =T P3.0
[| P1.0 =T P2.0; P2.0 <=T P3.0 |] ==> P1.0 <=T P3.0
[| P1.0 =T[M1.0,M1.0] P2.0; P2.0 =T[M1.0,M3.0] P3.0 |]
==> P1.0 =T[M1.0,M3.0] P3.0
[| P1.0 =T[M1.0,M1.0] P2.0; P2.0 <=T[M1.0,M3.0] P3.0 |]
==> P1.0 <=T[M1.0,M3.0] P3.0
lemma cspT_rw_right_eq:
[| P3.0 =T[M3.0,M3.0] P2.0; P1.0 =T[M1.0,M3.0] P2.0 |]
==> P1.0 =T[M1.0,M3.0] P3.0
lemma cspT_rw_right_eq_MT:
[| P3.0 =T P2.0; P1.0 =T P2.0 |] ==> P1.0 =T P3.0
lemma cspT_rw_right_ref:
[| P3.0 =T[M3.0,M3.0] P2.0; P1.0 <=T[M1.0,M3.0] P2.0 |]
==> P1.0 <=T[M1.0,M3.0] P3.0
lemma cspT_rw_right_ref_MT:
[| P3.0 =T P2.0; P1.0 <=T P2.0 |] ==> P1.0 <=T P3.0
lemma cspT_rw_right:
[| P3.0 =T P2.0; P1.0 =T P2.0 |] ==> P1.0 =T P3.0
[| P3.0 =T P2.0; P1.0 <=T P2.0 |] ==> P1.0 <=T P3.0
[| P3.0 =T[M3.0,M3.0] P2.0; P1.0 =T[M1.0,M3.0] P2.0 |]
==> P1.0 =T[M1.0,M3.0] P3.0
[| P3.0 =T[M3.0,M3.0] P2.0; P1.0 <=T[M1.0,M3.0] P2.0 |]
==> P1.0 <=T[M1.0,M3.0] P3.0
lemma cspT_tr_left_eq:
[| P1.0 =T[M1.0,M1.0] P2.0; P2.0 =T[M1.0,M3.0] P3.0 |]
==> P1.0 =T[M1.0,M3.0] P3.0
lemma cspT_tr_left_ref:
[| P1.0 <=T[M1.0,M1.0] P2.0; P2.0 <=T[M1.0,M3.0] P3.0 |]
==> P1.0 <=T[M1.0,M3.0] P3.0
lemma cspT_tr_left:
[| P1.0 =T[M1.0,M1.0] P2.0; P2.0 =T[M1.0,M3.0] P3.0 |]
==> P1.0 =T[M1.0,M3.0] P3.0
[| P1.0 <=T[M1.0,M1.0] P2.0; P2.0 <=T[M1.0,M3.0] P3.0 |]
==> P1.0 <=T[M1.0,M3.0] P3.0
lemma cspT_tr_right_eq:
[| P2.0 =T[M3.0,M3.0] P3.0; P1.0 =T[M1.0,M3.0] P2.0 |]
==> P1.0 =T[M1.0,M3.0] P3.0
lemma cspT_tr_right_ref:
[| P2.0 <=T[M3.0,M3.0] P3.0; P1.0 <=T[M1.0,M3.0] P2.0 |]
==> P1.0 <=T[M1.0,M3.0] P3.0
lemma cspT_tr_right:
[| P2.0 =T[M3.0,M3.0] P3.0; P1.0 =T[M1.0,M3.0] P2.0 |]
==> P1.0 =T[M1.0,M3.0] P3.0
[| P2.0 <=T[M3.0,M3.0] P3.0; P1.0 <=T[M1.0,M3.0] P2.0 |]
==> P1.0 <=T[M1.0,M3.0] P3.0
lemma traces_noPN_Constant_lm:
noPN P --> (∃T. traces P = (λM. T))
lemma traces_noPN_Constant:
noPN P ==> ∃T. traces P = (λM. T)
lemma semT_subst:
[[P << f]]T = [[P]]Tf (λq. [[f q]]T)
lemma semT_subst_semTfun:
(λq. [[(Pf q) << f]]T) = [[Pf]]Tfun (λq. [[f q]]T)
lemma traces_subst:
traces (P << f) M = traces P (λq. traces (f q) M)