Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_law_ufp(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | February 2005 | | June 2005 (modified) | | August 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | March 2007 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_T_law_ufp imports CSP_T_continuous CSP_T_contraction CSP_T_mono CSP_T_law_decompo begin (***************************************************************** 1. cms fixed point theory in CSP-Prover 2. 3. 4. *****************************************************************) (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* Union (B ` A) = (UN x:A. B x) *) (* Inter (B ` A) = (INT x:A. B x) *) declare Union_image_eq [simp del] declare Inter_image_eq [simp del] (*=======================================================* | | | CMS | | | *=======================================================*) (*-------------* | existency | *-------------*) lemma semT_hasUFP_cms: "[| Pf = PNfun ; guardedfun (Pf) |] ==> [[Pf]]Tfun hasUFP" apply (rule Banach_thm_EX) apply (rule contraction_semTfun) apply (simp) done lemma semT_UFP_cms: "[| Pf = PNfun ; guardedfun (Pf) ; FPmode = CMSmode |] ==> [[$p]]T = UFP [[Pf]]Tfun p" apply (simp add: semT_def semTf_def) apply (simp add: traces_def) apply (simp add: MT_def) apply (simp add: semTfix_def) done lemma semT_UFP_fun_cms: "[| Pf = PNfun ; guardedfun (Pf) ; FPmode = CMSmode |] ==> (%p. [[$p]]T) = UFP [[Pf]]Tfun" apply (simp (no_asm) add: expand_fun_eq) apply (simp add: semT_UFP_cms) done (*---------* | MT | *---------*) lemma MT_fixed_point_cms: "[| (Pf::'p=>('p,'a) proc) = PNfun; guardedfun Pf ; FPmode = CMSmode|] ==> [[Pf]]Tfun (MT::'p => 'a domT) = (MT::'p => 'a domT)" apply (simp add: MT_def) apply (simp add: semTfix_def) apply (rule UFP_fp) apply (simp add: semT_hasUFP_cms) done (*---------* | unique | *---------*) lemma ALL_cspT_unique_cms: "[| Pf = PNfun ; guardedfun Pf ; FPmode = CMSmode ; ALL p. (Pf p) << f =T f p |] ==> ALL p. f p =T $p" apply (simp add: cspT_semantics) apply (simp add: expand_fun_eq[THEN sym]) apply (rule hasUFP_unique_solution[of "[[PNfun]]Tfun"]) apply (simp add: semT_hasUFP_cms) apply (simp add: traces_subst) apply (simp add: semTfun_def semTf_def) apply (fold semTf_def semT_def) apply (simp add: semT_UFP_fun_cms) apply (simp add: UFP_fp semT_hasUFP_cms) done lemma cspT_unique_cms: "[| Pf = PNfun ; guardedfun Pf ; FPmode = CMSmode ; ALL p. (Pf p) << f =T f p |] ==> f p =T $p" by (simp add: ALL_cspT_unique_cms) (*-------------------------------------------------------* | | | Fixpoint unwind (CSP-Prover rule) | | | *-------------------------------------------------------*) lemma ALL_cspT_unwind_cms: "[| Pf = PNfun ; guardedfun Pf ; FPmode = CMSmode |] ==> ALL p. ($p =T Pf p)" apply (simp add: cspT_semantics) apply (simp add: traces_def) apply (simp add: MT_def) apply (simp add: semTfix_def) apply (simp add: expand_fun_eq[THEN sym]) apply (simp add: traces_semTfun) apply (simp add: UFP_fp semT_hasUFP_cms) done (* csp law *) lemma cspT_unwind_cms: "[| Pf = PNfun ; guardedfun Pf ; FPmode = CMSmode |] ==> $p =T Pf p" by (simp add: ALL_cspT_unwind_cms) (*-------------------------------------------------------* | | | fixed point inducntion (CSP-Prover intro rule) | | | *-------------------------------------------------------*) (*----------- refinement -----------*) (*** left ***) lemma cspT_fp_induct_cms_ref_left_ALL: "[| Pf = PNfun ; guardedfun Pf ; FPmode = CMSmode ; f p <=T Q ; ALL p. (Pf p)<<f <=T f p |] ==> $p <=T Q" apply (simp add: refT_semT) apply (insert cms_fixpoint_induction_ref [of "[[Pf]]Tfun" "(%p. [[f p]]T)" "UFP [[Pf]]Tfun"]) apply (simp add: UFP_fp semT_hasUFP_cms) apply (simp add: fold_order_prod_def) apply (simp add: semT_subst_semTfun) apply (simp add: mono_semTfun) apply (simp add: contra_alpha_to_contst contraction_alpha_semTfun) apply (simp add: order_prod_def) apply (drule_tac x="p" in spec)+ apply (simp add: semT_UFP_cms) done (* csp law *) lemma cspT_fp_induct_cms_ref_left: "[| Pf = PNfun ; guardedfun Pf ; FPmode = CMSmode ; f p <=T Q; !! p. (Pf p)<<f <=T f p |] ==> $p <=T Q" by (simp add: cspT_fp_induct_cms_ref_left_ALL) (*** right ***) lemma cspT_fp_induct_cms_ref_right_ALL: "[| Pf = PNfun ; guardedfun Pf ; FPmode = CMSmode ; Q <=T f p; ALL p. f p <=T (Pf p)<<f |] ==> Q <=T $p" apply (simp add: refT_semT) apply (insert cms_fixpoint_induction_rev [of "[[Pf]]Tfun" "(%p. [[f p]]T)" "UFP [[Pf]]Tfun"]) apply (simp add: UFP_fp semT_hasUFP_cms) apply (simp add: fold_order_prod_def) apply (simp add: semT_subst_semTfun) apply (simp add: mono_semTfun) apply (simp add: contra_alpha_to_contst contraction_alpha_semTfun) apply (simp add: order_prod_def) apply (drule_tac x="p" in spec)+ apply (simp add: semT_UFP_cms) done (* csp law *) lemma cspT_fp_induct_cms_ref_right: "[| Pf = PNfun ; guardedfun Pf ; FPmode = CMSmode ; Q <=T f p; !! p. f p <=T (Pf p)<<f |] ==> Q <=T $p" by (simp add: cspT_fp_induct_cms_ref_right_ALL) (*----------- equality -----------*) (*** left ***) lemma cspT_fp_induct_cms_eq_left_ALL: "[| Pf = PNfun ; guardedfun Pf ; FPmode = CMSmode ; f p =T Q ; ALL p. (Pf p)<<f =T f p |] ==> $p =T Q" apply (simp add: eqT_semT) apply (simp add: expand_fun_eq[THEN sym]) apply (simp add: semT_subst_semTfun) apply (insert semT_UFP_fun_cms[of Pf]) apply (simp) apply (subgoal_tac "(%p. [[$p]]T) = (%p. [[f p]]T)") apply (simp add: expand_fun_eq) apply (rule hasUFP_unique_solution[of "[[Pf]]Tfun"]) apply (simp_all add: semT_hasUFP_cms) apply (simp add: UFP_fp semT_hasUFP_cms) done (* csp law *) lemma cspT_fp_induct_cms_eq_left: "[| Pf = PNfun ; guardedfun Pf ; FPmode = CMSmode ; f p =T Q ; !! p. (Pf p)<<f =T f p |] ==> $p =T Q" by (simp add: cspT_fp_induct_cms_eq_left_ALL) lemma cspT_fp_induct_cms_eq_right: "[| Pf = PNfun ; guardedfun Pf ; FPmode = CMSmode ; Q =T f p; !! p. f p =T (Pf p)<<f |] ==> Q =T $p" apply (rule cspT_sym) apply (rule cspT_fp_induct_cms_eq_left[of Pf f p Q]) apply (simp_all) apply (rule cspT_sym) apply (simp) apply (rule cspT_sym) apply (simp) done lemmas cspT_fp_induct_cms_left = cspT_fp_induct_cms_ref_left cspT_fp_induct_cms_eq_left lemmas cspT_fp_induct_cms_right = cspT_fp_induct_cms_ref_right cspT_fp_induct_cms_eq_right (****************** to add them again ******************) declare Union_image_eq [simp] declare Inter_image_eq [simp] end
lemma semT_hasUFP_cms:
[| Pf = PNfun; guardedfun Pf |] ==> [[Pf]]Tfun hasUFP
lemma semT_UFP_cms:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode |] ==> [[$p]]T = UFP [[Pf]]Tfun p
lemma semT_UFP_fun_cms:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode |]
==> (λp. [[$p]]T) = UFP [[Pf]]Tfun
lemma MT_fixed_point_cms:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode |] ==> [[Pf]]Tfun MT = MT
lemma ALL_cspT_unique_cms:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; ∀p. (Pf p) << f =T f p |]
==> ∀p. f p =T $p
lemma cspT_unique_cms:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; ∀p. (Pf p) << f =T f p |]
==> f p =T $p
lemma ALL_cspT_unwind_cms:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode |] ==> ∀p. $p =T Pf p
lemma cspT_unwind_cms:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode |] ==> $p =T Pf p
lemma cspT_fp_induct_cms_ref_left_ALL:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; f p <=T Q;
∀p. (Pf p) << f <=T f p |]
==> $p <=T Q
lemma cspT_fp_induct_cms_ref_left:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; f p <=T Q;
!!p. (Pf p) << f <=T f p |]
==> $p <=T Q
lemma cspT_fp_induct_cms_ref_right_ALL:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; Q <=T f p;
∀p. f p <=T (Pf p) << f |]
==> Q <=T $p
lemma cspT_fp_induct_cms_ref_right:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; Q <=T f p;
!!p. f p <=T (Pf p) << f |]
==> Q <=T $p
lemma cspT_fp_induct_cms_eq_left_ALL:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; f p =T Q;
∀p. (Pf p) << f =T f p |]
==> $p =T Q
lemma cspT_fp_induct_cms_eq_left:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; f p =T Q;
!!p. (Pf p) << f =T f p |]
==> $p =T Q
lemma cspT_fp_induct_cms_eq_right:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; Q =T f p;
!!p. f p =T (Pf p) << f |]
==> Q =T $p
lemma cspT_fp_induct_cms_left:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; f p <=T Q;
!!p. (Pf p) << f <=T f p |]
==> $p <=T Q
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; f p =T Q;
!!p. (Pf p) << f =T f p |]
==> $p =T Q
lemma cspT_fp_induct_cms_right:
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; Q <=T f p;
!!p. f p <=T (Pf p) << f |]
==> Q <=T $p
[| Pf = PNfun; guardedfun Pf; FPmode = CMSmode; Q =T f p;
!!p. f p =T (Pf p) << f |]
==> Q =T $p