Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_law_ref(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | December 2004 | | June 2005 (modified) | | September 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | March 2007 (modified) | | August 2007 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_T_law_ref imports CSP_T_law_basic begin (***************************************************************** 1. rules for refinement *****************************************************************) (*-------------------------------------------------------* | refinement and equality | *-------------------------------------------------------*) lemma cspT_ref_eq_iff: "(P <=T[M,M] Q) = (P =T[M,M] Q |~| P)" apply (simp add: cspT_semantics) apply (rule) (* <= *) apply (rule order_antisym) apply (simp add: subdomT_iff) apply (simp add: in_traces) apply (simp add: subdomT_iff) apply (simp add: in_traces) (* => *) apply (erule order_antisymE) apply (rule) apply (rotate_tac 1) apply (erule subdomTE_ALL) apply (drule_tac x="t" in spec) apply (simp add: in_traces) done (*-------------------------------------------------------* | simp STOP [+] | *-------------------------------------------------------*) lemma cspT_Ent_choice_left1_ref:"P [+] Q <=T[M,M] P" apply (simp add: cspT_semantics) apply (rule, simp add: in_traces) done lemma cspT_Ent_choice_left2_ref:"P [+] Q <=T[M,M] Q" apply (simp add: cspT_semantics) apply (rule, simp add: in_traces) done lemmas cspT_Ent_choice_left_ref = cspT_Ent_choice_left1_ref cspT_Ent_choice_left2_ref (*-------------------------------------------------------* | decompose Internal choice | *-------------------------------------------------------*) (*** or <= ***) (* unsafe *) lemma cspT_Int_choice_left1: "P1 <=T[M1,M2] Q ==> P1 |~| P2 <=T[M1,M2] Q" apply (simp add: cspT_semantics) apply (rule, simp add: in_traces) apply (force) done lemma cspT_Int_choice_left2: "P2 <=T[M1,M2] Q ==> P1 |~| P2 <=T[M1,M2] Q" apply (rule cspT_rw_left) apply (rule cspT_commut) by (simp add: cspT_Int_choice_left1) (*** <= and ***) (* safe *) lemma cspT_Int_choice_right: "[| P <=T[M1,M2] Q1 ; P <=T[M1,M2] Q2 |] ==> P <=T[M1,M2] Q1 |~| Q2" apply (simp add: cspT_semantics) apply (rule, simp add: in_traces) apply (force) done (*-------------------------------------------------------* | decompose Replicated internal choice | *-------------------------------------------------------*) (*** EX <= ***) (* unsafe *) lemma cspT_Rep_int_choice_sum_left: "(EX c. c:sumset C & Pf c <=T[M1,M2] Q) ==> !! :C .. Pf <=T[M1,M2] Q" apply (simp add: cspT_semantics) apply (rule, simp add: in_traces) apply (force) done lemma cspT_Rep_int_choice_sum_left_x: "[| c: sumset C ; Pf c <=T[M1,M2] Q |] ==> !! :C .. Pf <=T[M1,M2] Q" by (rule cspT_Rep_int_choice_sum_left, fast) lemma cspT_Rep_int_choice_nat_left: "(EX n. n:N & Pf n <=T[M1,M2] Q) ==> !nat :N .. Pf <=T[M1,M2] Q" apply (simp add: Rep_int_choice_ss_def) by (rule cspT_Rep_int_choice_sum_left, force) lemma cspT_Rep_int_choice_nat_left_x: "[| n:N ; Pf n <=T[M1,M2] Q |] ==> !nat :N .. Pf <=T[M1,M2] Q" by (rule cspT_Rep_int_choice_nat_left, fast) lemma cspT_Rep_int_choice_set_left: "(EX X. X:Xs & Pf X <=T[M1,M2] Q) ==> !set :Xs .. Pf <=T[M1,M2] Q" apply (simp add: Rep_int_choice_ss_def) by (rule cspT_Rep_int_choice_sum_left, force) lemma cspT_Rep_int_choice_set_left_x: "[| X:Xs ; Pf X <=T[M1,M2] Q |] ==> !set :Xs .. Pf <=T[M1,M2] Q" by (rule cspT_Rep_int_choice_set_left, fast) lemma cspT_Rep_int_choice_com_left: "(EX a. a:X & Pf a <=T[M1,M2] Q) ==> ! :X .. Pf <=T[M1,M2] Q" apply (simp add: Rep_int_choice_com_def) by (rule cspT_Rep_int_choice_set_left, force) lemma cspT_Rep_int_choice_com_left_x: "[| a:X ; Pf a <=T[M1,M2] Q |] ==> ! :X .. Pf <=T[M1,M2] Q" by (rule cspT_Rep_int_choice_com_left, fast) lemma cspT_Rep_int_choice_f_left: "[| inj f ; (EX a. a:X & Pf a <=T[M1,M2] Q) |] ==> !<f> :X .. Pf <=T[M1,M2] Q" apply (simp add: Rep_int_choice_f_def) by (rule cspT_Rep_int_choice_com_left, force) lemma cspT_Rep_int_choice_f_left_x: "[| inj f ; a:X ; Pf a <=T[M1,M2] Q |] ==> !<f> :X .. Pf <=T[M1,M2] Q" by (rule cspT_Rep_int_choice_f_left, simp, fast) lemmas cspT_Rep_int_choice_left = cspT_Rep_int_choice_sum_left cspT_Rep_int_choice_nat_left cspT_Rep_int_choice_set_left cspT_Rep_int_choice_com_left cspT_Rep_int_choice_f_left lemmas cspT_Rep_int_choice_left_x = cspT_Rep_int_choice_sum_left_x cspT_Rep_int_choice_nat_left_x cspT_Rep_int_choice_set_left_x cspT_Rep_int_choice_com_left_x cspT_Rep_int_choice_f_left_x (*** <= ALL ***) (* safe *) lemma cspT_Rep_int_choice_sum_right: "[| !!c. c:sumset C ==> P <=T[M1,M2] Qf c |] ==> P <=T[M1,M2] !! :C .. Qf" apply (simp add: cspT_semantics) apply (rule, simp add: in_traces) apply (force) done lemma cspT_Rep_int_choice_nat_right: "[| !!n. n:N ==> P <=T[M1,M2] Qf n |] ==> P <=T[M1,M2] !nat :N .. Qf" apply (simp add: Rep_int_choice_ss_def) by (rule cspT_Rep_int_choice_sum_right, force) lemma cspT_Rep_int_choice_set_right: "[| !!X. X:Xs ==> P <=T[M1,M2] Qf X |] ==> P <=T[M1,M2] !set :Xs .. Qf" apply (simp add: Rep_int_choice_ss_def) by (rule cspT_Rep_int_choice_sum_right, force) lemma cspT_Rep_int_choice_com_right: "[| !!a. a:X ==> P <=T[M1,M2] Qf a |] ==> P <=T[M1,M2] ! :X .. Qf" apply (simp add: Rep_int_choice_com_def) by (rule cspT_Rep_int_choice_set_right, force) lemma cspT_Rep_int_choice_f_right: "[| inj f ; !!a. a:X ==> P <=T[M1,M2] Qf a |] ==> P <=T[M1,M2] !<f> :X .. Qf" apply (simp add: Rep_int_choice_f_def) by (rule cspT_Rep_int_choice_com_right, force) lemmas cspT_Rep_int_choice_right = cspT_Rep_int_choice_sum_right cspT_Rep_int_choice_nat_right cspT_Rep_int_choice_set_right cspT_Rep_int_choice_com_right cspT_Rep_int_choice_f_right (* 1,2,3,f E *) lemma cspT_Rep_int_choice_sum_rightE: "[| P <=T[M1,M2] !! :C .. Qf ; ALL c:sumset C. P <=T[M1,M2] Qf c ==> R |] ==> R" apply (simp add: cspT_semantics) apply (simp add: subdomT_iff) apply (simp add: in_traces) apply (force) done lemma cspT_Rep_int_choice_nat_rightE: "[| P <=T[M1,M2] !nat :N .. Qf ; ALL n:N. P <=T[M1,M2] Qf n ==> R |] ==> R" apply (simp add: Rep_int_choice_ss_def) by (erule cspT_Rep_int_choice_sum_rightE, force) lemma cspT_Rep_int_choice_set_rightE: "[| P <=T[M1,M2] !set :Xs .. Qf ; ALL X:Xs. P <=T[M1,M2] Qf X ==> R |] ==> R" apply (simp add: Rep_int_choice_ss_def) by (erule cspT_Rep_int_choice_sum_rightE, force) lemma cspT_Rep_int_choice_com_rightE: "[| P <=T[M1,M2] ! :X .. Qf ; ALL a:X. P <=T[M1,M2] Qf a ==> R |] ==> R" apply (simp add: Rep_int_choice_com_def) by (erule cspT_Rep_int_choice_set_rightE, force) lemma cspT_Rep_int_choice_f_rightE: "[| P <=T[M1,M2] !<f> :X .. Qf ; inj f ; [| ALL a:X. P <=T[M1,M2] Qf a |] ==> R |] ==> R" apply (simp add: Rep_int_choice_f_def) by (erule cspT_Rep_int_choice_com_rightE, force) lemmas cspT_Rep_int_choice_rightE = cspT_Rep_int_choice_sum_rightE cspT_Rep_int_choice_nat_rightE cspT_Rep_int_choice_set_rightE cspT_Rep_int_choice_com_rightE cspT_Rep_int_choice_f_rightE (*-------------------------------------------------------* | decomposition with subset | *-------------------------------------------------------*) (*** Rep_int_choice ***) (* unsafe *) lemma cspT_Rep_int_choice_sum_subset: "[| sumset C2 <= sumset C1 ; !!c. c:sumset C2 ==> Pf c <=T[M1,M2] Qf c |] ==> !! :C1 .. Pf <=T[M1,M2] !! :C2 .. Qf" apply (simp add: cspT_semantics) apply (rule, simp add: in_traces) apply (force) done lemma cspT_Rep_int_choice_nat_subset: "[| N2 <= N1 ; !!n. n:N2 ==> Pf n <=T[M1,M2] Qf n |] ==> !nat :N1 .. Pf <=T[M1,M2] !nat :N2 .. Qf" apply (simp add: Rep_int_choice_ss_def) by (rule cspT_Rep_int_choice_sum_subset, auto) lemma cspT_Rep_int_choice_set_subset: "[| Ys <= Xs ; !!X. X:Ys ==> Pf X <=T[M1,M2] Qf X |] ==> !set :Xs .. Pf <=T[M1,M2] !set :Ys .. Qf" apply (simp add: Rep_int_choice_ss_def) by (rule cspT_Rep_int_choice_sum_subset, auto) lemma cspT_Rep_int_choice_com_subset: "[| Y <= X ; !!a. a:Y ==> Pf a <=T[M1,M2] Qf a |] ==> ! :X .. Pf <=T[M1,M2] ! :Y .. Qf" apply (simp add: Rep_int_choice_com_def) by (rule cspT_Rep_int_choice_set_subset, auto) lemma cspT_Rep_int_choice_f_subset: "[| inj f ; Y <= X ; !!a. a:Y ==> Pf a <=T[M1,M2] Qf a |] ==> !<f> :X .. Pf <=T[M1,M2] !<f> :Y .. Qf" apply (simp add: Rep_int_choice_f_def) by (rule cspT_Rep_int_choice_com_subset, auto) lemmas cspT_Rep_int_choice_subset = cspT_Rep_int_choice_sum_subset cspT_Rep_int_choice_nat_subset cspT_Rep_int_choice_set_subset cspT_Rep_int_choice_com_subset cspT_Rep_int_choice_f_subset (*** ! x:X .. and ? -> ***) lemma cspT_Int_Ext_pre_choice_subset: "[| Y ~={} ; Y <= X ; !!a. a:Y ==> Pf a <=T[M1,M2] Qf a |] ==> ! x:X .. (x -> Pf x) <=T[M1,M2] ? :Y -> Qf" apply (simp add: cspT_semantics) apply (rule, simp add: in_traces) apply (force) done lemmas cspT_decompo_subset = cspT_Rep_int_choice_subset cspT_Int_Ext_pre_choice_subset (*-------------------------------------------------------* | decompose external choice | *-------------------------------------------------------*) lemma cspT_Ext_choice_right: "[| P <=T[M1,M2] Q1 ; P <=T[M1,M2] Q2 |] ==> P <=T[M1,M2] Q1 [+] Q2" apply (simp add: cspT_semantics) apply (rule, simp add: in_traces) apply (force) done end
lemma cspT_ref_eq_iff:
(P <=T[M,M] Q) = (P =T[M,M] Q |~| P)
lemma cspT_Ent_choice_left1_ref:
P [+] Q <=T[M,M] P
lemma cspT_Ent_choice_left2_ref:
P [+] Q <=T[M,M] Q
lemma cspT_Ent_choice_left_ref:
P [+] Q <=T[M,M] P
P [+] Q <=T[M,M] Q
lemma cspT_Int_choice_left1:
P1.0 <=T[M1.0,M2.0] Q ==> P1.0 |~| P2.0 <=T[M1.0,M2.0] Q
lemma cspT_Int_choice_left2:
P2.0 <=T[M1.0,M2.0] Q ==> P1.0 |~| P2.0 <=T[M1.0,M2.0] Q
lemma cspT_Int_choice_right:
[| P <=T[M1.0,M2.0] Q1.0; P <=T[M1.0,M2.0] Q2.0 |]
==> P <=T[M1.0,M2.0] Q1.0 |~| Q2.0
lemma cspT_Rep_int_choice_sum_left:
∃c. c ∈ sumset C ∧ Pf c <=T[M1.0,M2.0] Q ==> !! :C .. Pf <=T[M1.0,M2.0] Q
lemma cspT_Rep_int_choice_sum_left_x:
[| c ∈ sumset C; Pf c <=T[M1.0,M2.0] Q |] ==> !! :C .. Pf <=T[M1.0,M2.0] Q
lemma cspT_Rep_int_choice_nat_left:
∃n. n ∈ N ∧ Pf n <=T[M1.0,M2.0] Q ==> !nat :N .. Pf <=T[M1.0,M2.0] Q
lemma cspT_Rep_int_choice_nat_left_x:
[| n ∈ N; Pf n <=T[M1.0,M2.0] Q |] ==> !nat :N .. Pf <=T[M1.0,M2.0] Q
lemma cspT_Rep_int_choice_set_left:
∃X. X ∈ Xs ∧ Pf X <=T[M1.0,M2.0] Q ==> !set :Xs .. Pf <=T[M1.0,M2.0] Q
lemma cspT_Rep_int_choice_set_left_x:
[| X ∈ Xs; Pf X <=T[M1.0,M2.0] Q |] ==> !set :Xs .. Pf <=T[M1.0,M2.0] Q
lemma cspT_Rep_int_choice_com_left:
∃a. a ∈ X ∧ Pf a <=T[M1.0,M2.0] Q ==> ! :X .. Pf <=T[M1.0,M2.0] Q
lemma cspT_Rep_int_choice_com_left_x:
[| a ∈ X; Pf a <=T[M1.0,M2.0] Q |] ==> ! :X .. Pf <=T[M1.0,M2.0] Q
lemma cspT_Rep_int_choice_f_left:
[| inj f; ∃a. a ∈ X ∧ Pf a <=T[M1.0,M2.0] Q |]
==> !<f> :X .. Pf <=T[M1.0,M2.0] Q
lemma cspT_Rep_int_choice_f_left_x:
[| inj f; a ∈ X; Pf a <=T[M1.0,M2.0] Q |] ==> !<f> :X .. Pf <=T[M1.0,M2.0] Q
lemma cspT_Rep_int_choice_left:
∃c. c ∈ sumset C ∧ Pf c <=T[M1.0,M2.0] Q ==> !! :C .. Pf <=T[M1.0,M2.0] Q
∃n. n ∈ N ∧ Pf n <=T[M1.0,M2.0] Q ==> !nat :N .. Pf <=T[M1.0,M2.0] Q
∃X. X ∈ Xs ∧ Pf X <=T[M1.0,M2.0] Q ==> !set :Xs .. Pf <=T[M1.0,M2.0] Q
∃a. a ∈ X ∧ Pf a <=T[M1.0,M2.0] Q ==> ! :X .. Pf <=T[M1.0,M2.0] Q
[| inj f; ∃a. a ∈ X ∧ Pf a <=T[M1.0,M2.0] Q |]
==> !<f> :X .. Pf <=T[M1.0,M2.0] Q
lemma cspT_Rep_int_choice_left_x:
[| c ∈ sumset C; Pf c <=T[M1.0,M2.0] Q |] ==> !! :C .. Pf <=T[M1.0,M2.0] Q
[| n ∈ N; Pf n <=T[M1.0,M2.0] Q |] ==> !nat :N .. Pf <=T[M1.0,M2.0] Q
[| X ∈ Xs; Pf X <=T[M1.0,M2.0] Q |] ==> !set :Xs .. Pf <=T[M1.0,M2.0] Q
[| a ∈ X; Pf a <=T[M1.0,M2.0] Q |] ==> ! :X .. Pf <=T[M1.0,M2.0] Q
[| inj f; a ∈ X; Pf a <=T[M1.0,M2.0] Q |] ==> !<f> :X .. Pf <=T[M1.0,M2.0] Q
lemma cspT_Rep_int_choice_sum_right:
(!!c. c ∈ sumset C ==> P <=T[M1.0,M2.0] Qf c) ==> P <=T[M1.0,M2.0] !! :C .. Qf
lemma cspT_Rep_int_choice_nat_right:
(!!n. n ∈ N ==> P <=T[M1.0,M2.0] Qf n) ==> P <=T[M1.0,M2.0] !nat :N .. Qf
lemma cspT_Rep_int_choice_set_right:
(!!X. X ∈ Xs ==> P <=T[M1.0,M2.0] Qf X) ==> P <=T[M1.0,M2.0] !set :Xs .. Qf
lemma cspT_Rep_int_choice_com_right:
(!!a. a ∈ X ==> P <=T[M1.0,M2.0] Qf a) ==> P <=T[M1.0,M2.0] ! :X .. Qf
lemma cspT_Rep_int_choice_f_right:
[| inj f; !!a. a ∈ X ==> P <=T[M1.0,M2.0] Qf a |]
==> P <=T[M1.0,M2.0] !<f> :X .. Qf
lemma cspT_Rep_int_choice_right:
(!!c. c ∈ sumset C ==> P <=T[M1.0,M2.0] Qf c) ==> P <=T[M1.0,M2.0] !! :C .. Qf
(!!n. n ∈ N ==> P <=T[M1.0,M2.0] Qf n) ==> P <=T[M1.0,M2.0] !nat :N .. Qf
(!!X. X ∈ Xs ==> P <=T[M1.0,M2.0] Qf X) ==> P <=T[M1.0,M2.0] !set :Xs .. Qf
(!!a. a ∈ X ==> P <=T[M1.0,M2.0] Qf a) ==> P <=T[M1.0,M2.0] ! :X .. Qf
[| inj f; !!a. a ∈ X ==> P <=T[M1.0,M2.0] Qf a |]
==> P <=T[M1.0,M2.0] !<f> :X .. Qf
lemma cspT_Rep_int_choice_sum_rightE:
[| P <=T[M1.0,M2.0] !! :C .. Qf; ∀c∈sumset C. P <=T[M1.0,M2.0] Qf c ==> R |]
==> R
lemma cspT_Rep_int_choice_nat_rightE:
[| P <=T[M1.0,M2.0] !nat :N .. Qf; ∀n∈N. P <=T[M1.0,M2.0] Qf n ==> R |] ==> R
lemma cspT_Rep_int_choice_set_rightE:
[| P <=T[M1.0,M2.0] !set :Xs .. Qf; ∀X∈Xs. P <=T[M1.0,M2.0] Qf X ==> R |] ==> R
lemma cspT_Rep_int_choice_com_rightE:
[| P <=T[M1.0,M2.0] ! :X .. Qf; ∀a∈X. P <=T[M1.0,M2.0] Qf a ==> R |] ==> R
lemma cspT_Rep_int_choice_f_rightE:
[| P <=T[M1.0,M2.0] !<f> :X .. Qf; inj f; ∀a∈X. P <=T[M1.0,M2.0] Qf a ==> R |]
==> R
lemma cspT_Rep_int_choice_rightE:
[| P <=T[M1.0,M2.0] !! :C .. Qf; ∀c∈sumset C. P <=T[M1.0,M2.0] Qf c ==> R |]
==> R
[| P <=T[M1.0,M2.0] !nat :N .. Qf; ∀n∈N. P <=T[M1.0,M2.0] Qf n ==> R |] ==> R
[| P <=T[M1.0,M2.0] !set :Xs .. Qf; ∀X∈Xs. P <=T[M1.0,M2.0] Qf X ==> R |] ==> R
[| P <=T[M1.0,M2.0] ! :X .. Qf; ∀a∈X. P <=T[M1.0,M2.0] Qf a ==> R |] ==> R
[| P <=T[M1.0,M2.0] !<f> :X .. Qf; inj f; ∀a∈X. P <=T[M1.0,M2.0] Qf a ==> R |]
==> R
lemma cspT_Rep_int_choice_sum_subset:
[| sumset C2.0 ⊆ sumset C1.0;
!!c. c ∈ sumset C2.0 ==> Pf c <=T[M1.0,M2.0] Qf c |]
==> !! :C1.0 .. Pf <=T[M1.0,M2.0] !! :C2.0 .. Qf
lemma cspT_Rep_int_choice_nat_subset:
[| N2.0 ⊆ N1.0; !!n. n ∈ N2.0 ==> Pf n <=T[M1.0,M2.0] Qf n |]
==> !nat :N1.0 .. Pf <=T[M1.0,M2.0] !nat :N2.0 .. Qf
lemma cspT_Rep_int_choice_set_subset:
[| Ys ⊆ Xs; !!X. X ∈ Ys ==> Pf X <=T[M1.0,M2.0] Qf X |]
==> !set :Xs .. Pf <=T[M1.0,M2.0] !set :Ys .. Qf
lemma cspT_Rep_int_choice_com_subset:
[| Y ⊆ X; !!a. a ∈ Y ==> Pf a <=T[M1.0,M2.0] Qf a |]
==> ! :X .. Pf <=T[M1.0,M2.0] ! :Y .. Qf
lemma cspT_Rep_int_choice_f_subset:
[| inj f; Y ⊆ X; !!a. a ∈ Y ==> Pf a <=T[M1.0,M2.0] Qf a |]
==> !<f> :X .. Pf <=T[M1.0,M2.0] !<f> :Y .. Qf
lemma cspT_Rep_int_choice_subset:
[| sumset C2.0 ⊆ sumset C1.0;
!!c. c ∈ sumset C2.0 ==> Pf c <=T[M1.0,M2.0] Qf c |]
==> !! :C1.0 .. Pf <=T[M1.0,M2.0] !! :C2.0 .. Qf
[| N2.0 ⊆ N1.0; !!n. n ∈ N2.0 ==> Pf n <=T[M1.0,M2.0] Qf n |]
==> !nat :N1.0 .. Pf <=T[M1.0,M2.0] !nat :N2.0 .. Qf
[| Ys ⊆ Xs; !!X. X ∈ Ys ==> Pf X <=T[M1.0,M2.0] Qf X |]
==> !set :Xs .. Pf <=T[M1.0,M2.0] !set :Ys .. Qf
[| Y ⊆ X; !!a. a ∈ Y ==> Pf a <=T[M1.0,M2.0] Qf a |]
==> ! :X .. Pf <=T[M1.0,M2.0] ! :Y .. Qf
[| inj f; Y ⊆ X; !!a. a ∈ Y ==> Pf a <=T[M1.0,M2.0] Qf a |]
==> !<f> :X .. Pf <=T[M1.0,M2.0] !<f> :Y .. Qf
lemma cspT_Int_Ext_pre_choice_subset:
[| Y ≠ {}; Y ⊆ X; !!a. a ∈ Y ==> Pf a <=T[M1.0,M2.0] Qf a |]
==> ! x:X .. x -> Pf x <=T[M1.0,M2.0] ? :Y -> Qf
lemma cspT_decompo_subset:
[| sumset C2.0 ⊆ sumset C1.0;
!!c. c ∈ sumset C2.0 ==> Pf c <=T[M1.0,M2.0] Qf c |]
==> !! :C1.0 .. Pf <=T[M1.0,M2.0] !! :C2.0 .. Qf
[| N2.0 ⊆ N1.0; !!n. n ∈ N2.0 ==> Pf n <=T[M1.0,M2.0] Qf n |]
==> !nat :N1.0 .. Pf <=T[M1.0,M2.0] !nat :N2.0 .. Qf
[| Ys ⊆ Xs; !!X. X ∈ Ys ==> Pf X <=T[M1.0,M2.0] Qf X |]
==> !set :Xs .. Pf <=T[M1.0,M2.0] !set :Ys .. Qf
[| Y ⊆ X; !!a. a ∈ Y ==> Pf a <=T[M1.0,M2.0] Qf a |]
==> ! :X .. Pf <=T[M1.0,M2.0] ! :Y .. Qf
[| inj f; Y ⊆ X; !!a. a ∈ Y ==> Pf a <=T[M1.0,M2.0] Qf a |]
==> !<f> :X .. Pf <=T[M1.0,M2.0] !<f> :Y .. Qf
[| Y ≠ {}; Y ⊆ X; !!a. a ∈ Y ==> Pf a <=T[M1.0,M2.0] Qf a |]
==> ! x:X .. x -> Pf x <=T[M1.0,M2.0] ? :Y -> Qf
lemma cspT_Ext_choice_right:
[| P <=T[M1.0,M2.0] Q1.0; P <=T[M1.0,M2.0] Q2.0 |]
==> P <=T[M1.0,M2.0] Q1.0 [+] Q2.0