Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T
theory CSP_T_law_fix(*-------------------------------------------* | CSP-Prover on Isabelle2005 | | March 2007 | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_T_law_fix imports CSP_T_law_fp begin (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* Union (B ` A) = (UN x:A. B x) *) (* Inter (B ` A) = (INT x:A. B x) *) declare Union_image_eq [simp del] declare Inter_image_eq [simp del] consts FIXn :: "nat => ('p => ('p,'a) proc) => ('p => ('p,'a) proc)" ("FIX[_] _" [0,1000] 55) FIX :: "(('p) => ('p,'a) proc) => ('p => ('p,'a) proc)" ("FIX _" [1000] 55) defs FIXn_def : "FIX[n] Pf == ((Pf <<< )^n) (%q. DIV)" FIX_def : "FIX Pf == (%p. (!nat n .. ((FIX[n] Pf) p)))" (* ----- test ----- * consts FIXnrec :: "nat => ('p => ('p,'a) proc) => ('p => ('p,'a) proc)" ("FIXrec[_] _" [0,1000] 55) primrec "FIXrec[0] Pf = (%p. DIV)" "FIXrec[Suc n] Pf = (%p. (Pf p)<<(FIXrec[n] Pf))" lemma FIXn_FIXnrec: "FIX[n] Pf = FIXrec[n] Pf" apply (induct_tac n) apply (simp_all add: FIXn_def) done * ----- test ----- *) (*-----------* | noPN | *-----------*) lemma noPNfun_FIXn: "noPNfun (%p. (FIX[n] Pf)(p))" apply (simp add: FIXn_def) apply (induct_tac n) apply (simp add: noPNfun_def) apply (simp (no_asm) add: noPNfun_def) apply (intro allI) apply (simp add: Subst_procfun_prod_def) apply (simp add: noPN_Subst_Pf) done lemma noPN_FIXn: "noPN ((FIX[n] Pf)p)" apply (insert noPNfun_FIXn[of _ Pf]) apply (simp add: noPNfun_def) done lemma noPN_FIX: "noPN ((FIX Pf) p)" apply (simp add: FIX_def) apply (simp add: noPN_FIXn) done (*-----------* | Bot | *-----------*) lemma traces_prod_Bot: "(%p. traces DIV M) = Bot" apply (simp add: prod_Bot_def) apply (simp add: expand_fun_eq) apply (simp add: traces_def) apply (simp add: bottom_domT_def) done lemma semT_prod_Bot: "(%p. [[DIV]]T) = Bot" by (simp add: semT_def semTf_def traces_prod_Bot) (*-----------* | FIX P | *-----------*) lemma traces_subst_Bot: "traces (P<<(%q. DIV)) M = (traces P) Bot" apply (induct_tac P) apply (simp_all add: traces_def) apply (simp add: prod_Bot_def) apply (simp add: bottom_domT_def) done lemma traces_iteration_semTfun_Bot: "ALL p. traces (((Pf <<<) ^ n) (%q. DIV) p) M = ([[Pf]]Tfun ^ n) Bot p" apply (simp add: semTfun_def) apply (simp add: semTf_def) apply (induct_tac n) (* base *) apply (simp_all add: traces_def) apply (simp add: prod_Bot_def) apply (simp add: bottom_domT_def) (* step *) apply (simp add: Subst_procfun_prod_def) apply (simp add: traces_subst) done lemma traces_FIX: "traces ((FIX Pf) p) M = UnionT {u. EX n. u = ([[Pf]]Tfun ^ n) Bot p}" apply (simp add: FIX_def FIXn_def) apply (subgoal_tac "{u. EX n. u = ([[Pf]]Tfun ^ n) Bot p} ~= {}") apply (rule order_antisym) (* <= *) apply (rule) apply (simp add: in_traces) apply (erule disjE, simp) apply (elim conjE exE) apply (rule_tac x="traces (((Pf <<<) ^ n) (%q. DIV) p) M" in exI) apply (simp) apply (rule_tac x="n" in exI) apply (simp add: traces_iteration_semTfun_Bot) (* => *) apply (rule) apply (simp add: in_traces) apply (rule disjI2) apply (elim conjE exE) apply (simp) apply (rule_tac x="na" in exI) apply (simp add: traces_iteration_semTfun_Bot) by (auto) (*** [[ ]]T ***) lemma semT_FIX: "[[(FIX Pf) p]]T = UnionT {u. EX n. u = ([[Pf]]Tfun ^ n) Bot p}" apply (simp add: semT_def semTf_def) apply (simp add: traces_FIX) done (*** FIX is LUB ***) lemma semT_FIX_isLUB: "(%p. [[(FIX Pf) p]]T) isLUB {x. EX n. x = ([[Pf]]Tfun ^ n) Bot}" apply (simp add: prod_LUB_decompo) apply (intro allI) apply (simp add: proj_fun_def) apply (simp add: image_def) apply (simp add: semT_FIX) apply (subgoal_tac "{y. EX x. (EX n. x = ([[Pf]]Tfun ^ n) Bot) & y = x i} = {u. EX n. u = ([[Pf]]Tfun ^ n) Bot i}") apply (simp) apply (rule UnionT_isLUB) apply (auto) done lemma semT_FIX_LUB: "(%p. [[(FIX Pf) p]]T) = LUB {x. EX n. x = ([[Pf]]Tfun ^ n) Bot}" apply (rule sym) apply (rule isLUB_LUB) apply (simp add: semT_FIX_isLUB) done lemma semT_FIX_LFP: "(%p. [[(FIX Pf) p]]T) = LFP [[Pf]]Tfun" apply (simp add: semT_FIX_LUB) apply (simp add: Tarski_thm_LFP_LUB continuous_semTfun) done lemma semT_FIX_LFP_p: "[[(FIX Pf) p]]T = LFP [[Pf]]Tfun p" apply (insert semT_FIX_LFP[of Pf]) apply (simp add: expand_fun_eq) done lemma semT_FIX_isLFP: "(%p. [[(FIX Pf) p]]T) isLFP [[Pf]]Tfun" apply (simp add: semT_FIX_LFP) apply (simp add: LFP_is Tarski_thm_EX continuous_semTfun) done lemma semT_FIX_LFP_fixed_point: "[[Pf]]Tfun (%p. [[(FIX Pf) p]]T) = (%p. [[(FIX Pf) p]]T)" apply (insert semT_FIX_isLFP[of Pf]) apply (simp add: isLFP_def) done lemma semT_FIX_LFP_least: "ALL Tf. [[Pf]]Tfun Tf = Tf --> (%p. [[(FIX Pf) p]]T) <= Tf" apply (insert semT_FIX_isLFP[of Pf]) apply (simp add: isLFP_def) done (*=======================================================* | | | CPO | | | *=======================================================*) lemma cspT_FIX_cpo: "[| FPmode = CPOmode | FPmode = MIXmode ; Pf = PNfun |] ==> $p =T (FIX Pf)(p)" apply (simp add: eqT_def) apply (fold semT_def) apply (simp add: semT_FIX_LFP_p) apply (simp add: semT_LFP_cpo) done lemma cspT_FIX_cms: "[| FPmode = CMSmode ; Pf = PNfun ; guardedfun (Pf) |] ==> $p =T (FIX Pf)(p)" apply (simp add: eqT_def) apply (fold semT_def) apply (simp add: semT_FIX_LFP_p) apply (simp add: semT_guarded_LFP_UFP) apply (simp add: semT_UFP_cms) done lemma cspT_FIX: "[| FPmode = CPOmode | FPmode = CMSmode & guardedfun (Pf) | FPmode = MIXmode ; Pf = PNfun |] ==> $p =T (FIX Pf)(p)" apply (erule disjE) apply (simp add: cspT_FIX_cpo) apply (erule disjE) apply (simp add: cspT_FIX_cms) apply (simp add: cspT_FIX_cpo) done (*==============================================================* | | | replace process names by infinite repcicated internal choice | | rmPN (FIX) | | | *==============================================================*) consts rmPN :: "('p,'a) proc => ('p,'a) proc" primrec "rmPN(STOP) = STOP" "rmPN(SKIP) = SKIP" "rmPN(DIV) = DIV" "rmPN(a -> P) = a -> (rmPN P)" "rmPN(? :A -> Pf) = ? a:A -> (rmPN (Pf a))" "rmPN(P [+] Q) = (rmPN P) [+] (rmPN Q)" "rmPN(P |~| Q) = (rmPN P) |~| (rmPN Q)" "rmPN(!! :C .. Pf) = !! c:C .. rmPN (Pf c)" "rmPN(IF b THEN P ELSE Q) = (IF b THEN rmPN(P) ELSE rmPN(Q))" "rmPN(P |[X]| Q) = (rmPN P) |[X]| (rmPN Q)" "rmPN(P -- X) = (rmPN P) -- X" "rmPN(P [[r]]) = (rmPN P) [[r]]" "rmPN(P ;; Q) = (rmPN P) ;; (rmPN Q)" "rmPN(P |. n) = (rmPN P) |. n" "rmPN($p) = (FIX PNfun)(p)" lemma noPN_rmPN: "noPN (rmPN P)" apply (induct_tac P) apply (simp_all) apply (simp add: noPN_FIX) done lemma cspT_rmPN_eqT: "FPmode = CPOmode | FPmode = CMSmode & guardedfun (PNfun::('p=>('p,'a) proc)) | FPmode = MIXmode ==> (P::('p,'a) proc) =T rmPN(P)" apply (induct_tac P) apply (simp_all add: cspT_decompo) apply (rule cspT_FIX) apply (simp_all) done (*-------------------------------------------------------* | | | FIX expansion (CSP-Prover intro rule) | | | *-------------------------------------------------------*) lemma traces_FIXn_plus_sub_lm: "ALL n m p. traces ((FIX[n] Pf) p) M <= traces ((FIX[n+m] Pf) p) M" apply (rule) apply (induct_tac n) apply (simp add: FIXn_def Subst_procfun_prod_def) apply (intro allI) apply (rule) apply (simp add: in_traces) apply (rule allI) apply (simp add: FIXn_def Subst_procfun_prod_def) apply (drule_tac x="m" in spec) apply (simp add: traces_subst) apply (rule allI) apply (fold order_prod_def) apply (simp add: mono_traces[simplified mono_def]) done lemma traces_FIXn_plus_sub: "traces ((FIX[n] Pf) p) M <= traces ((FIX[n+m] Pf) p) M" by (simp add: traces_FIXn_plus_sub_lm) lemma semT_FIXn_plus_sub: "[[(FIX[n] Pf) p]]Tf M <= [[(FIX[n+m] Pf) p]]Tf M" apply (simp add: semTf_def) apply (simp add: traces_FIXn_plus_sub) done lemma in_traces_FIXn_plus_sub: "t :t traces ((FIX[n] Pf) p) M ==> t :t traces ((FIX[n+m] Pf) p) M" apply (insert traces_FIXn_plus_sub[of n Pf p M m]) by (auto) (*-----------------------------------------------------* | sometimes FIX[n + f n] is useful more than FIX[n] | *-----------------------------------------------------*) lemma cspT_FIX_plus_eq: "ALL f p. (FIX Pf) p =T[M,M] (!nat n .. ((FIX[n + f n] Pf) p))" apply (simp add: FIX_def) apply (simp add: eqT_def) apply (intro allI) apply (simp add: semTf_def) apply (rule order_antisym) apply (rule) apply (simp add: in_traces) apply (rule disjI2) apply (elim conjE exE disjE, simp) apply (rule_tac x="n" in exI) apply (simp add: in_traces_FIXn_plus_sub) apply (rule) apply (simp add: in_traces) apply (elim conjE exE disjE) apply (simp) apply (rule disjI2) apply (rule_tac x="n + f n" in exI) apply (simp) done (****************** to add them again ******************) declare Union_image_eq [simp] declare Inter_image_eq [simp] end
lemma noPNfun_FIXn:
noPNfun (FIX[n] Pf)
lemma noPN_FIXn:
noPN ((FIX[n] Pf) p)
lemma noPN_FIX:
noPN ((FIX Pf) p)
lemma traces_prod_Bot:
(λp. traces DIV M) = Bot
lemma semT_prod_Bot:
(λp. [[DIV]]T) = Bot
lemma traces_subst_Bot:
traces (P << (λq. DIV)) M = traces P Bot
lemma traces_iteration_semTfun_Bot:
∀p. traces ((Pf <<< ^ n) (λq. DIV) p) M = ([[Pf]]Tfun ^ n) Bot p
lemma traces_FIX:
traces ((FIX Pf) p) M = UnionT {u. ∃n. u = ([[Pf]]Tfun ^ n) Bot p}
lemma semT_FIX:
[[(FIX Pf) p]]T = UnionT {u. ∃n. u = ([[Pf]]Tfun ^ n) Bot p}
lemma semT_FIX_isLUB:
(λp. [[(FIX Pf) p]]T) isLUB {x. ∃n. x = ([[Pf]]Tfun ^ n) Bot}
lemma semT_FIX_LUB:
(λp. [[(FIX Pf) p]]T) = LUB {x. ∃n. x = ([[Pf]]Tfun ^ n) Bot}
lemma semT_FIX_LFP:
(λp. [[(FIX Pf) p]]T) = LFP [[Pf]]Tfun
lemma semT_FIX_LFP_p:
[[(FIX Pf) p]]T = LFP [[Pf]]Tfun p
lemma semT_FIX_isLFP:
(λp. [[(FIX Pf) p]]T) isLFP [[Pf]]Tfun
lemma semT_FIX_LFP_fixed_point:
[[Pf]]Tfun (λp. [[(FIX Pf) p]]T) = (λp. [[(FIX Pf) p]]T)
lemma semT_FIX_LFP_least:
∀Tf. [[Pf]]Tfun Tf = Tf --> (λp. [[(FIX Pf) p]]T) ≤ Tf
lemma cspT_FIX_cpo:
[| FPmode = CPOmode ∨ FPmode = MIXmode; Pf = PNfun |] ==> $p =T (FIX Pf) p
lemma cspT_FIX_cms:
[| FPmode = CMSmode; Pf = PNfun; guardedfun Pf |] ==> $p =T (FIX Pf) p
lemma cspT_FIX:
[| FPmode = CPOmode ∨ FPmode = CMSmode ∧ guardedfun Pf ∨ FPmode = MIXmode;
Pf = PNfun |]
==> $p =T (FIX Pf) p
lemma noPN_rmPN:
noPN (rmPN P)
lemma cspT_rmPN_eqT:
FPmode = CPOmode ∨ FPmode = CMSmode ∧ guardedfun PNfun ∨ FPmode = MIXmode
==> P =T rmPN P
lemma traces_FIXn_plus_sub_lm:
∀n m p. traces ((FIX[n] Pf) p) M ≤ traces ((FIX[n + m] Pf) p) M
lemma traces_FIXn_plus_sub:
traces ((FIX[n] Pf) p) M ≤ traces ((FIX[n + m] Pf) p) M
lemma semT_FIXn_plus_sub:
[[(FIX[n] Pf) p]]Tf M ≤ [[(FIX[n + m] Pf) p]]Tf M
lemma in_traces_FIXn_plus_sub:
t :t traces ((FIX[n] Pf) p) M ==> t :t traces ((FIX[n + m] Pf) p) M
lemma cspT_FIX_plus_eq:
∀f p. (FIX Pf) p =T[M,M] !nat n .. (FIX[n + f n] Pf) p