Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F_tactic(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | December 2004 | | February 2005 (modified) | | June 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | November 2005 (modified) | | April 2006 (modified) | | March 2007 (modified) | | | | CSP-Prover on Isabelle2008 | | June 2008 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_F_tactic imports CSP_F_law CSP_F_law_etc begin (***************************************************************** 1. tactic 2. 3. 4. *****************************************************************) (*================================================* | | | Tacticals | | | *================================================*) lemmas cspF_all_dist = cspF_dist cspF_Dist cspF_Ext_dist lemmas cspF_choice_IF = cspF_choice_rule cspF_IF ML {* val CSPF_reflex = thms "cspF_reflex" ; val CSPF_rw_flag_left = thms "cspF_rw_flag_left" ; val CSPF_rw_flag_right = thms "cspF_rw_flag_right" ; val CSPF_tr_flag_left = thms "cspF_tr_flag_left" ; val CSPF_tr_flag_right = thms "cspF_tr_flag_right" ; val CSPF_choice_IF = thms "cspF_choice_IF"; val CSPF_step = thms "cspF_step" ; val CSPF_light_step = thms "cspF_light_step" ; val CSPF_SKIP_DIV_resolve = thms "cspF_SKIP_DIV_resolve" ; val CSPF_all_dist = thms "cspF_all_dist" ; val CSPF_unwind = thms "cspF_unwind" ; val CSPF_SKIP_DIV_sort = thms "cspF_SKIP_DIV_sort"; val CSPF_free_decompo_flag = thms "cspF_free_decompo_flag" ; *} (************************************************ sequentialising ************************************************) (*-----------------------------------------------------* apply (tactic {* cspF_hsf_main_tac 1 *}) is equal to apply (( simp | ((rule off_Not_Decompo_Flag)?, ( rule cspF_choice_IF | rule cspF_SKIP_DIV_sort | rule cspF_SKIP_DIV_resolve | rule cspF_step | rule cspF_all_dist | rule cspF_unwind | rule cspF_unwind_MU)) | (rule cspF_rw_flag_left, rule cspF_free_decompo_flag) | ((rule off_Not_Decompo_Flag)?, rule cspF_reflex) | (rule off_Not_Decompo_Flag_True))+ , (simp_all off_Not_Decompo_Flag_True)) *-----------------------------------------------------*) (*** Head Sequential Form ***) ML {* fun cspF_hsf_main_tac n = CHANGED ( EVERY [ REPEAT ( FIRST [(CHANGED (asm_full_simp_tac (simpset ()) n)), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), FIRST [ resolve_tac CSPF_choice_IF n, resolve_tac CSPF_SKIP_DIV_sort n, resolve_tac CSPF_SKIP_DIV_resolve n, resolve_tac CSPF_step n, resolve_tac CSPF_all_dist n, resolve_tac CSPF_unwind n ]]), (EVERY [ resolve_tac CSPF_rw_flag_left n , resolve_tac CSPF_free_decompo_flag n ]), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), resolve_tac CSPF_reflex n ]), (resolve_tac OFF_Not_Decompo_Flag_True n)]) , (ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))]) *} (*** simp_with ***) (*-----------------------------------------------------* apply (tactic {* cspF_simp_with_main_tac "rulename" 1 *}) is equal to apply (( simp | ((rule off_Not_Decompo_Flag)?, ( rule cspF_rule_IF | rule rulename)) | (rule cspF_rw_flag_left, rule cspF_free_decompo_flag) | ((rule off_Not_Decompo_Flag)?, rule cspF_reflex), | (rule off_Not_Decompo_Flag_True))+ , (simp add: rule off_Not_Decompo_Flag_True)?) *-----------------------------------------------------*) ML {* fun cspF_simp_with_main_tac a n = let val A = thms a in CHANGED ( EVERY [REPEAT ( FIRST [(CHANGED (asm_full_simp_tac (simpset ()) n)), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), FIRST [ resolve_tac CSPF_choice_IF n, resolve_tac A n ]]), (EVERY [ resolve_tac CSPF_rw_flag_left n , resolve_tac CSPF_free_decompo_flag n ]), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), resolve_tac CSPF_reflex n ]), (resolve_tac OFF_Not_Decompo_Flag_True n)]) , (ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))]) end *} (*** refine_with ***) (* left *) ML {* val CSPF_tr_flag_left = thms "cspF_tr_flag_left" ; val CSPF_tr_flag_right = thms "cspF_tr_flag_right" ; *} ML {* fun cspF_refine_with_left_main_tac a n = let val A = thms a in CHANGED ( EVERY [REPEAT ( FIRST [(CHANGED (asm_full_simp_tac (simpset ()) n)), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), resolve_tac A n]), (EVERY [ resolve_tac CSPF_tr_flag_left n , resolve_tac CSPF_free_decompo_flag n ]), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), resolve_tac CSPF_reflex n ]), (resolve_tac OFF_Not_Decompo_Flag_True n)]) , (ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))]) end *} (* right *) ML {* fun cspF_refine_with_right_main_tac a n = let val A = thms a in CHANGED ( EVERY [REPEAT ( FIRST [(CHANGED (asm_full_simp_tac (simpset ()) n)), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), resolve_tac A n ]), (EVERY [ resolve_tac CSPF_tr_flag_right n , resolve_tac CSPF_free_decompo_flag n ]), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), resolve_tac CSPF_reflex n ]), (resolve_tac OFF_Not_Decompo_Flag_True n)]) , (ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))]) end *} (*** assumption ***) ML {* fun cspF_asm_main_tac n = CHANGED ( EVERY [REPEAT ( FIRST [(EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), (CHANGED (assume_tac n)) ]) , (EVERY [ resolve_tac CSPF_rw_flag_left n , resolve_tac CSPF_free_decompo_flag n ]), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), resolve_tac CSPF_reflex n ]), (resolve_tac OFF_Not_Decompo_Flag_True n)]) , TRY (FIRST[ resolve_tac OFF_Not_Decompo_Flag n, resolve_tac OFF_Not_Decompo_Flag_True n])]) *} (********* sub tactic of cspF_hsf_main_tac *********) (*** step ***) ML {* fun cspF_step_main_tac n = CHANGED ( EVERY [ REPEAT ( FIRST [(CHANGED (asm_full_simp_tac (simpset ()) n)), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), FIRST [ resolve_tac CSPF_choice_IF n, resolve_tac CSPF_SKIP_DIV_resolve n, resolve_tac CSPF_step n ]]), (EVERY [ resolve_tac CSPF_rw_flag_left n , resolve_tac CSPF_free_decompo_flag n ]), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), resolve_tac CSPF_reflex n ]), (resolve_tac OFF_Not_Decompo_Flag_True n)]) , (ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))]) *} (*** light step ***) ML {* fun cspF_light_step_main_tac n = CHANGED ( EVERY [ REPEAT ( FIRST [(CHANGED (asm_full_simp_tac (simpset ()) n)), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), FIRST [ resolve_tac CSPF_choice_IF n, resolve_tac CSPF_light_step n ]]), (EVERY [ resolve_tac CSPF_rw_flag_left n , resolve_tac CSPF_free_decompo_flag n ]), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), resolve_tac CSPF_reflex n ]), (resolve_tac OFF_Not_Decompo_Flag_True n)]) , (ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))]) *} (*** dist ***) ML {* fun cspF_dist_main_tac n = CHANGED ( EVERY [ REPEAT ( FIRST [(CHANGED (asm_full_simp_tac (simpset ()) n)), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), FIRST [ resolve_tac CSPF_choice_IF n, resolve_tac CSPF_all_dist n ]]), (EVERY [ resolve_tac CSPF_rw_flag_left n , resolve_tac CSPF_free_decompo_flag n ]), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), resolve_tac CSPF_reflex n ]), (resolve_tac OFF_Not_Decompo_Flag_True n)]) , (ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))]) *} (*** unwind ***) ML {* fun cspF_unwind_main_tac n = CHANGED ( EVERY [ REPEAT ( FIRST [(CHANGED (asm_full_simp_tac (simpset ()) n)), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), FIRST [ resolve_tac CSPF_choice_IF n, resolve_tac CSPF_unwind n ]]), (EVERY [ resolve_tac CSPF_rw_flag_left n , resolve_tac CSPF_free_decompo_flag n ]), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), resolve_tac CSPF_reflex n ]), (resolve_tac OFF_Not_Decompo_Flag_True n)]) , (ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))]) *} (*** sort ***) ML {* fun cspF_sort_main_tac n = CHANGED ( EVERY [ REPEAT ( FIRST [(CHANGED (asm_full_simp_tac (simpset ()) n)), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), FIRST [ resolve_tac CSPF_choice_IF n, resolve_tac CSPF_SKIP_DIV_sort n ]]), (EVERY [ resolve_tac CSPF_rw_flag_left n , resolve_tac CSPF_free_decompo_flag n ]), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), resolve_tac CSPF_reflex n ]), (resolve_tac OFF_Not_Decompo_Flag_True n)]) , (ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))]) *} (*** simp ***) ML {* fun cspF_simp_main_tac n = CHANGED ( EVERY [ REPEAT ( FIRST [(CHANGED (asm_full_simp_tac (simpset ()) n)), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), FIRST [ resolve_tac CSPF_choice_IF n ]]), (EVERY [ resolve_tac CSPF_rw_flag_left n , resolve_tac CSPF_free_decompo_flag n ]), (EVERY [ TRY (resolve_tac OFF_Not_Decompo_Flag n), resolve_tac CSPF_reflex n ]), (resolve_tac OFF_Not_Decompo_Flag_True n)]) , (ALLGOALS (asm_full_simp_tac (simpset () addsimps OFF_Not_Decompo_Flag_True)))]) *} (************************************************ rewrite left ************************************************) (*** hsf ***) ML {* fun cspF_hsf_left_tac n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_left n, cspF_hsf_main_tac n]) *} (*** simp_with ***) ML {* fun cspF_simp_with_left_tac a n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_left n, cspF_simp_with_main_tac a n]) *} (*** refine_with ***) ML {* fun cspF_refine_with_left_tac a n = CHANGED ( EVERY [resolve_tac CSPF_tr_flag_left n, cspF_refine_with_left_main_tac a n]) *} (*** assumption ***) ML {* fun cspF_asm_left_tac n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_left n, cspF_asm_main_tac n]) *} (*** step ***) ML {* fun cspF_step_left_tac n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_left n, cspF_step_main_tac n]) *} (*** light step ***) ML {* fun cspF_light_step_left_tac n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_left n, cspF_light_step_main_tac n]) *} (*** dist ***) ML {* fun cspF_dist_left_tac n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_left n, cspF_dist_main_tac n]) *} (*** unwind ***) ML {* fun cspF_unwind_left_tac n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_left n, cspF_unwind_main_tac n]) *} (*** sort ***) ML {* fun cspF_sort_left_tac n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_left n, cspF_sort_main_tac n]) *} (*** simp ***) ML {* fun cspF_simp_left_tac n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_left n, cspF_simp_main_tac n]) *} (************************************************ rewrite right ************************************************) (*** hsf ***) ML {* fun cspF_hsf_right_tac n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_right n, cspF_hsf_main_tac n]) *} (*** simp_with ***) ML {* fun cspF_simp_with_right_tac a n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_right n, cspF_simp_with_main_tac a n]) *} (*** refine_with ***) ML {* fun cspF_refine_with_right_tac a n = CHANGED ( EVERY [resolve_tac CSPF_tr_flag_right n, cspF_refine_with_right_main_tac a n]) *} (*** assumption ***) ML {* fun cspF_asm_right_tac n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_right n, cspF_asm_main_tac n]) *} (*** step ***) ML {* fun cspF_step_right_tac n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_right n, cspF_step_main_tac n]) *} (*** light step ***) ML {* fun cspF_light_step_right_tac n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_right n, cspF_light_step_main_tac n]) *} (*** dist ***) ML {* fun cspF_dist_right_tac n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_right n, cspF_dist_main_tac n]) *} (*** unwind ***) ML {* fun cspF_unwind_right_tac n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_right n, cspF_unwind_main_tac n]) *} (*** sort ***) ML {* fun cspF_sort_right_tac n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_right n, cspF_sort_main_tac n]) *} (*** simp ***) ML {* fun cspF_simp_right_tac n = CHANGED ( EVERY [resolve_tac CSPF_rw_flag_right n, cspF_simp_main_tac n]) *} (************************************************ rewrite both ************************************************) (*-----------------------------------------------------* Apply (tactic {* cspF_hnf_tac n *}) is equal to apply ((tactic {* cspF_hnf_left_tac n *})? , (tactic {* cspF_hnf_right_tac n *})?) *-----------------------------------------------------*) ML {* fun cspF_hsf_tac n = CHANGED ( EVERY [TRY (cspF_hsf_left_tac n), TRY (cspF_hsf_right_tac n)]) *} (*-----------------------------------------------------* apply (tactic {* cspF_simp_with_tac a n *}) is equal to apply ((tactic {* cspF_simp_with_left_tac a n *})? , (tactic {* cspF_simp_with_right_tac a n *})?) *-----------------------------------------------------*) ML {* fun cspF_simp_with_tac a n = CHANGED ( EVERY [TRY (cspF_simp_with_left_tac a n), TRY (cspF_simp_with_right_tac a n)]) *} (*** refine_with ***) ML {* fun cspF_refine_with_tac a n = CHANGED ( EVERY [TRY (cspF_refine_with_left_tac a n), TRY (cspF_refine_with_right_tac a n)]) *} (*-----------------------------------------------------* apply (tactic {* cspF_asm_tac n *}) is equal to apply ((tactic {* cspF_asm_left_tac n *})? , (tactic {* cspF_asm_right_tac n *})?) *-----------------------------------------------------*) ML {* fun cspF_asm_tac n = CHANGED ( EVERY [TRY (cspF_asm_left_tac n), TRY (cspF_asm_right_tac n)]) *} ML {* fun cspF_step_tac n = CHANGED ( EVERY [TRY (cspF_step_left_tac n), TRY (cspF_step_right_tac n)]) *} ML {* fun cspF_light_step_tac n = CHANGED ( EVERY [TRY (cspF_light_step_left_tac n), TRY (cspF_light_step_right_tac n)]) *} ML {* fun cspF_dist_tac n = CHANGED ( EVERY [TRY (cspF_dist_left_tac n), TRY (cspF_dist_right_tac n)]) *} ML {* fun cspF_unwind_tac n = CHANGED ( EVERY [TRY (cspF_unwind_left_tac n), TRY (cspF_unwind_right_tac n)]) *} ML {* fun cspF_sort_tac n = CHANGED ( EVERY [TRY (cspF_sort_left_tac n), TRY (cspF_sort_right_tac n)]) *} ML {* fun cspF_simp_tac n = CHANGED ( EVERY [TRY (cspF_simp_left_tac n), TRY (cspF_simp_right_tac n)]) *} end
lemma cspF_all_dist:
(P1.0 |~| P2.0) [+] Q =F[M,M] P1.0 [+] Q |~| P2.0 [+] Q
P [+] (Q1.0 |~| Q2.0) =F[M,M] P [+] Q1.0 |~| P [+] Q2.0
(P1.0 |~| P2.0) |[X]| Q =F[M,M] P1.0 |[X]| Q |~| P2.0 |[X]| Q
P |[X]| (Q1.0 |~| Q2.0) =F[M,M] P |[X]| Q1.0 |~| P |[X]| Q2.0
(P1.0 |~| P2.0) -- X =F[M,M] P1.0 -- X |~| P2.0 -- X
(P1.0 |~| P2.0) [[r]] =F[M,M] P1.0 [[r]] |~| P2.0 [[r]]
(P1.0 |~| P2.0) ;; Q =F[M,M] P1.0 ;; Q |~| P2.0 ;; Q
(P1.0 |~| P2.0) |. n =F[M,M] P1.0 |. n |~| P2.0 |. n
!! c:C .. (Pf c |~| Qf c) =F[M,M] !! :C .. Pf |~| !! :C .. Qf
!nat n:N .. (Pf n |~| Qf n) =F[M,M] !nat :N .. Pf |~| !nat :N .. Qf
!set X:Xs .. (Pf X |~| Qf X) =F[M,M] !set :Xs .. Pf |~| !set :Xs .. Qf
! a:X .. (Pf a |~| Qf a) =F[M,M] ! :X .. Pf |~| ! :X .. Qf
inj f ==> !<f> a:X .. (Pf a |~| Qf a) =F[M,M] !<f> :X .. Pf |~| !<f> :X .. Qf
(!! :C .. Pf) [+] Q =F[M,M]
IF (sumset C = {}) THEN (DIV [+] Q) ELSE (!! c:C .. Pf c [+] Q)
P [+] (!! :C .. Qf) =F[M,M]
IF (sumset C = {}) THEN (P [+] DIV) ELSE (!! c:C .. P [+] Qf c)
(!! :C .. Pf) |[X]| Q =F[M,M]
IF (sumset C = {}) THEN (DIV |[X]| Q) ELSE (!! c:C .. Pf c |[X]| Q)
P |[X]| (!! :C .. Qf) =F[M,M]
IF (sumset C = {}) THEN (P |[X]| DIV) ELSE (!! c:C .. P |[X]| Qf c)
(!! :C .. Pf) -- X =F[M,M] !! c:C .. Pf c -- X
(!! :C .. Pf) [[r]] =F[M,M] !! c:C .. Pf c [[r]]
(!! :C .. Pf) ;; Q =F[M,M] !! c:C .. Pf c ;; Q
(!! :C .. Pf) |. m =F[M,M] !! c:C .. Pf c |. m
(!nat :N .. Pf) [+] Q =F[M,M]
IF (N = {}) THEN (DIV [+] Q) ELSE (!nat n:N .. Pf n [+] Q)
P [+] (!nat :N .. Qf) =F[M,M]
IF (N = {}) THEN (P [+] DIV) ELSE (!nat n:N .. P [+] Qf n)
(!nat :N .. Pf) |[X]| Q =F[M,M]
IF (N = {}) THEN (DIV |[X]| Q) ELSE (!nat n:N .. Pf n |[X]| Q)
P |[X]| (!nat :N .. Qf) =F[M,M]
IF (N = {}) THEN (P |[X]| DIV) ELSE (!nat n:N .. P |[X]| Qf n)
(!nat :N .. Pf) -- X =F[M,M] !nat n:N .. Pf n -- X
(!nat :N .. Pf) [[r]] =F[M,M] !nat n:N .. Pf n [[r]]
(!nat :N .. Pf) ;; Q =F[M,M] !nat n:N .. Pf n ;; Q
(!nat :N .. Pf) |. m =F[M,M] !nat n:N .. Pf n |. m
(!set :Xs .. Pf) [+] Q =F[M,M]
IF (Xs = {}) THEN (DIV [+] Q) ELSE (!set X:Xs .. Pf X [+] Q)
P [+] (!set :Xs .. Qf) =F[M,M]
IF (Xs = {}) THEN (P [+] DIV) ELSE (!set X:Xs .. P [+] Qf X)
(!set :Xs .. Pf) |[Y]| Q =F[M,M]
IF (Xs = {}) THEN (DIV |[Y]| Q) ELSE (!set X:Xs .. Pf X |[Y]| Q)
P |[Y]| (!set :Xs .. Qf) =F[M,M]
IF (Xs = {}) THEN (P |[Y]| DIV) ELSE (!set X:Xs .. P |[Y]| Qf X)
(!set :Xs .. Pf) -- Y =F[M,M] !set X:Xs .. Pf X -- Y
(!set :Xs .. Pf) [[r]] =F[M,M] !set X:Xs .. Pf X [[r]]
(!set :Xs .. Pf) ;; Q =F[M,M] !set X:Xs .. Pf X ;; Q
(!set :Xs .. Pf) |. m =F[M,M] !set X:Xs .. Pf X |. m
(! :X .. Pf) [+] Q =F[M,M]
IF (X = {}) THEN (DIV [+] Q) ELSE (! x:X .. Pf x [+] Q)
P [+] (! :X .. Qf) =F[M,M]
IF (X = {}) THEN (P [+] DIV) ELSE (! x:X .. P [+] Qf x)
(! :Y .. Pf) |[X]| Q =F[M,M]
IF (Y = {}) THEN (DIV |[X]| Q) ELSE (! x:Y .. Pf x |[X]| Q)
P |[X]| (! :Y .. Qf) =F[M,M]
IF (Y = {}) THEN (P |[X]| DIV) ELSE (! x:Y .. P |[X]| Qf x)
(! :Y .. Pf) -- X =F[M,M] ! x:Y .. Pf x -- X
(! :X .. Pf) [[r]] =F[M,M] ! x:X .. Pf x [[r]]
(! :X .. Pf) ;; Q =F[M,M] ! x:X .. Pf x ;; Q
(! :X .. Pf) |. n =F[M,M] ! x:X .. Pf x |. n
(!<f> :X .. Pf) [+] Q =F[M,M]
IF (X = {}) THEN (DIV [+] Q) ELSE (!<f> x:X .. Pf x [+] Q)
P [+] (!<f> :X .. Qf) =F[M,M]
IF (X = {}) THEN (P [+] DIV) ELSE (!<f> x:X .. P [+] Qf x)
(!<f> :Y .. Pf) |[X]| Q =F[M,M]
IF (Y = {}) THEN (DIV |[X]| Q) ELSE (!<f> x:Y .. Pf x |[X]| Q)
P |[X]| (!<f> :Y .. Qf) =F[M,M]
IF (Y = {}) THEN (P |[X]| DIV) ELSE (!<f> x:Y .. P |[X]| Qf x)
(!<f> :Y .. Pf) -- X =F[M,M] !<f> x:Y .. Pf x -- X
(!<f> :X .. Pf) [[r]] =F[M,M] !<f> x:X .. Pf x [[r]]
(!<f> :X .. Pf) ;; Q =F[M,M] !<f> x:X .. Pf x ;; Q
(!<f> :X .. Pf) |. n =F[M,M] !<f> x:X .. Pf x |. n
(P1.0 [+] P2.0) [[r]] =F[M,M] P1.0 [[r]] [+] P2.0 [[r]]
(P1.0 [+] P2.0) |. n =F[M,M] P1.0 |. n [+] P2.0 |. n
lemma cspF_choice_IF:
sumset C = {} ==> !! :C .. Pf =F[M1.0,M2.0] DIV
!nat :{} .. Pf =F[M1.0,M2.0] DIV
!set :{} .. Pf =F[M1.0,M2.0] DIV
! :{} .. Pf =F[M1.0,M2.0] DIV
inj f ==> !<f> :{} .. Pf =F[M1.0,M2.0] DIV
!! :type1 {c} .. Pf =F[M,M] Pf (type1 c)
!! :type2 {c} .. Pf =F[M,M] Pf (type2 c)
!nat :{n} .. Pf =F[M,M] Pf n
!set :{X} .. Pf =F[M,M] Pf X
! :{a} .. Pf =F[M,M] Pf a
inj f ==> !<f> :{x} .. Pf =F[M,M] Pf x
P |~| P =F[M,M] P
!! c:C .. P =F[M,M] IF (sumset C = {}) THEN DIV ELSE P
!nat n:N .. P =F[M,M] IF (N = {}) THEN DIV ELSE P
!set X:Xs .. P =F[M,M] IF (Xs = {}) THEN DIV ELSE P
! x:X .. P =F[M,M] IF (X = {}) THEN DIV ELSE P
!<f> x:X .. P =F[M,M] IF (X = {}) THEN DIV ELSE P
? :{} -> Pf =F[M1.0,M2.0] ? a:{} -> DIV
STOP [+] P =F[M,M] P
? :{} -> Qf [+] P =F[M,M] P
P [+] STOP =F[M,M] P
P [+] ? :{} -> Qf =F[M,M] P
P [+] P =F[M,M] P
IF True THEN P ELSE Q =F[M,M] P
IF False THEN P ELSE Q =F[M,M] Q