Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F_op_rep_par(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | May 2005 | | June 2005 (modified) | | September 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | November 2005 (modified) | | April 2006 (modified) | | March 2007 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_F_op_rep_par imports CSP_F_op_alpha_par CSP_T_op_rep_par begin (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* Union (B ` A) = (UN x:A. B x) *) (* Inter (B ` A) = (INT x:A. B x) *) declare Union_image_eq [simp del] declare Inter_image_eq [simp del] (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite (notick | t = <>) *) (* *) (* disj_not1: (~ P | Q) = (P --> Q) *) declare disj_not1 [simp del] (*============================================================* | | | replicated alphabetized parallel | | | *============================================================*) (*** Inductive_parallel ***) lemma in_failures_Inductive_parallel_lm1: "Y Int insert Tick (Ev ` snd a) Un Union {Y Int insert Tick (Ev ` X) |X Y. EX P. ((P, X), Y) : set PXYs} = Union {Ya Int insert Tick (Ev ` X) |X Ya. EX P. P = fst a & X = snd a & Ya = Y | ((P, X), Ya) : set PXYs}" by (auto) lemma in_failures_Inductive_parallel_lm2: "((P, X), Y) : set s ==> X <= Union (snd ` fst ` set s)" apply (auto) apply (rule_tac x="((P, X), Y)" in bexI) by (simp_all) lemma in_failures_Inductive_parallel_lm3: "Union {Y Int insert Tick (Ev ` X) |X Y. EX P. ((P, X), Y) : set zs} <= insert Tick (Ev ` Union (snd ` fst ` set zs))" apply (rule) apply (simp) apply (elim conjE exE) apply (simp) apply (elim conjE disjE) apply (simp) apply (rule disjI2) apply (auto) apply (simp add: image_iff) apply (rule_tac x="((P, X), Y)" in bexI) apply (auto) done lemma in_failures_Inductive_parallel_lm4: "Union {Y Int insert Tick (Ev ` X) |X Y. EX P. ((P, X), Y) : set zs} Int insert Tick (Ev ` Union (snd ` fst ` set zs)) = Union {Y Int insert Tick (Ev ` X) |X Y. EX P. ((P, X), Y) : set zs}" apply (rule Int_subset_eq) apply (simp add: in_failures_Inductive_parallel_lm3) done (* main *) lemma in_failures_Inductive_parallel_lm: "PXs ~= [] --> (ALL f. (f :f failures([||] PXs) M) = (EX u. (sett(u) <= insert Tick (Ev ` Union (snd ` set PXs)) & (EX Z. f = (u, Z) & (EX PXYs. map fst PXYs = PXs & (Z Int insert Tick (Ev ` Union (snd ` set PXs)) = Union {(Y Int insert Tick (Ev ` X))|X Y. EX P. ((P,X),Y) : set PXYs} & (ALL P X Y. ((P,X),Y) : set PXYs --> ((u rest-tr X), Y) :f failures(P) M)))))))" apply (induct_tac PXs) (* case 0 *) apply (simp) (* case 1 *) apply (case_tac "list = []") apply (simp) apply (intro allI) apply (simp add: in_failures_Alpha_parallel) apply (simp add: in_failures) apply (rule iffI) (* => *) apply (elim conjE exE) apply (simp) apply (erule disjE) apply (rule_tac x="[(a,Y)]" in exI) apply (simp) apply (rule conjI) apply (simp add: Evset_def pair_eq_decompo) apply (fast) apply (intro allI impI) apply (simp add: pair_eq_decompo) apply (case_tac "Tick ~: Z") apply (rule_tac x="[(a,Y)]" in exI) apply (simp add: Evset_def pair_eq_decompo) apply (fast) (* Tick : Z *) apply (rule_tac x="[(a,insert Tick Y)]" in exI) apply (simp) apply (simp add: rest_tr_Tick_sett) apply (elim conjE exE) apply (simp add: pair_eq_decompo) apply (rule conjI) apply (fast) apply (rule proc_T2_T3, simp) apply (simp) (* <= *) apply (elim conjE exE) apply (simp) apply (subgoal_tac "EX bb. PXYs=[(a,bb)]") apply (elim conjE exE) apply (subgoal_tac "aa rest-tr {} = <> | aa rest-tr {} = <Tick>") apply (erule disjE) (* <> *) apply (rule_tac x="bb" in exI) apply (rule_tac x="{}" in exI) apply (simp add: pair_eq_decompo) (* <Tick> *) apply (rule_tac x="bb" in exI) apply (rule_tac x="{}" in exI) apply (simp add: pair_eq_decompo) apply (simp add: rest_tr_empty) apply (force) (* step case *) apply (simp add: in_failures_Alpha_parallel) apply (intro allI impI) apply (rule iffI) (* => *) apply (elim conjE exE, simp) apply (rule_tac x="(a,Y) # PXYs" in exI) apply (simp add: pair_eq_decompo) apply (simp add: in_failures_Inductive_parallel_lm1) apply (intro allI impI) apply (drule_tac x="P" in spec) apply (drule_tac x="X" in spec) apply (drule_tac x="Ya" in spec) apply (simp) apply (subgoal_tac "X <= Union (snd ` set list)") apply (simp add: rest_tr_of_rest_tr_subset) apply (rotate_tac -4) apply (drule sym) apply (simp add: in_failures_Inductive_parallel_lm2) (* <= *) apply (simp) apply (elim conjE exE) apply (subgoal_tac "EX bb zs. PXYs = (a, bb) # zs & map fst zs = list") apply (elim conjE exE) apply (rule_tac x="bb" in exI) apply (rule_tac x= "Union {Y Int insert Tick (Ev ` X) |X Y. EX P. ((P, X), Y) : set zs}" in exI) apply (simp) apply (rule conjI) apply (simp add: pair_eq_decompo) apply (rotate_tac -1) apply (drule sym) apply (simp) apply (simp add: in_failures_Inductive_parallel_lm4) apply (simp add: in_failures_Inductive_parallel_lm1) apply (rule_tac x="zs" in exI) apply (rotate_tac -1) apply (drule sym) apply (simp add: in_failures_Inductive_parallel_lm4) apply (intro allI impI) apply (subgoal_tac "X <= Union (snd ` set list)") apply (simp add: rest_tr_of_rest_tr_subset) apply (simp add: in_failures_Inductive_parallel_lm2) apply (auto) done (*** remove ALL ***) lemma in_failures_Inductive_parallel: "PXs ~= [] ==> (f :f failures([||] PXs) M) = (EX u. (sett(u) <= insert Tick (Ev ` Union (snd ` set PXs)) & (EX Z. f = (u, Z) & (EX PXYs. map fst PXYs = PXs & (Z Int insert Tick (Ev ` Union (snd ` set PXs)) = Union {(Y Int insert Tick (Ev ` X))|X Y. EX P. ((P,X),Y) : set PXYs} & (ALL P X Y. ((P,X),Y) : set PXYs --> ((u rest-tr X), Y) :f failures(P) M))))))" by (simp add: in_failures_Inductive_parallel_lm) (*** Semantics for replicated alphabetized parallel on F ***) lemma failures_Inductive_parallel: "PXs ~= [] ==> failures([||] PXs) M = {f. (EX u. (sett(u) <= insert Tick (Ev ` Union (snd ` set PXs)) & (EX Z. f = (u, Z) & (EX PXYs. map fst PXYs = PXs & (Z Int insert Tick (Ev ` Union (snd ` set PXs)) = Union {(Y Int insert Tick (Ev ` X))|X Y. EX P. ((P,X),Y) : set PXYs} & (ALL P X Y. ((P,X),Y) : set PXYs --> ((u rest-tr X), Y) :f failures(P) M))))))}f" apply (simp add: in_failures_Inductive_parallel[THEN sym]) done (************************************ | traces | ************************************) lemma sett_in_failures_Inductive_parallel: "[| PXs ~= [] ; (t,X) :f failures([||] PXs) M |] ==> sett t <= insert Tick (Ev ` Union (snd ` set PXs))" by (simp add: in_failures_Inductive_parallel) (*---------------------------------------------------------* | another expression of Inductive_parallel_eval | *---------------------------------------------------------*) lemma in_failures_Inductive_parallel_nth: "PXs ~= [] ==> (f :f failures([||] PXs) M) = (EX u. (sett(u) <= insert Tick (Ev ` Union (snd ` set PXs)) & (EX Z. f = (u, Z) & (EX Ys. length PXs = length Ys & (Z Int insert Tick (Ev ` Union (snd ` set PXs)) = Union {((Ys!i) Int insert Tick (Ev ` (snd (PXs!i))))|i. i < length PXs} & (ALL i. i < length PXs --> ((u rest-tr (snd (PXs!i))), Ys!i) :f failures(fst (PXs!i)) M))))))" apply (simp add: in_failures_Inductive_parallel) apply (simp add: set_nth) apply (rule iffI) (* => *) apply (elim conjE exE) apply (simp) apply (rule_tac x="map snd PXYs" in exI) apply (simp) apply (rotate_tac 3) apply (drule sym) apply (simp) apply (rule conjI) apply (simp add: pair_eq_decompo) apply (rule equalityI) (* <= *) apply (rule) apply (simp) apply (elim conjE exE) apply (simp) apply (elim conjE disjE) apply (simp) apply (rule_tac x="map snd PXYs ! i Int insert Tick (Ev ` snd (map fst PXYs ! i))" in exI) apply (simp) apply (rule_tac x="i" in exI) apply (simp) apply (rule_tac x="map snd PXYs ! i Int insert Tick (Ev ` snd (map fst PXYs ! i))" in exI) apply (simp) apply (rule_tac x="i" in exI) apply (simp) (* => *) apply (rule) apply (simp) apply (elim conjE exE) apply (simp) apply (elim conjE disjE) apply (simp) apply (rule_tac x= "(snd (PXYs ! i)) Int insert Tick (Ev ` snd (fst (PXYs ! i)))" in exI) apply (simp) apply (rule_tac x="snd (fst (PXYs ! i))" in exI) apply (rule_tac x="snd (PXYs ! i)" in exI) apply (simp) apply (rule_tac x="i" in exI) apply (simp) apply (rule_tac x= "(snd (PXYs ! i)) Int insert Tick (Ev ` snd (fst (PXYs ! i)))" in exI) apply (simp) apply (rule_tac x="snd (fst (PXYs ! i))" in exI) apply (rule_tac x="snd (PXYs ! i)" in exI) apply (simp) apply (rule_tac x="i" in exI) apply (simp) apply (intro allI impI) apply (drule_tac x="fst (fst (PXYs ! i))" in spec) apply (drule_tac x="snd (fst (PXYs ! i))" in spec) apply (drule_tac x="snd (PXYs ! i)" in spec) apply (simp) apply (fast) (* => *) apply (elim conjE exE) apply (simp) apply (rule_tac x="zip PXs Ys" in exI) apply (simp add: map_fst_zip_eq) apply (rule conjI) apply (simp add: pair_eq_decompo) apply (rule equalityI) (* <= *) apply (rule) apply (simp) apply (elim conjE exE) apply (simp) apply (elim conjE disjE) apply (simp) apply (rule_tac x="Ys ! i Int insert Tick (Ev ` snd (PXs ! i))" in exI) apply (simp) apply (rule_tac x="snd (PXs ! i)" in exI) apply (rule_tac x="Ys ! i" in exI) apply (simp) apply (rule_tac x="i" in exI) apply (simp) apply (rule_tac x="Ys ! i Int insert Tick (Ev ` snd (PXs ! i))" in exI) apply (simp) apply (rule_tac x="snd (PXs ! i)" in exI) apply (rule_tac x="Ys ! i" in exI) apply (simp) apply (rule_tac x="i" in exI) apply (simp) (* => *) apply (rule) apply (simp) apply (elim conjE exE) apply (simp) apply (elim conjE disjE) apply (simp) apply (rule_tac x="Ys ! i Int insert Tick (Ev ` snd (PXs ! i))" in exI) apply (simp) apply (rule_tac x="i" in exI) apply (simp) apply (rule_tac x="Ys ! i Int insert Tick (Ev ` snd (PXs ! i))" in exI) apply (simp) apply (rule_tac x="i" in exI) apply (simp) apply (intro allI impI) apply (elim conjE exE) apply (drule_tac x="i" in spec) apply (simp add: pair_eq_decompo) done (*============================================================* | | | indexed alphabetized parallel | | | *============================================================*) (*** failures Inductive_parallel ***) lemma in_failures_Rep_parallel_lm1: "[| Is isListOf I ; length Ys = length Is |] ==> Union {(Ys ! i Int insert Tick (Ev ` snd (map PXf Is ! i))) |i. i < length Ys} = Union {(Ys ! (THE n. Is ! n = i & n < length Is) Int insert Tick (Ev ` snd (PXf i))) | i. i : I}" apply (rule) (* <= *) apply (rule) apply (simp) apply (elim conjE exE) apply (rule_tac x= "Ys ! (THE n. Is ! n = (Is ! i) & n < length Is) Int insert Tick (Ev ` snd (PXf (Is ! i)))" in exI) apply (simp add: isListOf_THE_nth) apply (rule_tac x="(Is ! i)" in exI) apply (simp add: isListOf_THE_nth) apply (simp add: isListOf_nth_in_index) (* => *) apply (rule) apply (simp) apply (elim conjE exE) apply (simp) apply (erule isListOf_index_to_nthE) apply (drule_tac x="i" in bspec, simp) apply (elim conjE exE, simp) apply (simp add: isListOf_THE_nth) apply (rule_tac x= "Ys ! n Int insert Tick (Ev ` snd (PXf (Is ! n)))" in exI) apply (simp) apply (rule_tac x="n" in exI) apply (simp) done lemma in_failures_Rep_parallel_lm2: "Is isListOf I ==> Union {(Yf i Int insert Tick (Ev ` snd (PXf i))) |i. i : I} = Union {(map Yf Is ! i Int insert Tick (Ev ` snd (map PXf Is ! i))) |i. i < length Is}" apply (rule) (* <= *) apply (rule) apply (simp) apply (elim conjE exE) apply (erule isListOf_index_to_nthE) apply (drule_tac x="i" in bspec, simp) apply (elim conjE exE, simp) apply (rule_tac x= "map Yf Is ! n Int insert Tick (Ev ` snd (map PXf Is ! n))" in exI) apply (simp) apply (rule_tac x="n" in exI) apply (simp) (* => *) apply (rule) apply (simp) apply (elim conjE exE) apply (rule_tac x= "Yf (Is!i) Int insert Tick (Ev ` snd (PXf (Is!i)))" in exI) apply (simp) apply (rule_tac x="(Is!i)" in exI) apply (simp add: isListOf_nth_in_index) done lemma in_failures_Rep_parallel: "[| I ~= {} ; finite I |] ==> (f :f failures ([||]:I PXf) M) = (EX u. (sett(u) <= insert Tick (Ev ` Union (snd ` PXf ` I)) & (EX Z. f = (u, Z) & (EX Yf. (Z Int insert Tick (Ev ` Union (snd ` PXf ` I)) = Union {((Yf i) Int insert Tick (Ev ` (snd (PXf i))))|i. i : I} & (ALL i:I. ((u rest-tr (snd (PXf i))), Yf i) :f failures(fst (PXf i)) M))))))" apply (simp add: Rep_parallel_def) apply (subgoal_tac "EX Is. Is isListOf I") apply (elim conjE exE) apply (subgoal_tac "(map PXf (SOME Is. Is isListOf I)) ~= []") apply (simp add: in_failures_Inductive_parallel_nth) apply (rule someI2) apply (simp) apply (rule iffI) (* => *) apply (elim conjE exE) apply (rename_tac Is' Is u Z Ys) apply (rule_tac x="u" in exI) apply (simp add: isListOf_set_eq) apply (rule_tac x= "(%i. (Ys!(THE n. (Is!n) = i & n<length Is)))" in exI) apply (rule conjI) apply (simp add: in_failures_Rep_parallel_lm1) apply (rule ballI) apply (rotate_tac 4) apply (erule isListOf_index_to_nthE) apply (drule_tac x="i" in bspec, simp) apply (elim conjE exE, simp) apply (rotate_tac 2) apply (drule sym) apply (simp add: isListOf_THE_nth) (* <= *) apply (elim conjE exE) apply (rename_tac Is' Is u Z Yf) apply (rule_tac x="u" in exI) apply (simp add: isListOf_set_eq) apply (rule_tac x= "map Yf Is" in exI) apply (simp) apply (rule conjI) apply (rule in_failures_Rep_parallel_lm2, simp) apply (intro allI impI) apply (drule_tac x="Is ! i" in bspec) apply (simp add: isListOf_nth_in_index) apply (simp) apply (rule someI2) apply (simp) apply (simp add: isListOf_nonemptyset) apply (simp add: isListOf_EX) done lemmas in_failures_par = in_failures_Alpha_parallel in_failures_Inductive_parallel in_failures_Rep_parallel (*** Semantics for indexed alphabetized parallel on F ***) lemma failures_Rep_parallel: "[| I ~= {} ; finite I |] ==> failures ([||]:I PXf) M = {f. (EX u. (sett(u) <= insert Tick (Ev ` Union (snd ` PXf ` I)) & (EX Z. f = (u, Z) & (EX Yf. (Z Int insert Tick (Ev ` Union (snd ` PXf ` I)) = Union {((Yf i) Int insert Tick (Ev ` (snd (PXf i))))|i. i : I} & (ALL i:I. ((u rest-tr (snd (PXf i))), Yf i) :f failures(fst (PXf i)) M))))))}f" apply (simp add: in_failures_Rep_parallel[THEN sym]) done (************************************ | traces | ************************************) lemma sett_in_failures_Rep_parallel: "[| I ~= {} ; finite I ; (t,X) :f failures([||]:I PXf) M |] ==> sett t <= insert Tick (Ev ` Union (snd ` PXf ` I))" by (simp add: in_failures_Rep_parallel) (****************** to add it again ******************) declare disj_not1 [simp] declare Union_image_eq [simp] declare Inter_image_eq [simp] end
lemma in_failures_Inductive_parallel_lm1:
Y ∩ insert Tick (Ev ` snd a) ∪
Union {Y ∩ insert Tick (Ev ` X) |X Y. ∃P. ((P, X), Y) ∈ set PXYs} =
Union
{Ya ∩ insert Tick (Ev ` X) |X Ya.
∃P. P = fst a ∧ X = snd a ∧ Ya = Y ∨ ((P, X), Ya) ∈ set PXYs}
lemma in_failures_Inductive_parallel_lm2:
((P, X), Y) ∈ set s ==> X ⊆ Union (snd ` fst ` set s)
lemma in_failures_Inductive_parallel_lm3:
Union {Y ∩ insert Tick (Ev ` X) |X Y. ∃P. ((P, X), Y) ∈ set zs}
⊆ insert Tick (Ev ` Union (snd ` fst ` set zs))
lemma in_failures_Inductive_parallel_lm4:
Union {Y ∩ insert Tick (Ev ` X) |X Y. ∃P. ((P, X), Y) ∈ set zs} ∩
insert Tick (Ev ` Union (snd ` fst ` set zs)) =
Union {Y ∩ insert Tick (Ev ` X) |X Y. ∃P. ((P, X), Y) ∈ set zs}
lemma in_failures_Inductive_parallel_lm:
PXs ≠ [] -->
(∀f. (f :f failures ([||] PXs) M) =
(∃u. sett u ⊆ insert Tick (Ev ` Union (snd ` set PXs)) ∧
(∃Z. f = (u, Z) ∧
(∃PXYs. map fst PXYs = PXs ∧
Z ∩ insert Tick (Ev ` Union (snd ` set PXs)) =
Union
{Y ∩ insert Tick (Ev ` X) |X Y.
∃P. ((P, X), Y) ∈ set PXYs} ∧
(∀P X Y.
((P, X), Y) ∈ set PXYs -->
(u rest-tr X, Y) :f failures P M)))))
lemma in_failures_Inductive_parallel:
PXs ≠ []
==> (f :f failures ([||] PXs) M) =
(∃u. sett u ⊆ insert Tick (Ev ` Union (snd ` set PXs)) ∧
(∃Z. f = (u, Z) ∧
(∃PXYs. map fst PXYs = PXs ∧
Z ∩ insert Tick (Ev ` Union (snd ` set PXs)) =
Union
{Y ∩ insert Tick (Ev ` X) |X Y.
∃P. ((P, X), Y) ∈ set PXYs} ∧
(∀P X Y.
((P, X), Y) ∈ set PXYs -->
(u rest-tr X, Y) :f failures P M))))
lemma failures_Inductive_parallel:
PXs ≠ []
==> failures ([||] PXs) M =
{f. ∃u. sett u ⊆ insert Tick (Ev ` Union (snd ` set PXs)) ∧
(∃Z. f = (u, Z) ∧
(∃PXYs. map fst PXYs = PXs ∧
Z ∩ insert Tick (Ev ` Union (snd ` set PXs)) =
Union
{Y ∩ insert Tick (Ev ` X) |X Y.
∃P. ((P, X), Y) ∈ set PXYs} ∧
(∀P X Y.
((P, X), Y) ∈ set PXYs -->
(u rest-tr X, Y) :f failures P M)))}f
lemma sett_in_failures_Inductive_parallel:
[| PXs ≠ []; (t, X) :f failures ([||] PXs) M |]
==> sett t ⊆ insert Tick (Ev ` Union (snd ` set PXs))
lemma in_failures_Inductive_parallel_nth:
PXs ≠ []
==> (f :f failures ([||] PXs) M) =
(∃u. sett u ⊆ insert Tick (Ev ` Union (snd ` set PXs)) ∧
(∃Z. f = (u, Z) ∧
(∃Ys. length PXs = length Ys ∧
Z ∩ insert Tick (Ev ` Union (snd ` set PXs)) =
Union
{Ys ! i ∩ insert Tick (Ev ` snd (PXs ! i)) |i.
i < length PXs} ∧
(∀i<length PXs.
(u rest-tr snd (PXs ! i), Ys ! i)
:f failures (fst (PXs ! i)) M))))
lemma in_failures_Rep_parallel_lm1:
[| Is isListOf I; length Ys = length Is |]
==> Union {Ys ! i ∩ insert Tick (Ev ` snd (map PXf Is ! i)) |i. i < length Ys} =
Union
{Ys ! (THE n. Is ! n = i ∧ n < length Is) ∩
insert Tick (Ev ` snd (PXf i)) |
i. i ∈ I}
lemma in_failures_Rep_parallel_lm2:
Is isListOf I
==> Union {Yf i ∩ insert Tick (Ev ` snd (PXf i)) |i. i ∈ I} =
Union
{map Yf Is ! i ∩ insert Tick (Ev ` snd (map PXf Is ! i)) |i. i < length Is}
lemma in_failures_Rep_parallel:
[| I ≠ {}; finite I |]
==> (f :f failures ([||]:I PXf) M) =
(∃u. sett u ⊆ insert Tick (Ev ` Union (snd ` PXf ` I)) ∧
(∃Z. f = (u, Z) ∧
(∃Yf. Z ∩ insert Tick (Ev ` Union (snd ` PXf ` I)) =
Union {Yf i ∩ insert Tick (Ev ` snd (PXf i)) |i. i ∈ I} ∧
(∀i∈I. (u rest-tr snd (PXf i), Yf i)
:f failures (fst (PXf i)) M))))
lemma in_failures_par:
(f :f failures (P |[X1.0,X2.0]| Q) M) =
(∃u X. f = (u, X) ∧
(∃Y Z. X ∩ insert Tick (Ev ` (X1.0 ∪ X2.0)) =
Y ∩ insert Tick (Ev ` X1.0) ∪ Z ∩ insert Tick (Ev ` X2.0) ∧
(u rest-tr X1.0, Y) :f failures P M ∧
(u rest-tr X2.0, Z) :f failures Q M ∧
sett u ⊆ insert Tick (Ev ` (X1.0 ∪ X2.0))))
PXs ≠ []
==> (f :f failures ([||] PXs) M) =
(∃u. sett u ⊆ insert Tick (Ev ` Union (snd ` set PXs)) ∧
(∃Z. f = (u, Z) ∧
(∃PXYs. map fst PXYs = PXs ∧
Z ∩ insert Tick (Ev ` Union (snd ` set PXs)) =
Union
{Y ∩ insert Tick (Ev ` X) |X Y.
∃P. ((P, X), Y) ∈ set PXYs} ∧
(∀P X Y.
((P, X), Y) ∈ set PXYs -->
(u rest-tr X, Y) :f failures P M))))
[| I ≠ {}; finite I |]
==> (f :f failures ([||]:I PXf) M) =
(∃u. sett u ⊆ insert Tick (Ev ` Union (snd ` PXf ` I)) ∧
(∃Z. f = (u, Z) ∧
(∃Yf. Z ∩ insert Tick (Ev ` Union (snd ` PXf ` I)) =
Union {Yf i ∩ insert Tick (Ev ` snd (PXf i)) |i. i ∈ I} ∧
(∀i∈I. (u rest-tr snd (PXf i), Yf i)
:f failures (fst (PXf i)) M))))
lemma failures_Rep_parallel:
[| I ≠ {}; finite I |]
==> failures ([||]:I PXf) M =
{f. ∃u. sett u ⊆ insert Tick (Ev ` Union (snd ` PXf ` I)) ∧
(∃Z. f = (u, Z) ∧
(∃Yf. Z ∩ insert Tick (Ev ` Union (snd ` PXf ` I)) =
Union {Yf i ∩ insert Tick (Ev ` snd (PXf i)) |i. i ∈ I} ∧
(∀i∈I. (u rest-tr snd (PXf i), Yf i)
:f failures (fst (PXf i)) M)))}f
lemma sett_in_failures_Rep_parallel:
[| I ≠ {}; finite I; (t, X) :f failures ([||]:I PXf) M |]
==> sett t ⊆ insert Tick (Ev ` Union (snd ` PXf ` I))