Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F_law_aux(*-------------------------------------------* | CSP-Prover on Isabelle2005 | | April 2006 | | March 2007 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_F_law_aux imports CSP_F_law begin (*---------------------------------------------------------------* | | | convenient laws, especially for tactics | | | *---------------------------------------------------------------*) (***************************************************************** Internal *****************************************************************) (*------------------* | singleton | *------------------*) (*** ! :{a} ***) lemma cspF_Rep_int_choice_sum1_singleton: "!! : type1 {c} .. Pf =F[M,M] Pf (type1 c)" by (rule cspF_Rep_int_choice_const, auto) lemma cspF_Rep_int_choice_sum2_singleton: "!! : type2 {c} .. Pf =F[M,M] Pf (type2 c)" by (rule cspF_Rep_int_choice_const, auto) lemma cspF_Rep_int_choice_nat_singleton: "!nat :{n} .. Pf =F[M,M] Pf n" by (rule cspF_Rep_int_choice_const, auto) lemma cspF_Rep_int_choice_set_singleton: "!set :{X} .. Pf =F[M,M] Pf X" by (rule cspF_Rep_int_choice_const, auto) lemma cspF_Rep_int_choice_com_singleton: "! :{a} .. Pf =F[M,M] Pf a" by (rule cspF_Rep_int_choice_const, auto) lemma cspF_Rep_int_choice_f_singleton: "inj f ==> !<f> :{x} .. Pf =F[M,M] Pf x" by (rule cspF_Rep_int_choice_const, auto) lemmas cspF_Rep_int_choice_singleton = cspF_Rep_int_choice_sum1_singleton cspF_Rep_int_choice_sum2_singleton cspF_Rep_int_choice_nat_singleton cspF_Rep_int_choice_set_singleton cspF_Rep_int_choice_com_singleton cspF_Rep_int_choice_f_singleton lemma cspF_Rep_int_choice_const_sum_rule: "!! c:C .. P =F[M,M] IF (sumset C={}) THEN DIV ELSE P" apply (case_tac "sumset C={}") apply (simp) apply (rule cspF_rw_right) apply (rule cspF_IF) apply (rule cspF_Rep_int_choice_empty) apply (simp) apply (simp) apply (rule cspF_rw_right) apply (rule cspF_IF) apply (rule cspF_Rep_int_choice_const) apply (simp_all) done lemma cspF_Rep_int_choice_const_nat_rule: "!nat n:N .. P =F[M,M] IF (N={}) THEN DIV ELSE P" apply (simp add: Rep_int_choice_ss_def) apply (rule cspF_rw_left) apply (rule cspF_Rep_int_choice_const_sum_rule) by (simp) lemma cspF_Rep_int_choice_const_set_rule: "!set X:Xs .. P =F[M,M] IF (Xs={}) THEN DIV ELSE P" apply (simp add: Rep_int_choice_ss_def) apply (rule cspF_rw_left) apply (rule cspF_Rep_int_choice_const_sum_rule) by (simp) lemma cspF_Rep_int_choice_const_com_rule: "! x:X .. P =F[M,M] IF (X={}) THEN DIV ELSE P" apply (simp add: Rep_int_choice_com_def) apply (rule cspF_rw_left) apply (rule cspF_Rep_int_choice_const_set_rule) by (simp) lemma cspF_Rep_int_choice_const_f_rule: "!<f> x:X .. P =F[M,M] IF (X={}) THEN DIV ELSE P" apply (simp add: Rep_int_choice_f_def) apply (rule cspF_rw_left) apply (rule cspF_Rep_int_choice_const_com_rule) by (simp) lemmas cspF_Rep_int_choice_const_rule = cspF_Rep_int_choice_const_sum_rule cspF_Rep_int_choice_const_nat_rule cspF_Rep_int_choice_const_set_rule cspF_Rep_int_choice_const_com_rule cspF_Rep_int_choice_const_f_rule lemmas cspF_Int_choice_rule = cspF_Rep_int_choice_empty cspF_Rep_int_choice_singleton cspF_Int_choice_idem cspF_Rep_int_choice_const_rule (***************************************************************** External *****************************************************************) (* to make produced process be concrete *) lemma cspF_Ext_pre_choice_empty_DIV: "? :{} -> Pf =F[M1,M2] ? a:{} -> DIV" apply (rule cspF_rw_left) apply (rule cspF_STOP_step[THEN cspF_sym]) apply (rule cspF_STOP_step) done lemma cspF_Ext_choice_unit_l_hsf: "? :{} -> Qf [+] P =F[M,M] P" apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (rule cspF_step[THEN cspF_sym]) apply (rule cspF_reflex) apply (simp add: cspF_unit) done lemma cspF_Ext_choice_unit_r_hsf: "P [+] ? :{} -> Qf =F[M,M] P" apply (rule cspF_rw_left) apply (rule cspF_commut) apply (simp add: cspF_Ext_choice_unit_l_hsf) done lemmas cspF_Ext_choice_rule = cspF_Ext_pre_choice_empty_DIV cspF_Ext_choice_unit_l cspF_Ext_choice_unit_l_hsf cspF_Ext_choice_unit_r cspF_Ext_choice_unit_r_hsf cspF_Ext_choice_idem (*-----------------------------* | simp rule for cspF | *-----------------------------*) lemmas cspF_choice_rule = cspF_Int_choice_rule cspF_Ext_choice_rule (***************************************************************** Timeout *****************************************************************) (*------------------* | csp law | *------------------*) (*** <= Timeout ***) lemma cspF_Timeout_right: "[| P <=F[M1,M2] Q1 ; P <=F[M1,M2] Q2 |] ==> P <=F[M1,M2] Q1 [> Q2" apply (rule cspF_rw_right) apply (rule cspF_dist) apply (rule cspF_Int_choice_right) apply (rule cspF_Ext_choice_right, simp_all) apply (rule cspF_rw_right) apply (rule cspF_Ext_choice_unit_l, simp_all) done (*** STOP [> P = P ***) lemma cspF_STOP_Timeout: "STOP [> P =F[M,M] P" apply (rule cspF_rw_left) apply (rule cspF_dist) apply (rule cspF_rw_left) apply (rule cspF_Int_choice_idem) apply (rule cspF_unit) done (*================================================* | | | auxiliary step laws | | | *================================================*) (* split + resolve *) lemma cspF_Parallel_Timeout_split_resolve_SKIP_or_DIV: "[| P = SKIP | P = DIV ; Q = SKIP | Q = DIV |] ==> ((? :Y -> Pf) [+] P) |[X]| ((? :Z -> Qf) [+] Q) =F[M,M] (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [+] Q)) |~| (((? x:Y -> Pf x) [+] P) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [+] Q)) ELSE (((? x:Y -> Pf x) [+] P) |[X]| Qf x)) [> (((P |[X]| ((? :Z -> Qf) [+] Q)) |~| (((? :Y -> Pf) [+] P) |[X]| Q)))" apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (simp) apply (rule cspF_Ext_choice_SKIP_or_DIV_resolve) apply (simp) apply (rule cspF_Ext_choice_SKIP_or_DIV_resolve) apply (simp) apply (rule cspF_rw_left) apply (rule cspF_Parallel_Timeout_split) apply (rule cspF_decompo) apply (rule cspF_decompo) apply (rule cspF_decompo) apply (simp) apply (rule cspF_decompo) apply (simp) apply (simp) apply (rule cspF_decompo) apply (simp) apply (rule cspF_decompo) apply (rule cspF_decompo) apply (simp) apply (simp) apply (rule cspF_Ext_choice_SKIP_or_DIV_resolve[THEN cspF_sym]) apply (simp) apply (rule cspF_decompo) apply (simp) apply (simp) apply (rule cspF_Ext_choice_SKIP_or_DIV_resolve[THEN cspF_sym]) apply (simp) apply (simp) apply (rule cspF_decompo) apply (simp) apply (rule cspF_decompo) apply (simp) apply (simp) apply (rule cspF_Ext_choice_SKIP_or_DIV_resolve[THEN cspF_sym]) apply (simp) apply (rule cspF_decompo) apply (simp) apply (simp) apply (rule cspF_Ext_choice_SKIP_or_DIV_resolve[THEN cspF_sym]) apply (simp) apply (simp) apply (simp) apply (rule cspF_decompo) apply (rule cspF_decompo) apply (simp) apply (simp) apply (rule cspF_Ext_choice_SKIP_or_DIV_resolve[THEN cspF_sym]) apply (simp) apply (rule cspF_decompo) apply (simp) apply (rule cspF_Ext_choice_SKIP_or_DIV_resolve[THEN cspF_sym]) apply (simp) apply (simp) done lemma cspF_Parallel_Timeout_split_resolve_SKIP_SKIP: "((? :Y -> Pf) [+] SKIP) |[X]| ((? :Z -> Qf) [+] SKIP) =F[M,M] (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [+] SKIP)) |~| (((? x:Y -> Pf x) [+] SKIP) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [+] SKIP)) ELSE (((? x:Y -> Pf x) [+] SKIP) |[X]| Qf x)) [> (((SKIP |[X]| ((? :Z -> Qf) [+] SKIP)) |~| (((? :Y -> Pf) [+] SKIP) |[X]| SKIP)))" by (simp add: cspF_Parallel_Timeout_split_resolve_SKIP_or_DIV) lemma cspF_Parallel_Timeout_split_resolve_DIV_DIV: "((? :Y -> Pf) [+] DIV) |[X]| ((? :Z -> Qf) [+] DIV) =F[M,M] (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [+] DIV)) |~| (((? x:Y -> Pf x) [+] DIV) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [+] DIV)) ELSE (((? x:Y -> Pf x) [+] DIV) |[X]| Qf x)) [> (((DIV |[X]| ((? :Z -> Qf) [+] DIV)) |~| (((? :Y -> Pf) [+] DIV) |[X]| DIV)))" by (simp add: cspF_Parallel_Timeout_split_resolve_SKIP_or_DIV) lemma cspF_Parallel_Timeout_split_resolve_SKIP_DIV: "((? :Y -> Pf) [+] SKIP) |[X]| ((? :Z -> Qf) [+] DIV) =F[M,M] (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [+] DIV)) |~| (((? x:Y -> Pf x) [+] SKIP) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [+] DIV)) ELSE (((? x:Y -> Pf x) [+] SKIP) |[X]| Qf x)) [> (((SKIP |[X]| ((? :Z -> Qf) [+] DIV)) |~| (((? :Y -> Pf) [+] SKIP) |[X]| DIV)))" by (simp add: cspF_Parallel_Timeout_split_resolve_SKIP_or_DIV) lemma cspF_Parallel_Timeout_split_resolve_DIV_SKIP: "((? :Y -> Pf) [+] DIV) |[X]| ((? :Z -> Qf) [+] SKIP) =F[M,M] (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [+] SKIP)) |~| (((? x:Y -> Pf x) [+] DIV) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [+] SKIP)) ELSE (((? x:Y -> Pf x) [+] DIV) |[X]| Qf x)) [> (((DIV |[X]| ((? :Z -> Qf) [+] SKIP)) |~| (((? :Y -> Pf) [+] DIV) |[X]| SKIP)))" by (simp add: cspF_Parallel_Timeout_split_resolve_SKIP_or_DIV) lemmas cspF_Parallel_Timeout_split_resolve = cspF_Parallel_Timeout_split_resolve_SKIP_SKIP cspF_Parallel_Timeout_split_resolve_DIV_DIV cspF_Parallel_Timeout_split_resolve_SKIP_DIV cspF_Parallel_Timeout_split_resolve_DIV_SKIP (* input + resolve *) lemma cspF_Parallel_Timeout_input_resolve_SKIP_or_DIV_l: "P = SKIP | P = DIV ==> ((? :Y -> Pf) [+] P) |[X]| (? :Z -> Qf) =F[M,M] (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| (? x:Z -> Qf x)) |~| (((? x:Y -> Pf x) [+] P) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| (? x:Z -> Qf x)) ELSE (((? x:Y -> Pf x) [+] P) |[X]| Qf x)) [> (((P |[X]| (? :Z -> Qf))))" apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (simp) apply (rule cspF_Ext_choice_SKIP_or_DIV_resolve) apply (simp) apply (rule cspF_reflex) apply (rule cspF_rw_left) apply (rule cspF_Parallel_Timeout_input) apply (rule cspF_decompo) apply (rule cspF_decompo) apply (rule cspF_decompo) apply (simp) apply (rule cspF_decompo) apply (simp) apply (simp) apply (rule cspF_decompo) apply (simp) apply (rule cspF_decompo) apply (simp) apply (rule cspF_decompo) apply (simp) apply (simp) apply (rule cspF_Ext_choice_SKIP_or_DIV_resolve[THEN cspF_sym]) apply (simp) apply (simp) apply (rule cspF_decompo) apply (simp) apply (simp) apply (rule cspF_decompo) apply (simp) apply (simp) apply (rule cspF_Ext_choice_SKIP_or_DIV_resolve[THEN cspF_sym]) apply (simp) apply (simp) apply (simp) apply (simp) done lemma cspF_Parallel_Timeout_input_resolve_SKIP_or_DIV_r: "Q = SKIP | Q = DIV ==> (? :Y -> Pf) |[X]| ((? :Z -> Qf) [+] Q) =F[M,M] (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [+] Q)) |~| ((? x:Y -> Pf x) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [+] Q)) ELSE ((? x:Y -> Pf x) |[X]| Qf x)) [> ((((? :Y -> Pf) |[X]| Q)))" apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (simp) apply (rule cspF_reflex) apply (rule cspF_Ext_choice_SKIP_or_DIV_resolve) apply (simp) apply (rule cspF_rw_left) apply (rule cspF_Parallel_Timeout_input) apply (rule cspF_decompo) apply (rule cspF_decompo) apply (rule cspF_decompo) apply (simp) apply (rule cspF_decompo) apply (simp) apply (simp) apply (rule cspF_decompo) apply (simp) apply (rule cspF_decompo) apply (rule cspF_decompo) apply (simp) apply (simp) apply (rule cspF_Ext_choice_SKIP_or_DIV_resolve[THEN cspF_sym]) apply (simp) apply (simp) apply (rule cspF_decompo) apply (simp) apply (simp) apply (rule cspF_decompo) apply (simp) apply (simp) apply (rule cspF_Ext_choice_SKIP_or_DIV_resolve[THEN cspF_sym]) apply (simp) apply (simp) apply (simp) apply (simp) done lemmas cspF_Parallel_Timeout_input_resolve_SKIP_or_DIV = cspF_Parallel_Timeout_input_resolve_SKIP_or_DIV_l cspF_Parallel_Timeout_input_resolve_SKIP_or_DIV_r lemma cspF_Parallel_Timeout_input_resolve_SKIP_l: "((? :Y -> Pf) [+] SKIP) |[X]| (? :Z -> Qf) =F[M,M] (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| (? x:Z -> Qf x)) |~| (((? x:Y -> Pf x) [+] SKIP) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| (? x:Z -> Qf x)) ELSE (((? x:Y -> Pf x) [+] SKIP) |[X]| Qf x)) [> (((SKIP |[X]| (? :Z -> Qf))))" by (simp add: cspF_Parallel_Timeout_input_resolve_SKIP_or_DIV) lemma cspF_Parallel_Timeout_input_resolve_DIV_l: "((? :Y -> Pf) [+] DIV) |[X]| (? :Z -> Qf) =F[M,M] (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| (? x:Z -> Qf x)) |~| (((? x:Y -> Pf x) [+] DIV) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| (? x:Z -> Qf x)) ELSE (((? x:Y -> Pf x) [+] DIV) |[X]| Qf x)) [> (((DIV |[X]| (? :Z -> Qf))))" by (simp add: cspF_Parallel_Timeout_input_resolve_SKIP_or_DIV) lemma cspF_Parallel_Timeout_input_resolve_SKIP_r: "(? :Y -> Pf) |[X]| ((? :Z -> Qf) [+] SKIP) =F[M,M] (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [+] SKIP)) |~| ((? x:Y -> Pf x) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [+] SKIP)) ELSE ((? x:Y -> Pf x) |[X]| Qf x)) [> ((((? :Y -> Pf) |[X]| SKIP)))" by (simp add: cspF_Parallel_Timeout_input_resolve_SKIP_or_DIV) lemma cspF_Parallel_Timeout_input_resolve_DIV_r: "(? :Y -> Pf) |[X]| ((? :Z -> Qf) [+] DIV) =F[M,M] (? x:((X Int Y Int Z) Un (Y - X) Un (Z - X)) -> IF (x : X) THEN (Pf x |[X]| Qf x) ELSE IF (x : Y & x : Z) THEN ((Pf x |[X]| ((? x:Z -> Qf x) [+] DIV)) |~| ((? x:Y -> Pf x) |[X]| Qf x)) ELSE IF (x : Y) THEN (Pf x |[X]| ((? x:Z -> Qf x) [+] DIV)) ELSE ((? x:Y -> Pf x) |[X]| Qf x)) [> ((((? :Y -> Pf) |[X]| DIV)))" by (simp add: cspF_Parallel_Timeout_input_resolve_SKIP_or_DIV) lemmas cspF_Parallel_Timeout_input_resolve = cspF_Parallel_Timeout_input_resolve_SKIP_l cspF_Parallel_Timeout_input_resolve_SKIP_r cspF_Parallel_Timeout_input_resolve_DIV_l cspF_Parallel_Timeout_input_resolve_DIV_r (**************** ;; + resolve ****************) lemma cspF_SKIP_Seq_compo_step_resolve: "((? :X -> Pf) [+] SKIP) ;; Q =F[M,M] (? x:X -> (Pf x ;; Q)) [> Q" apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (rule cspF_Ext_choice_SKIP_or_DIV_resolve) apply (simp) apply (rule cspF_reflex) apply (rule cspF_SKIP_Seq_compo_step) done lemma cspF_DIV_Seq_compo_step_resolve: "((? :X -> Pf) [+] DIV) ;; Q =F[M,M] (? x:X -> (Pf x ;; Q)) [+] DIV" apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (rule cspF_Ext_choice_SKIP_or_DIV_resolve) apply (simp) apply (rule cspF_reflex) apply (rule cspF_rw_left) apply (rule cspF_DIV_Seq_compo_step) apply (rule cspF_Ext_choice_SKIP_DIV_resolve[THEN cspF_sym]) done lemmas cspF_SKIP_DIV_Seq_compo_step_resolve = cspF_SKIP_Seq_compo_step_resolve cspF_DIV_Seq_compo_step_resolve (****** for sequentilising processes with SKIP or DIV ******) lemmas cspF_SKIP_DIV_resolve = cspF_SKIP_DIV cspF_Parallel_Timeout_split_resolve cspF_Parallel_Timeout_input_resolve cspF_SKIP_DIV_Seq_compo_step_resolve lemmas cspF_SKIP_or_DIV_resolve = cspF_Parallel_Timeout_split_resolve_SKIP_or_DIV cspF_Parallel_Timeout_input_resolve_SKIP_or_DIV (*=========================================================* | | | for convenience, especially for fully sequntialising | | | *=========================================================*) lemma cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_DIV_l: "Q = SKIP | Q = DIV | Q = STOP ==> (P [+] Q) |[X]| DIV =F[M,M] (P |[X]| DIV)" apply (erule disjE) apply (simp) apply (rule cspF_SKIP_DIV) apply (erule disjE) apply (simp) apply (rule cspF_SKIP_DIV) apply (simp) apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (simp_all) apply (rule cspF_unit) apply (rule cspF_reflex) apply (rule cspF_reflex) done lemma cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_DIV_r: "Q = SKIP | Q = DIV | Q = STOP ==> DIV |[X]| (P [+] Q) =F[M,M] (DIV |[X]| P)" apply (rule cspF_rw_left) apply (rule cspF_commut) apply (rule cspF_rw_right) apply (rule cspF_commut) apply (simp add: cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_DIV_l) done lemmas cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_DIV = cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_DIV_l cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_DIV_r lemma cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_SKIP_l: "Q = SKIP | Q = DIV | Q = STOP ==> ((? :Y -> Pf) [+] Q) |[X]| SKIP =F[M,M] (? x:(Y - X) -> (Pf x |[X]| SKIP)) [+] Q" apply (erule disjE) apply (simp) apply (rule cspF_SKIP_DIV) apply (erule disjE) apply (simp) apply (rule cspF_SKIP_DIV) apply (simp) apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (simp_all) apply (rule cspF_unit) apply (rule cspF_reflex) apply (rule cspF_rw_right) apply (rule cspF_unit) apply (rule cspF_SKIP_DIV) done lemma cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_SKIP_r: "Q = SKIP | Q = DIV | Q = STOP ==> SKIP |[X]| ((? :Y -> Pf) [+] Q) =F[M,M] (? x:(Y - X) -> (SKIP |[X]| Pf x)) [+] Q" apply (rule cspF_rw_left) apply (rule cspF_commut) apply (rule cspF_rw_right) apply (rule cspF_decompo) apply (rule cspF_decompo) apply (simp) apply (rule cspF_commut) apply (rule cspF_reflex) apply (simp add: cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_SKIP_l) done lemmas cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_SKIP = cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_SKIP_l cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_SKIP_r lemmas cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice = cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_DIV cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_SKIP (* renaming *) lemma cspF_SKIP_or_DIV_or_STOP_Renaming_Id: "P = SKIP | P = DIV | P = STOP ==> P [[r]] =F[M,M] P" apply (erule disjE) apply (simp add: cspF_SKIP_DIV) apply (erule disjE) apply (simp add: cspF_SKIP_DIV) apply (simp) apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (simp) apply (rule cspF_step) apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (simp) apply (rule cspF_Ext_pre_choice_empty_DIV) apply (rule cspF_rw_left) apply (rule cspF_step) apply (rule cspF_rw_right) apply (rule cspF_step) apply (rule cspF_decompo) apply (auto) done (* restg *) lemma cspF_STOP_Depth_rest: "STOP |. Suc n =F[M,M] STOP" apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (simp) apply (rule cspF_step) apply (rule cspF_rw_left) apply (rule cspF_step) apply (rule cspF_rw_right) apply (rule cspF_step) apply (rule cspF_decompo) apply (auto) done (*==============================================================* | | | Associativity and Commutativity for SKIP and DIV | | (for sequentialising) | | | *==============================================================*) lemma cspF_Ext_pre_choice_SKIP_commut: "SKIP [+] (? :X -> Pf) =F[M,M] (? :X -> Pf) [+] SKIP" by (rule cspF_commut) lemma cspF_Ext_pre_choice_DIV_commut: "DIV [+] (? :X -> Pf) =F[M,M] (? :X -> Pf) [+] DIV" by (rule cspF_commut) lemma cspF_Ext_pre_choice_SKIP_assoc: "((? :X -> Pf) [+] SKIP) [+] (? :Y -> Qf) =F[M,M] ((? :X -> Pf) [+] (? :Y -> Qf)) [+] SKIP" apply (rule cspF_rw_left) apply (rule cspF_assoc[THEN cspF_sym]) apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (rule cspF_reflex) apply (rule cspF_commut) apply (rule cspF_assoc) done lemma cspF_Ext_pre_choice_DIV_assoc: "((? :X -> Pf) [+] DIV) [+] (? :Y -> Qf) =F[M,M] ((? :X -> Pf) [+] (? :Y -> Qf)) [+] DIV" apply (rule cspF_rw_left) apply (rule cspF_assoc[THEN cspF_sym]) apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (rule cspF_reflex) apply (rule cspF_commut) apply (rule cspF_assoc) done lemma cspF_Ext_choice_idem_assoc: "(P [+] Q) [+] Q =F[M,M] (P [+] Q)" apply (rule cspF_rw_left) apply (rule cspF_assoc[THEN cspF_sym]) apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (rule cspF_reflex) apply (rule cspF_idem) apply (rule cspF_reflex) done lemma cspF_Ext_choice_SKIP_DIV_assoc: "(P [+] SKIP) [+] DIV =F[M,M] (P [+] SKIP)" apply (rule cspF_rw_left) apply (rule cspF_assoc[THEN cspF_sym]) apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (rule cspF_reflex) apply (rule cspF_SKIP_DIV) apply (rule cspF_reflex) done lemma cspF_Ext_choice_DIV_SKIP_assoc: "(P [+] DIV) [+] SKIP =F[M,M] (P [+] SKIP)" apply (rule cspF_rw_left) apply (rule cspF_assoc[THEN cspF_sym]) apply (rule cspF_rw_left) apply (rule cspF_decompo) apply (rule cspF_reflex) apply (rule cspF_SKIP_DIV) apply (rule cspF_reflex) done lemmas cspF_SKIP_DIV_sort = cspF_Ext_choice_assoc cspF_Ext_pre_choice_SKIP_commut cspF_Ext_pre_choice_DIV_commut cspF_Ext_pre_choice_SKIP_assoc cspF_Ext_pre_choice_DIV_assoc cspF_Ext_choice_idem_assoc cspF_Ext_choice_SKIP_DIV_assoc cspF_Ext_choice_DIV_SKIP_assoc (*==============================================================* | | | decompostion control by the flag "Not_Decompo_Flag" | | | *==============================================================*) (*------------------------------------------------* | trans with Flag | *------------------------------------------------*) (*** rewrite (eq) ***) lemma cspF_rw_flag_left_eq: "[| R1 =F[M1,M1] R2 ; Not_Decompo_Flag & R2 =F[M1,M3] R3 |] ==> R1 =F[M1,M3] R3" by (simp add: eqF_def Not_Decompo_Flag_def) lemma cspF_rw_flag_left_ref: "[| R1 =F[M1,M1] R2 ; Not_Decompo_Flag & R2 <=F[M1,M3] R3 |] ==> R1 <=F[M1,M3] R3" by (simp add: refF_def eqF_def Not_Decompo_Flag_def) lemmas cspF_rw_flag_left = cspF_rw_flag_left_eq cspF_rw_flag_left_ref lemma cspF_rw_flag_right_eq: "[| R3 =F[M3,M3] R2 ; Not_Decompo_Flag & R1 =F[M1,M3] R2 |] ==> R1 =F[M1,M3] R3" by (simp add: eqF_def Not_Decompo_Flag_def) lemma cspF_rw_flag_right_ref: "[| R3 =F[M3,M3] R2 ; Not_Decompo_Flag & R1 <=F[M1,M3] R2 |] ==> R1 <=F[M1,M3] R3" by (simp add: refF_def eqF_def Not_Decompo_Flag_def) lemmas cspF_rw_flag_right = cspF_rw_flag_right_eq cspF_rw_flag_right_ref (*------------------------------------------------* | trans with Flag (ref) | *------------------------------------------------*) lemma cspF_tr_flag_left_eq: "[| P1 =F[M1,M1] P2 ; Not_Decompo_Flag & P2 =F[M1,M3] P3 |] ==> P1 =F[M1,M3] P3" by (simp add: eqF_def) lemma cspF_tr_flag_left_ref: "[| P1 <=F[M1,M1] P2 ; Not_Decompo_Flag & P2 <=F[M1,M3] P3 |] ==> P1 <=F[M1,M3] P3" by (simp add: refF_def eqF_def Not_Decompo_Flag_def) lemmas cspF_tr_flag_left = cspF_tr_flag_left_eq cspF_tr_flag_left_ref lemma cspF_tr_flag_right_eq: "[| P2 =F[M3,M3] P3 ; Not_Decompo_Flag & P1 =F[M1,M3] P2 |] ==> P1 =F[M1,M3] P3" by (simp add: eqF_def) lemma cspF_tr_flag_right_ref: "[| P2 <=F[M3,M3] P3 ; Not_Decompo_Flag & P1 <=F[M1,M3] P2 |] ==> P1 <=F[M1,M3] P3" by (simp add: refF_def eqF_def Not_Decompo_Flag_def) lemmas cspF_tr_flag_right = cspF_tr_flag_right_eq cspF_tr_flag_right_ref (*==============================================================* | decompostion of Sequential composition with a flag | | It is often useful that the second process is not expanded. | *==============================================================*) lemma cspF_Seq_compo_mono_flag: "[| P1 <=F[M1,M2] Q1 ; Not_Decompo_Flag & P2 <=F[M1,M2] Q2 |] ==> P1 ;; P2 <=F[M1,M2] Q1 ;; Q2" by (simp add: cspF_Seq_compo_mono) lemma cspF_Seq_compo_cong_flag: "[| P1 =F[M1,M2] Q1 ; Not_Decompo_Flag & P2 =F[M1,M2] Q2 |] ==> P1 ;; P2 =F[M1,M2] Q1 ;; Q2" by (simp add: cspF_Seq_compo_cong) lemmas cspF_free_mono_flag = cspF_Ext_choice_mono cspF_Int_choice_mono cspF_Parallel_mono cspF_Hiding_mono cspF_Renaming_mono cspF_Seq_compo_mono_flag cspF_Depth_rest_mono lemmas cspF_free_cong_flag = cspF_Ext_choice_cong cspF_Int_choice_cong cspF_Parallel_cong cspF_Hiding_cong cspF_Renaming_cong cspF_Seq_compo_cong_flag cspF_Depth_rest_cong lemmas cspF_free_decompo_flag = cspF_free_mono_flag cspF_free_cong_flag end
lemma cspF_Rep_int_choice_sum1_singleton:
!! :type1 {c} .. Pf =F[M,M] Pf (type1 c)
lemma cspF_Rep_int_choice_sum2_singleton:
!! :type2 {c} .. Pf =F[M,M] Pf (type2 c)
lemma cspF_Rep_int_choice_nat_singleton:
!nat :{n} .. Pf =F[M,M] Pf n
lemma cspF_Rep_int_choice_set_singleton:
!set :{X} .. Pf =F[M,M] Pf X
lemma cspF_Rep_int_choice_com_singleton:
! :{a} .. Pf =F[M,M] Pf a
lemma cspF_Rep_int_choice_f_singleton:
inj f ==> !<f> :{x} .. Pf =F[M,M] Pf x
lemma cspF_Rep_int_choice_singleton:
!! :type1 {c} .. Pf =F[M,M] Pf (type1 c)
!! :type2 {c} .. Pf =F[M,M] Pf (type2 c)
!nat :{n} .. Pf =F[M,M] Pf n
!set :{X} .. Pf =F[M,M] Pf X
! :{a} .. Pf =F[M,M] Pf a
inj f ==> !<f> :{x} .. Pf =F[M,M] Pf x
lemma cspF_Rep_int_choice_const_sum_rule:
!! c:C .. P =F[M,M] IF (sumset C = {}) THEN DIV ELSE P
lemma cspF_Rep_int_choice_const_nat_rule:
!nat n:N .. P =F[M,M] IF (N = {}) THEN DIV ELSE P
lemma cspF_Rep_int_choice_const_set_rule:
!set X:Xs .. P =F[M,M] IF (Xs = {}) THEN DIV ELSE P
lemma cspF_Rep_int_choice_const_com_rule:
! x:X .. P =F[M,M] IF (X = {}) THEN DIV ELSE P
lemma cspF_Rep_int_choice_const_f_rule:
!<f> x:X .. P =F[M,M] IF (X = {}) THEN DIV ELSE P
lemma cspF_Rep_int_choice_const_rule:
!! c:C .. P =F[M,M] IF (sumset C = {}) THEN DIV ELSE P
!nat n:N .. P =F[M,M] IF (N = {}) THEN DIV ELSE P
!set X:Xs .. P =F[M,M] IF (Xs = {}) THEN DIV ELSE P
! x:X .. P =F[M,M] IF (X = {}) THEN DIV ELSE P
!<f> x:X .. P =F[M,M] IF (X = {}) THEN DIV ELSE P
lemma cspF_Int_choice_rule:
sumset C = {} ==> !! :C .. Pf =F[M1.0,M2.0] DIV
!nat :{} .. Pf =F[M1.0,M2.0] DIV
!set :{} .. Pf =F[M1.0,M2.0] DIV
! :{} .. Pf =F[M1.0,M2.0] DIV
inj f ==> !<f> :{} .. Pf =F[M1.0,M2.0] DIV
!! :type1 {c} .. Pf =F[M,M] Pf (type1 c)
!! :type2 {c} .. Pf =F[M,M] Pf (type2 c)
!nat :{n} .. Pf =F[M,M] Pf n
!set :{X} .. Pf =F[M,M] Pf X
! :{a} .. Pf =F[M,M] Pf a
inj f ==> !<f> :{x} .. Pf =F[M,M] Pf x
P |~| P =F[M,M] P
!! c:C .. P =F[M,M] IF (sumset C = {}) THEN DIV ELSE P
!nat n:N .. P =F[M,M] IF (N = {}) THEN DIV ELSE P
!set X:Xs .. P =F[M,M] IF (Xs = {}) THEN DIV ELSE P
! x:X .. P =F[M,M] IF (X = {}) THEN DIV ELSE P
!<f> x:X .. P =F[M,M] IF (X = {}) THEN DIV ELSE P
lemma cspF_Ext_pre_choice_empty_DIV:
? :{} -> Pf =F[M1.0,M2.0] ? a:{} -> DIV
lemma cspF_Ext_choice_unit_l_hsf:
? :{} -> Qf [+] P =F[M,M] P
lemma cspF_Ext_choice_unit_r_hsf:
P [+] ? :{} -> Qf =F[M,M] P
lemma cspF_Ext_choice_rule:
? :{} -> Pf =F[M1.0,M2.0] ? a:{} -> DIV
STOP [+] P =F[M,M] P
? :{} -> Qf [+] P =F[M,M] P
P [+] STOP =F[M,M] P
P [+] ? :{} -> Qf =F[M,M] P
P [+] P =F[M,M] P
lemma cspF_choice_rule:
sumset C = {} ==> !! :C .. Pf =F[M1.0,M2.0] DIV
!nat :{} .. Pf =F[M1.0,M2.0] DIV
!set :{} .. Pf =F[M1.0,M2.0] DIV
! :{} .. Pf =F[M1.0,M2.0] DIV
inj f ==> !<f> :{} .. Pf =F[M1.0,M2.0] DIV
!! :type1 {c} .. Pf =F[M,M] Pf (type1 c)
!! :type2 {c} .. Pf =F[M,M] Pf (type2 c)
!nat :{n} .. Pf =F[M,M] Pf n
!set :{X} .. Pf =F[M,M] Pf X
! :{a} .. Pf =F[M,M] Pf a
inj f ==> !<f> :{x} .. Pf =F[M,M] Pf x
P |~| P =F[M,M] P
!! c:C .. P =F[M,M] IF (sumset C = {}) THEN DIV ELSE P
!nat n:N .. P =F[M,M] IF (N = {}) THEN DIV ELSE P
!set X:Xs .. P =F[M,M] IF (Xs = {}) THEN DIV ELSE P
! x:X .. P =F[M,M] IF (X = {}) THEN DIV ELSE P
!<f> x:X .. P =F[M,M] IF (X = {}) THEN DIV ELSE P
? :{} -> Pf =F[M1.0,M2.0] ? a:{} -> DIV
STOP [+] P =F[M,M] P
? :{} -> Qf [+] P =F[M,M] P
P [+] STOP =F[M,M] P
P [+] ? :{} -> Qf =F[M,M] P
P [+] P =F[M,M] P
lemma cspF_Timeout_right:
[| P <=F[M1.0,M2.0] Q1.0; P <=F[M1.0,M2.0] Q2.0 |]
==> P <=F[M1.0,M2.0] Q1.0 [> Q2.0
lemma cspF_STOP_Timeout:
STOP [> P =F[M,M] P
lemma cspF_Parallel_Timeout_split_resolve_SKIP_or_DIV:
[| P = SKIP ∨ P = DIV; Q = SKIP ∨ Q = DIV |]
==> (? :Y -> Pf [+] P) |[X]| (? :Z -> Qf [+] Q) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] Q)
|~| (? :Y -> Pf [+] P) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] Q))
ELSE ((? :Y -> Pf [+] P) |[X]| Qf x)
[> (P |[X]| (? :Z -> Qf [+] Q) |~| (? :Y -> Pf [+] P) |[X]| Q)
lemma cspF_Parallel_Timeout_split_resolve_SKIP_SKIP:
(? :Y -> Pf [+] SKIP) |[X]| (? :Z -> Qf [+] SKIP) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP)
|~| (? :Y -> Pf [+] SKIP) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP))
ELSE ((? :Y -> Pf [+] SKIP) |[X]| Qf x)
[> (SKIP |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] SKIP) |[X]| SKIP)
lemma cspF_Parallel_Timeout_split_resolve_DIV_DIV:
(? :Y -> Pf [+] DIV) |[X]| (? :Z -> Qf [+] DIV) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] DIV)
|~| (? :Y -> Pf [+] DIV) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] DIV))
ELSE ((? :Y -> Pf [+] DIV) |[X]| Qf x)
[> (DIV |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] DIV) |[X]| DIV)
lemma cspF_Parallel_Timeout_split_resolve_SKIP_DIV:
(? :Y -> Pf [+] SKIP) |[X]| (? :Z -> Qf [+] DIV) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] DIV)
|~| (? :Y -> Pf [+] SKIP) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] DIV))
ELSE ((? :Y -> Pf [+] SKIP) |[X]| Qf x)
[> (SKIP |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] SKIP) |[X]| DIV)
lemma cspF_Parallel_Timeout_split_resolve_DIV_SKIP:
(? :Y -> Pf [+] DIV) |[X]| (? :Z -> Qf [+] SKIP) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP)
|~| (? :Y -> Pf [+] DIV) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP))
ELSE ((? :Y -> Pf [+] DIV) |[X]| Qf x)
[> (DIV |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] DIV) |[X]| SKIP)
lemma cspF_Parallel_Timeout_split_resolve:
(? :Y -> Pf [+] SKIP) |[X]| (? :Z -> Qf [+] SKIP) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP)
|~| (? :Y -> Pf [+] SKIP) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP))
ELSE ((? :Y -> Pf [+] SKIP) |[X]| Qf x)
[> (SKIP |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] SKIP) |[X]| SKIP)
(? :Y -> Pf [+] DIV) |[X]| (? :Z -> Qf [+] DIV) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] DIV)
|~| (? :Y -> Pf [+] DIV) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] DIV))
ELSE ((? :Y -> Pf [+] DIV) |[X]| Qf x)
[> (DIV |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] DIV) |[X]| DIV)
(? :Y -> Pf [+] SKIP) |[X]| (? :Z -> Qf [+] DIV) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] DIV)
|~| (? :Y -> Pf [+] SKIP) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] DIV))
ELSE ((? :Y -> Pf [+] SKIP) |[X]| Qf x)
[> (SKIP |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] SKIP) |[X]| DIV)
(? :Y -> Pf [+] DIV) |[X]| (? :Z -> Qf [+] SKIP) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP)
|~| (? :Y -> Pf [+] DIV) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP))
ELSE ((? :Y -> Pf [+] DIV) |[X]| Qf x)
[> (DIV |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] DIV) |[X]| SKIP)
lemma cspF_Parallel_Timeout_input_resolve_SKIP_or_DIV_l:
P = SKIP ∨ P = DIV
==> (? :Y -> Pf [+] P) |[X]| ? :Z -> Qf =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] P) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| ? :Z -> Qf)
ELSE ((? :Y -> Pf [+] P) |[X]| Qf x)
[> P |[X]| ? :Z -> Qf
lemma cspF_Parallel_Timeout_input_resolve_SKIP_or_DIV_r:
Q = SKIP ∨ Q = DIV
==> ? :Y -> Pf |[X]| (? :Z -> Qf [+] Q) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] Q) |~| ? :Y -> Pf |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] Q))
ELSE (? :Y -> Pf |[X]| Qf x)
[> ? :Y -> Pf |[X]| Q
lemma cspF_Parallel_Timeout_input_resolve_SKIP_or_DIV:
P = SKIP ∨ P = DIV
==> (? :Y -> Pf [+] P) |[X]| ? :Z -> Qf =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] P) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| ? :Z -> Qf)
ELSE ((? :Y -> Pf [+] P) |[X]| Qf x)
[> P |[X]| ? :Z -> Qf
Q = SKIP ∨ Q = DIV
==> ? :Y -> Pf |[X]| (? :Z -> Qf [+] Q) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] Q) |~| ? :Y -> Pf |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] Q))
ELSE (? :Y -> Pf |[X]| Qf x)
[> ? :Y -> Pf |[X]| Q
lemma cspF_Parallel_Timeout_input_resolve_SKIP_l:
(? :Y -> Pf [+] SKIP) |[X]| ? :Z -> Qf =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| ? :Z -> Qf)
ELSE ((? :Y -> Pf [+] SKIP) |[X]| Qf x)
[> SKIP |[X]| ? :Z -> Qf
lemma cspF_Parallel_Timeout_input_resolve_DIV_l:
(? :Y -> Pf [+] DIV) |[X]| ? :Z -> Qf =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] DIV) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| ? :Z -> Qf)
ELSE ((? :Y -> Pf [+] DIV) |[X]| Qf x)
[> DIV |[X]| ? :Z -> Qf
lemma cspF_Parallel_Timeout_input_resolve_SKIP_r:
? :Y -> Pf |[X]| (? :Z -> Qf [+] SKIP) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| ? :Y -> Pf |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP))
ELSE (? :Y -> Pf |[X]| Qf x)
[> ? :Y -> Pf |[X]| SKIP
lemma cspF_Parallel_Timeout_input_resolve_DIV_r:
? :Y -> Pf |[X]| (? :Z -> Qf [+] DIV) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] DIV) |~| ? :Y -> Pf |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] DIV))
ELSE (? :Y -> Pf |[X]| Qf x)
[> ? :Y -> Pf |[X]| DIV
lemma cspF_Parallel_Timeout_input_resolve:
(? :Y -> Pf [+] SKIP) |[X]| ? :Z -> Qf =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| ? :Z -> Qf)
ELSE ((? :Y -> Pf [+] SKIP) |[X]| Qf x)
[> SKIP |[X]| ? :Z -> Qf
? :Y -> Pf |[X]| (? :Z -> Qf [+] SKIP) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| ? :Y -> Pf |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP))
ELSE (? :Y -> Pf |[X]| Qf x)
[> ? :Y -> Pf |[X]| SKIP
(? :Y -> Pf [+] DIV) |[X]| ? :Z -> Qf =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] DIV) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| ? :Z -> Qf)
ELSE ((? :Y -> Pf [+] DIV) |[X]| Qf x)
[> DIV |[X]| ? :Z -> Qf
? :Y -> Pf |[X]| (? :Z -> Qf [+] DIV) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] DIV) |~| ? :Y -> Pf |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] DIV))
ELSE (? :Y -> Pf |[X]| Qf x)
[> ? :Y -> Pf |[X]| DIV
lemma cspF_SKIP_Seq_compo_step_resolve:
(? :X -> Pf [+] SKIP) ;; Q =F[M,M] ? x:X -> (Pf x ;; Q) [> Q
lemma cspF_DIV_Seq_compo_step_resolve:
(? :X -> Pf [+] DIV) ;; Q =F[M,M] ? x:X -> (Pf x ;; Q) [+] DIV
lemma cspF_SKIP_DIV_Seq_compo_step_resolve:
(? :X -> Pf [+] SKIP) ;; Q =F[M,M] ? x:X -> (Pf x ;; Q) [> Q
(? :X -> Pf [+] DIV) ;; Q =F[M,M] ? x:X -> (Pf x ;; Q) [+] DIV
lemma cspF_SKIP_DIV_resolve:
SKIP |[X]| ? :Y -> Qf =F[M,M] ? x:(Y - X) -> (SKIP |[X]| Qf x)
? :Y -> Pf |[X]| SKIP =F[M,M] ? x:(Y - X) -> (Pf x |[X]| SKIP)
DIV |[X]| ? :Y -> Qf =F[M,M] ? x:(Y - X) -> (DIV |[X]| Qf x) [+] DIV
? :Y -> Qf |[X]| DIV =F[M,M] ? x:(Y - X) -> (Qf x |[X]| DIV) [+] DIV
SKIP [+] DIV =F[M1.0,M2.0] SKIP
DIV [+] SKIP =F[M1.0,M2.0] SKIP
SKIP |[X]| DIV =F[M1.0,M2.0] DIV
DIV |[X]| SKIP =F[M1.0,M2.0] DIV
SKIP |[X]| SKIP =F[M1.0,M2.0] SKIP
DIV |[X]| DIV =F[M1.0,M2.0] DIV
(? :Y -> Pf [+] SKIP) |[X]| SKIP =F[M,M]
? x:(Y - X) -> (Pf x |[X]| SKIP) [+] SKIP
SKIP |[X]| (? :Y -> Pf [+] SKIP) =F[M,M]
? x:(Y - X) -> (SKIP |[X]| Pf x) [+] SKIP
(? :Y -> Pf [+] DIV) |[X]| SKIP =F[M,M] ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] DIV
SKIP |[X]| (? :Y -> Pf [+] DIV) =F[M,M] ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] DIV
(P [+] SKIP) |[X]| DIV =F[M,M] P |[X]| DIV
DIV |[X]| (P [+] SKIP) =F[M,M] DIV |[X]| P
(P [+] DIV) |[X]| DIV =F[M,M] P |[X]| DIV
DIV |[X]| (P [+] DIV) =F[M,M] DIV |[X]| P
SKIP -- X =F[M,M] SKIP
DIV -- X =F[M1.0,M2.0] DIV
(? :Y -> Pf [+] DIV) -- X =F[M,M]
? x:(Y - X) -> Pf x -- X [+] DIV |~| ! x:(Y ∩ X) .. Pf x -- X
(? :Y -> Pf [+] SKIP) -- X =F[M,M]
? x:(Y - X) -> Pf x -- X [+] SKIP |~| ! x:(Y ∩ X) .. Pf x -- X
SKIP [[r]] =F[M1.0,M2.0] SKIP
DIV [[r]] =F[M1.0,M2.0] DIV
SKIP ;; P =F[M,M] P
P ;; SKIP =F[M,M] P
DIV ;; P =F[M1.0,M2.0] DIV
(? :X -> Pf [> SKIP) ;; Q =F[M,M] ? x:X -> (Pf x ;; Q) [> Q
(? :X -> Pf [> DIV) ;; Q =F[M,M] ? x:X -> (Pf x ;; Q) [> DIV
SKIP |. Suc n =F[M1.0,M2.0] SKIP
DIV |. n =F[M1.0,M2.0] DIV
(? :Y -> Pf [+] SKIP) |[X]| (? :Z -> Qf [+] SKIP) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP)
|~| (? :Y -> Pf [+] SKIP) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP))
ELSE ((? :Y -> Pf [+] SKIP) |[X]| Qf x)
[> (SKIP |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] SKIP) |[X]| SKIP)
(? :Y -> Pf [+] DIV) |[X]| (? :Z -> Qf [+] DIV) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] DIV)
|~| (? :Y -> Pf [+] DIV) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] DIV))
ELSE ((? :Y -> Pf [+] DIV) |[X]| Qf x)
[> (DIV |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] DIV) |[X]| DIV)
(? :Y -> Pf [+] SKIP) |[X]| (? :Z -> Qf [+] DIV) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] DIV)
|~| (? :Y -> Pf [+] SKIP) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] DIV))
ELSE ((? :Y -> Pf [+] SKIP) |[X]| Qf x)
[> (SKIP |[X]| (? :Z -> Qf [+] DIV) |~| (? :Y -> Pf [+] SKIP) |[X]| DIV)
(? :Y -> Pf [+] DIV) |[X]| (? :Z -> Qf [+] SKIP) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP)
|~| (? :Y -> Pf [+] DIV) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP))
ELSE ((? :Y -> Pf [+] DIV) |[X]| Qf x)
[> (DIV |[X]| (? :Z -> Qf [+] SKIP) |~| (? :Y -> Pf [+] DIV) |[X]| SKIP)
(? :Y -> Pf [+] SKIP) |[X]| ? :Z -> Qf =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] SKIP) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| ? :Z -> Qf)
ELSE ((? :Y -> Pf [+] SKIP) |[X]| Qf x)
[> SKIP |[X]| ? :Z -> Qf
? :Y -> Pf |[X]| (? :Z -> Qf [+] SKIP) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP) |~| ? :Y -> Pf |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] SKIP))
ELSE (? :Y -> Pf |[X]| Qf x)
[> ? :Y -> Pf |[X]| SKIP
(? :Y -> Pf [+] DIV) |[X]| ? :Z -> Qf =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] DIV) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| ? :Z -> Qf)
ELSE ((? :Y -> Pf [+] DIV) |[X]| Qf x)
[> DIV |[X]| ? :Z -> Qf
? :Y -> Pf |[X]| (? :Z -> Qf [+] DIV) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] DIV) |~| ? :Y -> Pf |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] DIV))
ELSE (? :Y -> Pf |[X]| Qf x)
[> ? :Y -> Pf |[X]| DIV
(? :X -> Pf [+] SKIP) ;; Q =F[M,M] ? x:X -> (Pf x ;; Q) [> Q
(? :X -> Pf [+] DIV) ;; Q =F[M,M] ? x:X -> (Pf x ;; Q) [+] DIV
lemma cspF_SKIP_or_DIV_resolve:
[| P = SKIP ∨ P = DIV; Q = SKIP ∨ Q = DIV |]
==> (? :Y -> Pf [+] P) |[X]| (? :Z -> Qf [+] Q) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] Q)
|~| (? :Y -> Pf [+] P) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] Q))
ELSE ((? :Y -> Pf [+] P) |[X]| Qf x)
[> (P |[X]| (? :Z -> Qf [+] Q) |~| (? :Y -> Pf [+] P) |[X]| Q)
P = SKIP ∨ P = DIV
==> (? :Y -> Pf [+] P) |[X]| ? :Z -> Qf =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| ? :Z -> Qf |~| (? :Y -> Pf [+] P) |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| ? :Z -> Qf)
ELSE ((? :Y -> Pf [+] P) |[X]| Qf x)
[> P |[X]| ? :Z -> Qf
Q = SKIP ∨ Q = DIV
==> ? :Y -> Pf |[X]| (? :Z -> Qf [+] Q) =F[M,M]
? x:(X ∩ Y ∩ Z ∪ (Y - X) ∪ (Z - X))
-> IF (x ∈ X) THEN (Pf x |[X]| Qf x)
ELSE IF (x ∈ Y ∧ x ∈ Z)
THEN (Pf x |[X]| (? :Z -> Qf [+] Q) |~| ? :Y -> Pf |[X]| Qf x)
ELSE IF (x ∈ Y) THEN (Pf x |[X]| (? :Z -> Qf [+] Q))
ELSE (? :Y -> Pf |[X]| Qf x)
[> ? :Y -> Pf |[X]| Q
lemma cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_DIV_l:
Q = SKIP ∨ Q = DIV ∨ Q = STOP ==> (P [+] Q) |[X]| DIV =F[M,M] P |[X]| DIV
lemma cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_DIV_r:
Q = SKIP ∨ Q = DIV ∨ Q = STOP ==> DIV |[X]| (P [+] Q) =F[M,M] DIV |[X]| P
lemma cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_DIV:
Q = SKIP ∨ Q = DIV ∨ Q = STOP ==> (P [+] Q) |[X]| DIV =F[M,M] P |[X]| DIV
Q = SKIP ∨ Q = DIV ∨ Q = STOP ==> DIV |[X]| (P [+] Q) =F[M,M] DIV |[X]| P
lemma cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_SKIP_l:
Q = SKIP ∨ Q = DIV ∨ Q = STOP
==> (? :Y -> Pf [+] Q) |[X]| SKIP =F[M,M] ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] Q
lemma cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_SKIP_r:
Q = SKIP ∨ Q = DIV ∨ Q = STOP
==> SKIP |[X]| (? :Y -> Pf [+] Q) =F[M,M] ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] Q
lemma cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice_SKIP:
Q = SKIP ∨ Q = DIV ∨ Q = STOP
==> (? :Y -> Pf [+] Q) |[X]| SKIP =F[M,M] ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] Q
Q = SKIP ∨ Q = DIV ∨ Q = STOP
==> SKIP |[X]| (? :Y -> Pf [+] Q) =F[M,M] ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] Q
lemma cspF_SKIP_or_DIV_or_STOP_Parallel_Ext_choice:
Q = SKIP ∨ Q = DIV ∨ Q = STOP ==> (P [+] Q) |[X]| DIV =F[M,M] P |[X]| DIV
Q = SKIP ∨ Q = DIV ∨ Q = STOP ==> DIV |[X]| (P [+] Q) =F[M,M] DIV |[X]| P
Q = SKIP ∨ Q = DIV ∨ Q = STOP
==> (? :Y -> Pf [+] Q) |[X]| SKIP =F[M,M] ? x:(Y - X) -> (Pf x |[X]| SKIP) [+] Q
Q = SKIP ∨ Q = DIV ∨ Q = STOP
==> SKIP |[X]| (? :Y -> Pf [+] Q) =F[M,M] ? x:(Y - X) -> (SKIP |[X]| Pf x) [+] Q
lemma cspF_SKIP_or_DIV_or_STOP_Renaming_Id:
P = SKIP ∨ P = DIV ∨ P = STOP ==> P [[r]] =F[M,M] P
lemma cspF_STOP_Depth_rest:
STOP |. Suc n =F[M,M] STOP
lemma cspF_Ext_pre_choice_SKIP_commut:
SKIP [+] ? :X -> Pf =F[M,M] ? :X -> Pf [+] SKIP
lemma cspF_Ext_pre_choice_DIV_commut:
DIV [+] ? :X -> Pf =F[M,M] ? :X -> Pf [+] DIV
lemma cspF_Ext_pre_choice_SKIP_assoc:
? :X -> Pf [+] SKIP [+] ? :Y -> Qf =F[M,M] ? :X -> Pf [+] ? :Y -> Qf [+] SKIP
lemma cspF_Ext_pre_choice_DIV_assoc:
? :X -> Pf [+] DIV [+] ? :Y -> Qf =F[M,M] ? :X -> Pf [+] ? :Y -> Qf [+] DIV
lemma cspF_Ext_choice_idem_assoc:
P [+] Q [+] Q =F[M,M] P [+] Q
lemma cspF_Ext_choice_SKIP_DIV_assoc:
P [+] SKIP [+] DIV =F[M,M] P [+] SKIP
lemma cspF_Ext_choice_DIV_SKIP_assoc:
P [+] DIV [+] SKIP =F[M,M] P [+] SKIP
lemma cspF_SKIP_DIV_sort:
P [+] (Q [+] R) =F[M,M] P [+] Q [+] R
SKIP [+] ? :X -> Pf =F[M,M] ? :X -> Pf [+] SKIP
DIV [+] ? :X -> Pf =F[M,M] ? :X -> Pf [+] DIV
? :X -> Pf [+] SKIP [+] ? :Y -> Qf =F[M,M] ? :X -> Pf [+] ? :Y -> Qf [+] SKIP
? :X -> Pf [+] DIV [+] ? :Y -> Qf =F[M,M] ? :X -> Pf [+] ? :Y -> Qf [+] DIV
P [+] Q [+] Q =F[M,M] P [+] Q
P [+] SKIP [+] DIV =F[M,M] P [+] SKIP
P [+] DIV [+] SKIP =F[M,M] P [+] SKIP
lemma cspF_rw_flag_left_eq:
[| R1.0 =F[M1.0,M1.0] R2.0; Not_Decompo_Flag ∧ R2.0 =F[M1.0,M3.0] R3.0 |]
==> R1.0 =F[M1.0,M3.0] R3.0
lemma cspF_rw_flag_left_ref:
[| R1.0 =F[M1.0,M1.0] R2.0; Not_Decompo_Flag ∧ R2.0 <=F[M1.0,M3.0] R3.0 |]
==> R1.0 <=F[M1.0,M3.0] R3.0
lemma cspF_rw_flag_left:
[| R1.0 =F[M1.0,M1.0] R2.0; Not_Decompo_Flag ∧ R2.0 =F[M1.0,M3.0] R3.0 |]
==> R1.0 =F[M1.0,M3.0] R3.0
[| R1.0 =F[M1.0,M1.0] R2.0; Not_Decompo_Flag ∧ R2.0 <=F[M1.0,M3.0] R3.0 |]
==> R1.0 <=F[M1.0,M3.0] R3.0
lemma cspF_rw_flag_right_eq:
[| R3.0 =F[M3.0,M3.0] R2.0; Not_Decompo_Flag ∧ R1.0 =F[M1.0,M3.0] R2.0 |]
==> R1.0 =F[M1.0,M3.0] R3.0
lemma cspF_rw_flag_right_ref:
[| R3.0 =F[M3.0,M3.0] R2.0; Not_Decompo_Flag ∧ R1.0 <=F[M1.0,M3.0] R2.0 |]
==> R1.0 <=F[M1.0,M3.0] R3.0
lemma cspF_rw_flag_right:
[| R3.0 =F[M3.0,M3.0] R2.0; Not_Decompo_Flag ∧ R1.0 =F[M1.0,M3.0] R2.0 |]
==> R1.0 =F[M1.0,M3.0] R3.0
[| R3.0 =F[M3.0,M3.0] R2.0; Not_Decompo_Flag ∧ R1.0 <=F[M1.0,M3.0] R2.0 |]
==> R1.0 <=F[M1.0,M3.0] R3.0
lemma cspF_tr_flag_left_eq:
[| P1.0 =F[M1.0,M1.0] P2.0; Not_Decompo_Flag ∧ P2.0 =F[M1.0,M3.0] P3.0 |]
==> P1.0 =F[M1.0,M3.0] P3.0
lemma cspF_tr_flag_left_ref:
[| P1.0 <=F[M1.0,M1.0] P2.0; Not_Decompo_Flag ∧ P2.0 <=F[M1.0,M3.0] P3.0 |]
==> P1.0 <=F[M1.0,M3.0] P3.0
lemma cspF_tr_flag_left:
[| P1.0 =F[M1.0,M1.0] P2.0; Not_Decompo_Flag ∧ P2.0 =F[M1.0,M3.0] P3.0 |]
==> P1.0 =F[M1.0,M3.0] P3.0
[| P1.0 <=F[M1.0,M1.0] P2.0; Not_Decompo_Flag ∧ P2.0 <=F[M1.0,M3.0] P3.0 |]
==> P1.0 <=F[M1.0,M3.0] P3.0
lemma cspF_tr_flag_right_eq:
[| P2.0 =F[M3.0,M3.0] P3.0; Not_Decompo_Flag ∧ P1.0 =F[M1.0,M3.0] P2.0 |]
==> P1.0 =F[M1.0,M3.0] P3.0
lemma cspF_tr_flag_right_ref:
[| P2.0 <=F[M3.0,M3.0] P3.0; Not_Decompo_Flag ∧ P1.0 <=F[M1.0,M3.0] P2.0 |]
==> P1.0 <=F[M1.0,M3.0] P3.0
lemma cspF_tr_flag_right:
[| P2.0 =F[M3.0,M3.0] P3.0; Not_Decompo_Flag ∧ P1.0 =F[M1.0,M3.0] P2.0 |]
==> P1.0 =F[M1.0,M3.0] P3.0
[| P2.0 <=F[M3.0,M3.0] P3.0; Not_Decompo_Flag ∧ P1.0 <=F[M1.0,M3.0] P2.0 |]
==> P1.0 <=F[M1.0,M3.0] P3.0
lemma cspF_Seq_compo_mono_flag:
[| P1.0 <=F[M1.0,M2.0] Q1.0; Not_Decompo_Flag ∧ P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 ;; P2.0 <=F[M1.0,M2.0] Q1.0 ;; Q2.0
lemma cspF_Seq_compo_cong_flag:
[| P1.0 =F[M1.0,M2.0] Q1.0; Not_Decompo_Flag ∧ P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 ;; P2.0 =F[M1.0,M2.0] Q1.0 ;; Q2.0
lemma cspF_free_mono_flag:
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 [+] P2.0 <=F[M1.0,M2.0] Q1.0 [+] Q2.0
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 |~| P2.0 <=F[M1.0,M2.0] Q1.0 |~| Q2.0
[| X = Y; P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 |[X]| P2.0 <=F[M1.0,M2.0] Q1.0 |[Y]| Q2.0
[| X = Y; P <=F[M1.0,M2.0] Q |] ==> P -- X <=F[M1.0,M2.0] Q -- Y
[| r1.0 = r2.0; P <=F[M1.0,M2.0] Q |] ==> P [[r1.0]] <=F[M1.0,M2.0] Q [[r2.0]]
[| P1.0 <=F[M1.0,M2.0] Q1.0; Not_Decompo_Flag ∧ P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 ;; P2.0 <=F[M1.0,M2.0] Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=F[M1.0,M2.0] Q |] ==> P |. n1.0 <=F[M1.0,M2.0] Q |. n2.0
lemma cspF_free_cong_flag:
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 [+] P2.0 =F[M1.0,M2.0] Q1.0 [+] Q2.0
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 |~| P2.0 =F[M1.0,M2.0] Q1.0 |~| Q2.0
[| X = Y; P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 |[X]| P2.0 =F[M1.0,M2.0] Q1.0 |[Y]| Q2.0
[| X = Y; P =F[M1.0,M2.0] Q |] ==> P -- X =F[M1.0,M2.0] Q -- Y
[| r1.0 = r2.0; P =F[M1.0,M2.0] Q |] ==> P [[r1.0]] =F[M1.0,M2.0] Q [[r2.0]]
[| P1.0 =F[M1.0,M2.0] Q1.0; Not_Decompo_Flag ∧ P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 ;; P2.0 =F[M1.0,M2.0] Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =F[M1.0,M2.0] Q |] ==> P |. n1.0 =F[M1.0,M2.0] Q |. n2.0
lemma cspF_free_decompo_flag:
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 [+] P2.0 <=F[M1.0,M2.0] Q1.0 [+] Q2.0
[| P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 |~| P2.0 <=F[M1.0,M2.0] Q1.0 |~| Q2.0
[| X = Y; P1.0 <=F[M1.0,M2.0] Q1.0; P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 |[X]| P2.0 <=F[M1.0,M2.0] Q1.0 |[Y]| Q2.0
[| X = Y; P <=F[M1.0,M2.0] Q |] ==> P -- X <=F[M1.0,M2.0] Q -- Y
[| r1.0 = r2.0; P <=F[M1.0,M2.0] Q |] ==> P [[r1.0]] <=F[M1.0,M2.0] Q [[r2.0]]
[| P1.0 <=F[M1.0,M2.0] Q1.0; Not_Decompo_Flag ∧ P2.0 <=F[M1.0,M2.0] Q2.0 |]
==> P1.0 ;; P2.0 <=F[M1.0,M2.0] Q1.0 ;; Q2.0
[| n1.0 = n2.0; P <=F[M1.0,M2.0] Q |] ==> P |. n1.0 <=F[M1.0,M2.0] Q |. n2.0
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 [+] P2.0 =F[M1.0,M2.0] Q1.0 [+] Q2.0
[| P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 |~| P2.0 =F[M1.0,M2.0] Q1.0 |~| Q2.0
[| X = Y; P1.0 =F[M1.0,M2.0] Q1.0; P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 |[X]| P2.0 =F[M1.0,M2.0] Q1.0 |[Y]| Q2.0
[| X = Y; P =F[M1.0,M2.0] Q |] ==> P -- X =F[M1.0,M2.0] Q -- Y
[| r1.0 = r2.0; P =F[M1.0,M2.0] Q |] ==> P [[r1.0]] =F[M1.0,M2.0] Q [[r2.0]]
[| P1.0 =F[M1.0,M2.0] Q1.0; Not_Decompo_Flag ∧ P2.0 =F[M1.0,M2.0] Q2.0 |]
==> P1.0 ;; P2.0 =F[M1.0,M2.0] Q1.0 ;; Q2.0
[| n1.0 = n2.0; P =F[M1.0,M2.0] Q |] ==> P |. n1.0 =F[M1.0,M2.0] Q |. n2.0