
User Guide CSP-Prover Ver.3.0

CSP-Prover Document
Version: DRAFT May 10, 2006

Yoshinao Isobe1 and Markus Roggenbach2

1 National Institute of Advanced Industrial Science and Technology, Japan,
y-isobe@aist.go.jp,

2 University of Wales Swansea, United Kingdomm
M.Roggenbach@swan.ac.uk

Contents

1 Introduction 2

2 Installing Isabelle2005 3

3 Setting up CSP-Prover 4

4 Starting CSP-Prover 5

5 Small demonstration 5

6 The CSP-dialect 6

6.1 Syntax . 6

6.2 Semantics . 9

6.3 Recursive process . 12

7 Encoding of the CSP-dialect 16

7.1 Syntax . 16

7.2 Domain . 17

7.3 Semantics . 22

1

7.4 Recursive process . 25

8 Verification 26

8.1 Semantical proof . 26

8.2 Manually syntactical proof . 28

8.3 Semi-automatically syntactical proof 41

9 Conclusion 43

1 Introduction

We describe a tool called Csp-Prover which is an interactive theorem prover
dedicated to refinement proofs within the process algebra Csp. It aims specif-
ically at proofs on infinite state systems, which may also involve infinite non-
determinism. For this reason, Csp-Prover currently focuses on the stable failures
model F as the underlying denotational semantics of Csp.

Semantically, Csp-Prover offers both classical approaches to denotational se-
mantics: the theory of complete partial orders (cpo) as well as the theory of
complete metric spaces (cms). In this context the respective Fixed Point Theo-
rems are used for two purposes: (1) to prove the existence of fixed points, and
(2) to prove Csp refinement between two fixed points. Csp-Prover implements
both these theories for infinite product spaces and thus is capable to deal with
infinite systems of process equations.

Technically, Csp-Prover is based on the generic theorem prover Isabelle, using
the logic HOL-Complex. Within this logic, the syntax as well as the semantics
of Csp is encoded, i.e., Csp-Prover provides a deep encoding of Csp. The
tool’s architecture follows a generic approach which makes it easy to re-use
large parts of the encoding for other Csp models. For instance, merely as a by-
product, Csp-Prover includes also the Csp traces model T . More importantly,
Csp-Prover can easily be extended to the failure-divergence model N and the
various infinite traces models of Csp.

Consequently, Csp-Prover contains fundamental theorems such as fixed point
theorems on cpo and cms, the definitions of Csp syntax and semantics, and
many Csp-laws and semi-automatic proof tactics for verification of refinement
relation. Therefore, Csp-Prover can be used for

1. Verification of infinite state systems. For example, we applied Csp-Prover
to verify a part of the specification of the EP2 system, which is a new
industrial standard of electronic payment systems, in [IR05].

3

2. Establishing new theorems on Csp. For example, Csp-Prover assisted
us very well in proving new theorems on a sound and complete axiom
system for the stable failures equivalence over processes with unbounded
nondeterminism over arbitrary alphabet. The result is included in the
package FNF_F in CSP-Prover-3-0.tar.gz.

In Isabelle, theorems, together with definitions and proof-scripts needed for
their proof, can be stored in theory-files. Currently, Csp-Prover consists of
three packages of theory-files: CSP, CSP T, and CSP F. The package CSP is the
reusable part independent of specific Csp models. For example, it contains
fixed point theorems on cpo and cms, and the definition of Csp syntax. The
packages CSP T and CSP F are instantiated parts for the traces model and the
stable failures model. The packages have a hierarchical organisation as: CSP F
on CSP T on CSP on Isabelle/HOL-Complex. The theorems for the sound and
complete axiom system for the stable failures equivalence are stored in a new
package FNF F implemented on CSP F.

In this document, we explain how to set up Csp-Prover and to use it.

2 Installing Isabelle2005

Csp-Prover is encoded in Isabelle2005/HOL-Complex. To install the interactive
theorem prover Isabelle follow the instructions of the Isabelle Web page:

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/index.html

For example, download the following files for Linux/x86 from the web page:

Isabelle2005.tar.gz
ProofGeneral.tar.gz
polyml_x86-linux.tar.gz
HOL_x86-linux.tar.gz
HOL-Complex_x86-linux.tar.gz

Then, uncompress and unpack them into e.g. the directory /usr/local as fol-
lows:

% tar -C /usr/local -xzf Isabelle2005.tar.gz
% tar -C /usr/local -xzf ProofGeneral.tar.gz
% tar -C /usr/local -xzf polyml_x86-linux.tar.gz
% tar -C /usr/local -xzf HOL_x86-linux.tar.gz
% tar -C /usr/local -xzf HOL-Complex_x86-linux.tar.gz

Isabelle/Isar/HOL is started by

% /usr/local/Isabelle/bin/isabelle -I HOL

Proof General is started by

4

% /usr/local/Isabelle/bin/Isabelle

For the rest of this document, we assume that /usr/local/Isabelle/bin is
an executable path.

3 Setting up CSP-Prover

Download the file CSP-Prover-3-0.tar.gz from

http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html

and unpack it e.g. in the directory

/usr/local/CSP-Prover-3-0

by an unpacking command (e.g. tar zxvf CSP-Prover-3-0.tar.gz).

CSP-Prover-3-0 contains the 7 directories as follows:

• CSP : the reusable part of Csp-Prover,

• CSP T : the instantiated part for the traces model T ,

• CSP F : the instantiated part for the stable-failures model F ,

• FNF F : the theory for full normalisation in the model F ,

• DM : an example to verify the Dining Mathematicians[CS01].

• ep2 : an industrial case study on an electronic payment system ep2[ep202].

• Test : small examples for testing Csp-Prover.

It is recommended to make heap files: CSP, CSP T, CSP F, and FNF F. If you
make the heap files once, you do not have to prove them again before using
them. You can make the four heap files by one command

% make_heaps

at the directory /usr/local/CSP-Prover-3-0/, where the environment variable
“ISABELLE bin” has to be set to the path containing the command isatool of
Isabelle2005. The heap file will be made in your isabelle directory. If you did
not specify the directory, it is probably

~/isabelle/heaps/polyml-*** (which depends on your OS)

It may take time to make the four heap files. For example, about 13 minutes
by Pentium M (1.5GHz).

In addition, if you like to comfortably read theory files of Csp-Prover by
browsers (e.g. Netscape, mozilla, · · ·), you can make html files for them by a
command

% make_html

5

at the directory /usr/local/CSP-Prover-3-0/. The theory files and theory
dependency-graphs can be browsed by the web-browsers (e.g. mozilla):

% cd ~/isabelle/browser_info/HOL/HOL-Complex/CSP
% mozilla index.html

or the theory dependency-graphs can be browsed by isatool:

% cd ~/isabelle/browser_info/HOL/HOL-Complex/CSP
% isatool browser session.graph

where Java is needed for displaying graphs.

4 Starting CSP-Prover

You can start the logic CSP_F for the stable failures model F of Csp-Prover in
a shell window by

% isabelle -I CSP_F

or start it in Proof General[Asp00] by

% Isabelle -l CSP_F

It is recommended to use Proof General, which is a superior interface for
Isabelle. Proof General sometimes conflicts your .emacs and then fails. To
avoid this, you may use an option “-u” as follows:

% Isabelle -u false -l CSP_F

This option disallows Proof General to use your .emacs.

In Proof General, you can also select a logic (e.g. CSP, CSP_T, CSP_F, FNF_F,
HOL, HOL-Complex, · · ·) used in Isabelle from the menu bar. Click the button
[Isabelle/Isar] → [Logics] → [CSP].

In addition, you can also activate X-symbols in Proof General from the menu
bar. Click the button [Proof General] → [option] → [X-Symbol]. Csp-Prover
also provides a more conventional syntax of processes based on X-symbols. For
example, the external choice P [+] Q in ASCII mode is replaced with P � Q in
X-symbol mode.

5 Small demonstration

Let us prove small examples, for getting the overview how Csp-Prover works. If
you use a shell window and an editor window, the proof is proceeding as follows:

1. Start Isabelle with the logic CSP_F in the shell window by

6

% isabelle -I CSP_F

2. Open the following example in the editor window:

/usr/local/CSP-Prover-3-0/Test/Test_infinite.thy

3. Copy the commands from “Test_infinite.thy” and paste them to the
Isabelle window line by line until the proof finishes.

If you can use Proof General, the proof is more elegant as follows:

1. Start Proof General with CSP_F by

% Isabelle -l CSP_F

2. Open the following example in the Proof General window:

/usr/local/CSP-Prover-3-0/Test/Test_infinite.thy

3. Click the button “Next” in the menu bar until the proof finishes.

Similarly, try to prove another example:

/usr/local/CSP-Prover-3-0/Test/Test_finite.thy

The examples ep2 and DM are explained in the web-site of Csp-Prover:

http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html

6 The CSP-dialect

This section summarises syntax and semantics of the input language of Csp-
Prover, and then we show that it can deal with infinitely many mutual recursive
processes.

6.1 Syntax

Figure 1 shows the syntax of Csp implemented in Csp-Prover: given an alphabet
of communications Σ and the data type of natural numbers Nat , we form a set
Sel(Σ) of selectors to be explained below. ProcΣ denotes the set of the processes
whose alphabet is Σ.

The set Sel(Σ) of selectors used in the replicated internal choice is defined as
the disjoint sum of the powerset over Σ and the set of natural numbers:

Sel(Σ) = {(set)A | A ⊆ Σ} ∪ {(nat)n | n ∈ Nat}

Note that replicated internal choice takes a subset of Sel(Σ) as its parameter.

One difference from conventional Csp is that we replace the generic internal
choice �P by a replicated internal choice !! c : C • P(c), i.e., instead of having

6.1 Syntax 7

P ::= SKIP %% successful terminating process
| STOP %% deadlock process
| DIV %% divergence
| a → P %% action prefix
| ? x : A → P(x) %% prefix choice
| P � P %% external choice
| P � P %% internal choice
| !! c : C • P(c) %% replicated internal choice
| IF b THEN P ELSE P %% conditional
| P |[X]| P %% generalized parallel
| P \ X %% hiding
| P [[r]] %% relational renaming
| P o

9 P %% sequential composition
| P � n %% depth restriction

where A,X ⊆ Σ, C ⊆ Sel(Σ), b is a condition, r ∈ P(Σ × Σ), and n ∈ Nat .

Figure 1: Syntax of basic Csp processes in Csp-Prover.

internal choice over an arbitrary class of processes P ⊆ ProcΣ, internal choice
is restricted to run over an indexed set of processes P(·) : Sel(Σ) ⇒ ProcΣ

only, where the index set C is a subset of Sel(Σ). The other difference is that
we introduce depth-restriction � as a basic operator 1. Restriction plays an
important role in full-normalisation. As [Ros98] shows, for the stable-failures
model restriction cannot be defined in terms of the other basic operators.

The following shortcuts are also available in Csp-Prover:

• (Untimed) timeout:

P � Q := (P � STOP) � Q

• Replicated internal choices:

!set A : A • P(A) := !! c : {(set)A | A ∈ A} • P((set)−1(c))
!nat n : N • P(n) := !! c : {(nat)n | n ∈ N } • P((nat)−1(c))

! x : A • P(x) := !set X : {{x} | x ∈ A} • P(contents(X))
!〈f 〉 z : Z • P(z) := ! x : {f (z) | z ∈ Z} • P(f −1(z))

where A ⊆ P(Σ), N ⊆ Nat , A ⊆ Σ, and contents({x}) = x . The last one
can be used for expressing the non-determinism over any type τ by a type
converter f : τ → Σ. For example, if you want to use the non-determinism
over real numbers, it can be expressed as follows:

!〈(real)〉 r : R • P(r)
1Although the restriction function is conventionally denoted by ↓, we have already used

it as restriction function in semantic domains. Therefore, � is used in process expressions in
order to avoid syntactically ambiguous input in Isabelle.

6.1 Syntax 8

where R ⊆ Real and {(real) r | r ∈ Real} ⊆ Σ.

• Internal prefix choice:

! x : A → P(x) := ! x : A • (x → P(x))

• Sending ‘!’, receiving ‘?’, and non-deterministic sending ‘!?’ prefixes:

a!v → P := a(v) → P
a?x : X → P(x) := ? x : {a(v) | v ∈ X } → P(a−1(x))
a!?x : X → P(x) := ! x : {a(v) | v ∈ X } → P(a−1(x))

The prefix a!?x : X → P(x) nondeterministically sends a value v ∈ X ,
and then the value is retained in P(v). The non-deterministic sending
prefix may not be used in the implementations, but it can be used for
expressing beginning (loose) specifications.

• If the range of selectors, receiving values, etc, is the universe, the universe
can be omitted, for example we can write !nat n •P(n) instead of !nat n :
Nat • P(n) and a?x → P(x) instead of a?x : Univ → P(x).

• Interleaving, synchronous, and alphabetized parallels:

P ||| Q := P |[∅]| Q
P ‖ Q := P |[Σ]| Q

P |[X ,Y]| Q := (P |[Σ − X]| SKIP) |[X ∩ Y]| (Q |[Σ − Y]| SKIP)

• Inductive alphabetized parallel:

[‖] 〈〉 := SKIP
[‖] (P ,X) � PXlist := P |[X ,Y]| ([‖] PXlist)

where Y =
⋃
{X | ∃P . (P ,X) ∈ set(PXlist)} and set(list) is the set of

all the elements in list , thus

set(〈〉) = ∅
set(〈e〉 � tail) = {e} ∪ set(tail)

• Replicated alphabetized parallel:

[‖] i : I • (Pi ,Xi) := [‖] (map (λ i . (Pi ,Xi)) Ilist)

where I is a finite index set and the list Ilist is given from I as follows:

Ilist := ε list . (I = set(list) ∧ | I | = | list |)

where | I | is the size of the finite set I , | list | is the length of list , ε is
the Hilbert’s ε-operator, thus (ε x . pred(x)) is an x such that pred(x) is
true, and map is defined as follows:

map f 〈〉 = 〈〉
map f (〈e〉 � tail) = 〈f (e)〉 � (map f tail)

6.2 Semantics 9

Note that Ilist is not uniquely decided from I . However, the semantics
of [‖] i : I • (Pi ,Xi) is uniquely decided and it equals to the well known
semantics of Replicated alphabetized parallel.

6.2 Semantics

Currently, Csp-Prover concentrates on the denotational stable-failures model F
of Csp. Its domain FΣ is given as the set of all pairs (T ,F) that satisfy certain
healthiness conditions.

Definition 1 Given a set of communications Σ, the domain of the stable fail-
ures model FΣ is a set of pairs (T ,F) satisfying the following healthiness con-
ditions, where T ⊆ Σ∗� and F ⊆ Σ∗� × P(Σ�) 2.

T1 T is non-empty and prefix closed,

T2 (t ,X) ∈ F =⇒ t ∈ T,

T3 t � 〈�〉 ∈ T =⇒ (t � 〈�〉,X) ∈ F ,

F2 (t ,X) ∈ F ∧ Y ⊆ X =⇒ (t ,Y) ∈ F,

F3 (t ,X) ∈ F ∧ (∀ a ∈ Y . t � 〈a〉 /∈ T) =⇒ (t ,X ∪Y) ∈ F,

F4 t � 〈�〉 ∈ T =⇒ (t , Σ) ∈ F.

The labels T1, · · · ,F4 of the healthiness conditions are the same as ones used
in [Ros98]. We denote the set of traces satisfying T1 by TΣ, which is exactly
the domain of the traces model.

The semantics of a process P is defined by [[P]]F , where [[·]]F : ProcΣ → FΣ is a
map expressed with the help of two functions: [[P]]F = (traces(P), failures(P)).
Then, the functions traces and failures are recursively defined by the semantic
clauses given in Figure 2. Our definitions of traces and failures are identical to
those given in [Ros98] except that the clauses of our two new operators, namely
replicated internal choice3 and depth restriction are added. The auxiliary no-
tations t1 |[X]| t2, t \ X , [[r]]∗, [[r]]−1, T ↓ n, and F ↓ n used in Figure 2 are
defined as follows:

2Σ� := Σ ∪ {�}, Σ∗� := Σ∗ ∪ {t � 〈�〉 | t ∈ Σ∗}.
3As we allow the empty set ∅ as a set C of selectors, we need to add {〈〉} to the set of

traces.

6.2 Semantics 10

traces(SKIP) = {〈〉, 〈�〉}
traces(STOP) = {〈〉}
traces(DIV) = {〈〉}

traces(a → P) = {〈〉} ∪ {〈a〉 � t ′ | t ′ ∈ traces(P)}
traces(? x : A → P(x)) = {〈〉} ∪ {〈x〉 � t ′ | t ′ ∈ traces(P(x)), x ∈ A}

traces(P � Q) = traces(P) ∪ traces(Q)
traces(P � Q) = traces(P) ∪ traces(Q)

traces(!! c : C • P(c)) =
⋃{traces(P(c)) | c ∈ C} ∪ {〈〉}

traces(IF b THENP ELSEQ) = if b then traces(P) else traces(Q)
traces(P |[X]| Q) = {t1 |[X]| t2 | t1 ∈ traces(P), t2 ∈ traces(Q)}

traces(P \ X) = {t \ X | t ∈ traces(P)}
traces(P [[r]]) = {t | ∃ t ′ ∈ traces(P). (t ′, t) ∈ [[r]]∗}
traces(P o

9 Q) = (traces(P) ∩ Σ∗)
∪{t1 � t2 | t1 � 〈�〉 ∈ traces(P), t2 ∈ traces(Q)}

traces(P 	n) = traces(P) ↓ n

failures(SKIP) = {(〈〉,X) | X ⊆ Σ} ∪ {(〈�〉,X) | X ⊆ Σ�}
failures(STOP) = {(〈〉,X) | X ⊆ Σ�}
failures(DIV) = ∅

failures(a → P) = {(〈〉,X) | a /∈ X }
∪ {(〈a〉 � t ′,X) | (t ′,X) ∈ failures(P)}

failures(? x : A → P(x)) = {(〈〉,X) | A ∩ X = ∅}
∪ {(〈x〉 � t ′, X) | (t ′,X) ∈ failures(P(x)), x ∈ A}

failures(P � Q) = {(〈〉,X) | (〈〉,X) ∈ failures(P) ∩ failures(Q)}
∪{(t , X) | (t ,X) ∈ failures(P) ∪ failures(Q), t = 〈〉}
∪{(〈〉, X) | X ⊆ Σ, 〈�〉 ∈ traces(P) ∪ traces(Q)}

failures(P � Q) = failures(P) ∪ failures(Q)
failures(!! c : C • P) =

⋃{failures(P(c)) | c ∈ C}
failures(IF b THENP ELSEQ) = if b then failures(P) else failures(Q)

failures(P |[X]| Q) = {(u, Y ∪ Z) | Y − (X ∪ {�}) = Z − (X ∪ {�}),
∃ t1, t2. (t1,Y) ∈ failures(P), (t2,Z) ∈ failures(Q),
u ∈ t1 |[X]| t2}

failures(P \ X) = {(t \ X ,Y) | (t , Y ∪ X) ∈ failures(P)}
failures(P [[r]]) = {(t , X) | ∃ t ′. (t ′, t) ∈ [[r]]∗,

(t ′, [[r]]−1(X)) ∈ failures(P)}
failures(P o

9 Q) = {(t1,X) | t1 ∈ Σ∗, (t1,X ∪ {�}) ∈ failures(P)}
∪{(t1 � t2,X) | t1 � 〈�〉 ∈ traces(P),

(t2,X) ∈ failures(Q)}
failures(P 	n) = failures(P) ↓ n

Figure 2: Semantic clauses for the model F in our CSP dialect.

6.2 Semantics 11

• t1 |[X]| t2 is inductively defined by:

〈x 〉 � t1 |[X]| 〈x 〉 � t2 = {〈x 〉 � u | u ∈ t1 |[X]| t2}
〈x 〉 � t1 |[X]| 〈x ′〉 � t2 = ∅
〈x 〉 � t1 |[X]| 〈〉 = ∅

〈〉 |[X]| 〈x 〉 � t2 = ∅
〈〉 |[X]| 〈〉 = {〈〉}

〈y〉 � t1 |[X]| 〈x 〉 � t2 = {〈y〉 � u | u ∈ t1 |[X]| 〈x 〉 � t2}
〈y〉 � t1 |[X]| 〈〉 = {〈y〉 � u | u ∈ t1 |[X]| 〈〉}
〈x 〉 � t1 |[X]| 〈y〉 � t2 = {〈y〉 � u | u ∈ 〈x 〉 � t1 |[X]| t2}

〈〉 |[X]| 〈y〉 � t2 = {〈y〉 � u | u ∈ 〈〉 |[X]| t2}
〈y〉 � t1 |[X]| 〈y ′〉 � t2 = {〈y〉 � u | u ∈ t1 |[X]| 〈y ′〉 � t2}

∪{〈y ′〉 � u | u ∈ 〈y〉 � t1 |[X]| t2}

where x , x ′ ∈ X ∪ {�}, y, y ′ /∈ X ∪ {�}, and x �= x ′,

• (t \ X) is inductively defined by:

〈〉 \ X = 〈〉
(〈x 〉 � t) \ X = t \ X (if x ∈ X)
(〈y〉 � t) \ X = 〈y〉 � (t \ X) (if y /∈ X)

• [[r]]∗ is the smallest set satisfying the following inference rules:

True ⇒ (〈〉, 〈〉) ∈ [[r]]∗

True ⇒ (〈�〉, 〈�〉) ∈ [[r]]∗

(a, b) ∈ r ∧ (t , t ′) ∈ [[r]]∗ ⇒ (a � t , b � t ′) ∈ [[r]]∗

• [[r]]−1(X) is defined as:

[[r]]−1(X) = {a | ∃ b ∈ X . (a, b) ∈ r ∨ a = b = �}

• Restriction functions T ↓ n and F ↓ n are defined as:

T ↓ n = {t ∈ T | |t | ≤ n}
F ↓ n = {(t ,X) ∈ F | |t | < n ∨ (∃ t ′. t = t ′ � 〈�〉, |t | = n)}

Process equivalence =F and process refinement �F over the stable failures
model are then defined as usual:

P =F Q ⇔ traces(P) = traces(Q) ∧ failures(P) = failures(Q),
P �F Q ⇔ traces(P) ⊇ traces(Q) ∧ failures(P) ⊇ failures(Q).

Furthermore, we use the following extended relations over process functions:

Pf =F ′ Qf ⇔ ∀ x . Pf (x) =F Qf (x)
Pf �F ′ Qf ⇔ ∀ x . Pf (x) �F Qf (x)

6.3 Recursive process 12

At first glance, the above defined input language of Csp-Prover seems to be
weaker then full Csp as the generic internal choice operator �P is missing.
However, we proved that the map [[·]]F is surjective, thus our language is ex-
pressive with respect to the semantic domain FΣ. The proof of the theorem
surj_domF is given in the theory file CSP_F_surj.thy in the package CSP_F.

6.3 Recursive process

Recursive processes can be effectively expressed by fixed points. For example,
a buffer Buffer , which iteratively receives a real number r from the channel in
and sends it to a channel out together with an increasing natural number id ,
can be defined by using a solution f of the following system of equations:

f (Empty (id)) =F in ? r → (f (Full (r , id)))
f (Full (r , id)) =F out (r , id) → (f (Empty (id + 1)))

where Empty and Full are names, and f is a function whose domain (i.e. the
set of process-indexes) is

Dom(f) = {Empty (id) | id ∈ Nat} ∪ {Full (r , id) | r ∈ Real , id ∈ Nat}

and whose range is the set of all processes. Any solution f is a fixed point
(FIX fun) of the function fun : (Dom(f) ⇒ ProcΣ) ⇒ (Dom(f) ⇒ ProcΣ) given
as:

fun(f)(Empty (id)) := in ? r → (f (Full (r , id)))
fun(f)(Full (r , id)) := out (r , id) → (f (Empty (id + 1)))

Therefore, the process Buffer , which initially has no data and whose initial id
is zero, is given as (FIX fun)(Empty (0)).

Now, we give a formal definition of recursive processes. At first, define the
set ProcfunΣ of process functions, which take one argument f : Ip → ProcΣ, as
the smallest set which contains the following expressions:

(λ f . f (p)), (λ f . SKIP),

(λ f . STOP), (λ f . DIV),

(λ f . a → E (f)), (λ f . ?x : A → E ′(x)(f)),

(λ f . E1(f) � E2(f)), (λ f . E1(f) � E2(f)),

(λ f . !!c : C • E ′′(c)(f)), (λ f . IF b THENE1(f) ELSEE2(f)),

(λ f . E1(f) |[X]| E2(f)), (λ f . E (f) \ X),

(λ f . E (f)[[r]]), (λ f . E1(f) o
9 E2(f)),

(λ f . E (f) � n),

where E , Ei , E ′(x), and E ′′(c) are already in ProcfunΣ for all x and c.

6.3 Recursive process 13

The set of process functions is denoted by ProcfunΣ. Intuitively, each process-
index p ∈ Ip can be correspond to a process constant or a process name in general
process algebra. Thus, f can be a map for assigning each process constant to a
process.

Next, the notion of guard is defined. In general, the variable f is said to be
guarded in a process function E (or E is guarded) if each occurrence of the
variable f is within some subexpression a → E (f) or ? x : A → E (f)(x). How-
ever, we should deal with sequential composition E1(f) o

9 E2(f) more carefully,
thus the question is if E2 should be guarded or not? For example, the following
process functions (1) and (2) are guarded, but (3) is not guarded.

(1) (λ f . (a → SKIP) o
9 f (p))

(2) (λ f . SKIP o
9 (a → f (p)))

(3) (λ f . SKIP o
9 f (p))

It means E2 does not have to be guarded if each occurrence of SKIP in E1 are
guarded. Therefore, before defining the notion of guarded, define an auxiliary
notion, called guarded-SKIP process functions as follows: the set gSKIPfunΣ of
guarded-SKIP process functions is the smallest set which contains the following
expressions:

(λ f . STOP), (λ f . DIV),

(λ f . a → E (f)), (λ f . ?x : A → E ′(x)(f)),

(λ f . GS1(f) � GS2(f)), (λ f . GS1(f) � GS2(f)),

(λ f . !!c : C • GS ′′(c)(f)), (λ f . IF b THENGS1(f) ELSEGS2(f)),

(λ f . GS1(f) |[X]| E2(f)), (λ f . E1(f) |[X]| GS2(f)),

(λ f . GS (f)[[r]]),

(λ f . GS1(f) o
9 E2(f)), (λ f . E1(f) o

9 GS2(f)),

(λ f . GS (f) � n), (λ f . P � 0),

where GS , GSi , GS ′(x), and GS ′′(c) are already in gSKIPfunΣ for all x and c,
and E , Ei , and E ′(x) are already in ProcfunΣ for all x . The following property,
which can be proven by induction (see lemma gSKIP_to_Tick_notin_traces
in the theory-file CSP_T_contraction.thy in the package CSP_T), shows what
we need for defining guarded process functions.

GS ∈ gSKIPfunΣ implies 〈�〉 /∈ traces(GS (f)) for all f .

Furthermore, we need another subset of ProcfunΣ, which is the set of process
functions which do not contain the hiding operator (more exactly, if E (f) \ X
then E must be a constant). The set nohidefunΣ of such process functions is

6.3 Recursive process 14

the smallest set which contains the following expressions:

(λ f . f (p)), (λ f . SKIP),

(λ f . STOP), (λ f . DIV),

(λ f . a → H (f)), (λ f . ?x : A → H ′(x)(f)),

(λ f . H1(f) � H2(f)), (λ f . H1(f) � H2(f)),

(λ f . !!c : C • H ′′(c)(f)), (λ f . IF b THENH1(f) ELSEH2(f)),

(λ f . H1(f) |[X]| H2(f)),

(λ f . P \ X), (λ f . H (f)[[r]]),

(λ f . H1(f) o
9 H2(f)), (λ f . H (f) � n),

where H , Hi , H ′(x), and H ′′(c) are already in nohidefunΣ for all x and c.

Then, the set gProcfunΣ of guarded process functions is defined as the smallest
set which contains the following expressions:

(λ f . SKIP),

(λ f . STOP), (λ f . DIV),

(λ f . a → H (f)), (λ f . ?x : A → H ′(x)(f)),

(λ f . G1(f) � G2(f)), (λ f . G1(f) � G2(f)),

(λ f . !!c : C • G ′′(c)(f)), (λ f . IF b THENG1(f) ELSEG2(f)),

(λ f . G1(f) |[X]| G2(f)),

(λ f . P \ X), (λ f . G(f)[[r]]),

(λ f . GS1(f) o
9 H2(f)), (λ f . G1(f) o

9 G2(f)),

(λ f . G(f) � n),

where G, Gi , G ′(x), and G ′′(c) are already in gProcfunΣ for all x and c, GS1

is already in gProcfunΣ ∩ gSKIPfunΣ, and H and H ′(x) are in nohidefunΣ for
all x .

Then, the sets ProcFunΣ and gProcFunΣ of functions such as fun used in the
example Buffer , are defined as follows:

ProcFunΣ = {fun | (∀ p. (λ f . fun(f)(p) ∈ ProcfunΣ}
gProcFunΣ = {gfun | (∀ p. (λ f . gfun(f)(p) ∈ gProcfunΣ}

Now, we finished the preparation to express fixed-points in our Csp dialect.
Csp offers two standard approaches to deal with fixed-points: complete partial
orders (cpo) with Tarski’s fixed point theorem or complete metric spaces (cms)
with Banach’s fixed point theorem. The limits (FIX fun) and (FIX! fun) of

6.3 Recursive process 15

the converging sequences in Tarski’s and Banach’s fixed point theorems can be
defined in our Csp-dialect as follows:

(FIX fun)(p) := !nat n • ((fun(n)(λ y. DIV))(p))
(FIX! gfun)(p) := !nat n • (((gfun(n)(λ y.Any))(p)) � n)

where fun ∈ ProcFunΣ, gfun ∈ gProcFunΣ, and DIV plays the role of the bottom
element in the cpo approach and Any stands for any process, which corresponds
to the arbitrary initial point of Banach’s theorem. Then, as expected, the
following properties hold:

1. Let fun ∈ ProcFunΣ, then (FIX fun) =F ′ fun (FIX fun) and for any f , if
f =F ′ fun(f) then f �F ′ (FIX fun). Thus, (FIX fun) is the greatest fixed
point on �F ′ , in other words, it is the least fixed point in the semantic
domain.

2. Let gfun ∈ gProcFunΣ, then (FIX! gfun) =F ′ gfun (FIX! gfun) and for any
f , if f =F ′ gfun(f) then f =F ′ (FIX! gfun). Thus, (FIX! gfun) is the
unique fixed point on =F ′.

Thus, both ways of Csp of dealing with systems of recursive equations, the
cpo approach using Tarski’s fixed point theorem as well as the cms approach
using Banach’s fixed point theorem, are expressible in the input language of
Csp-Prover.

The fixed points (FIX fun) and (FIX! fun) are very powerful to express mu-
tual recursive processes, while it is sometimes convenient to simply use single
recursive processes such as (µ X • R(X)) which is the greatest fixed point of
the single equation X =F R(X). Such singe recursive processes can be defined
as syntactic sugar:

(µ X • R(X)) := (FIX (λ f . λ p. R(f (pmu))))(pmu)
(µ!X • R(X)) := (FIX! (λ f . λ x . R(f (pmu))))(pmu)

where pmu is a dummy process-index. Furthermore, the sets ProcXΣ and gProcXΣ

of such functions R(·) : ProcΣ ⇒ ProcΣ are defined from ProcFunΣ and gProcFunΣ,
respectively:

ProcXΣ := {R | (λ f . R(f (pmu))) ∈ ProcFunΣ}
gProcXΣ := {R | (λ f . R(f (pmu))) ∈ gProcFunΣ}

Then, as expected, the following properties hold:

1. Let R ∈ ProcXΣ, then (µ X •R(X)) =F R(µ X •R(X)) and for any P , if
P =F R(P) then P �F (µ X •R(X)). Thus, (µ X •R(X)) is the greatest
fixed point of R on �F .

2. Let R ∈ gProcXΣ, then (µ!X • R(X)) =F R(µ X • R(X)) and for any
P , if P =F R(P) then P =F (µ!X • R(X)). Thus, (µ!X • R(X)) is the
unique fixed point of R on =F .

16

7 Encoding of the CSP-dialect

This section shows how the Csp-dialect introduced in Section 6 is encoded in
the generic theorem prover Isabelle.

7.1 Syntax

At first, we give ASCII style expressions of Csp processes in Figure 3 because the
conventional operators use TeX symbols4. You will need Figure 3 when you use
Csp-Prover in fact. However, we consistently continue to use the conventional
symbols such as � instead of [+] in this User-Guide because the conventional
symbols allow this guide to be readable and they are almost available in the X-
Symbol mode in the Proof-General which is an XEmacs-like interface of Isabelle.
Also, we use conventional symbols on set, logic, etc, as used in the Isabelle-
tutorial[NPW02], for example, a ∈ X and X ⊆ Y are used instead of a:X and
X <=Y , respectively.

Now, the set of (basic) processes is given as a recursive type ’a proc which
is defined by the Isabelle command datatype as shown in Figure 4, where ’a
is the type of Σ. Since each selector is either a set of communications or a
natural number, the type of selectors is defined with help of the type construc-
tors sel_set and sel_nat in Figure 4. Furthermore, note the definitions of
prefix choice and replicated internal choice. For example, the following process,
which receives a value 0 or 1 and thereafter if the value is 0 then it successfully
terminate else deadlocks,

?n : {0, 1} → (IF (n = 0) THEN SKIP ELSE STOP)

is defined by

? : {0, 1} → (λ n. (IF (n = 0) THEN SKIP ELSE STOP))

because bound variables such as n are not used in the definition by datatype.
But, this inconvenience is easily solved by the Isabelle commands syntax and
transform, which make syntactic sugars, as shown in Figure 5.

Also, derived operators such as � are defined by syntax and transform, with
the help of consts to declare types and defs to define functions. We give some
of them in Figure 6. You can find all the definitions of process expressions in
the the theory-file CSP_syntax.thy in the package CSP.

4We had to use the ASCII symbols slightly different from the machine readable processes
Csp-M used in FDR, in order to avoid overloading of symbols which Isabelle had already used.

7.2 Domain 17

Conventional symbol ASCII symbol Name

SKIP SKIP successful terminating process
STOP STOP deadlock process
DIV DIV divergence
a → P a ->P action prefix
? x : A → P(x) ? x :A -> P(x) prefix choice
P � Q P [+]Q external choice
P � Q P |~|Q internal choice
!! c : C • P(c) !! c :C ..P(c) replicated internal choice
IF b THEN P ELSE Q IF b THENP ELSEQ conditional
P |[X]| Q P |[X]|Q generalized parallel
P \ X P --X hiding
P [[r]] P [[r]] relational renaming
P o

9 Q P ;;Q sequential composition
P 	n P |. n depth restriction

P � Q P [>Q timeout
!set A : A • P(A) !setA :A ..P(A) replicated internal choice over P(Σ)
!nat n : N • P(n) !nat n :N ..P(n) replicated internal choice over Nat
! x : A • P(x) ! x :A ..P(x) replicated internal choice over Σ
!〈f 〉 z : Z • P(z) !<f > z :Z ..P(z) replicated internal choice with f
! x : A → P(x) ! x :A ->P(x) internal prefix choice
a!v → P a!v ->P sending
a?x : X → P(x) a?x:X ->P(x) receiving
a!?x : X → P(x) a!?x:X ->P(x) non-deterministic sending
P ||| Q P |||Q interleaving
P ‖ Q P ||Q synchronous
P |[X ,Y]| Q P |[X,Y]|Q alphabetized parallel
[‖] i : I • (Pi ,Xi) [||] i:I .. (Pi ,Xi) replicated alphabetized parallel

FIX fun FIX fun Tarski’s fixed point
FIX! fun FIX! fun Banach’s fixed point
µ X • F (X) MU X ..F (X) Tarski’s fixed point (single)
µ!X • F (X) MU! X ..F (X) Banach’s fixed point (single)

Figure 3: The ASCII expression of Csp processes.

7.2 Domain

In this subsection, we encode the domain for the stable-failures model F . How-
ever, first of all, we briefly explain how to define a new type from an existing
type by the Isabelle command typedef. It defines a new type as a non-empty
subset of an existing type:

typedef SubType = {x::SuperType. Pred(x)}

Here, Pred is a predicate over the existing type SuperType, and SubType is the

7.2 Domain 18

datatype ’a selector = sel set "’a set" | sel nat "nat"

datatype
’a proc

= STOP

| SKIP
| DIV
| Act prefix "’a" "’a proc" (” → ”)
| Ext pre choice "’a set" "’a ⇒ ’a proc" (”? : → ”)
| Ext choice "’a proc" "’a proc" (" � ")
| Int choice "’a proc" "’a proc" (" � ")
| Rep int choice "’a selector set"

"’a selector ⇒ ’a proc" ("!! : • ")
| IF "bool" "’a proc" "’a proc" (”IF THEN ELSE ”)
| Parallel "’a proc" "’a set" "’a proc" (" |[]| ")
| Hiding "’a proc" "’a set" (" \ ")
| Renaming "’a proc" "(’a * ’a) set" (" [[]]")
| Seq compo "’a proc" "’a proc" (" o

9 ")
| Depth rest "’a proc" "nat" (" 	 ")

Figure 4: The recursive definition of the process type.

syntax
"@Ext pre choice" ::

"pttrn ⇒ ’a set ⇒ ’a proc ⇒ ’a proc" ("? : → ")

"@Rep int choice" ::

"pttrn ⇒ (’a selector) set ⇒ ’a proc ⇒ ’a proc" ("!! : • ")

translations
"? x : X → P" == "? : X → (λ x . P)"
"!! c : C • P" == "!! : C • (λ c. P)"

Figure 5: The expression of bound variables.

newly defined type by the subset. When a new type is defined by typedef, a
set and two type-converters are automatically declared for relating the new type
with the existing type.

SubType :: SuperType set,
Rep SubType :: SuperType ⇒ SubType,
Abs SubType :: SubType ⇒ SuperType.

Then, the set SubType is defined as {x::SuperType. Pred(x)}, and the fol-
lowing properties are asserted:

7.2 Domain 19

%% timeout

syntax
" Timeout" :: "’a proc ⇒ ’a proc ⇒ ’a proc" (" � ")

translations
"P � Q" == "(P � STOP) � Q"

%% replicated internal choice over sets

consts
Rep int choice fun ::

"(’b ⇒ (’a selector)) ⇒ ’b set

⇒ (’b ⇒ ’a proc) ⇒ ’a proc" ("!!〈 〉 : • ")

defs
Rep int choice fun def :

"!!〈f 〉 : X • P == !! s : (f ‘X) • (P((inv f) s))"
syntax
"@Rep int choice set" ::

"pttrn ⇒ (’a set) set

⇒ (’a set => ’a proc) ⇒ ’a proc" ("!set : • ")

translations
"!set : X • P" == "!!〈sel set〉 : X • P"

%% replicated internal choice over communications

consts
Rep int choice com ::

"(’a set ⇒ (’a ⇒ ’a proc) ⇒ ’a proc" ("! : • ")

defs
Rep int choice com def :

"! : A • P == !setX : {{a} | a. a ∈ A} • P(contents(X))"

Figure 6: The definitions of derived operators.

Rep SubType s ∈ SubType,
Abs SubType (Rep SubType s) = s ,

s ∈ SubType ⇒ Rep SubType (Abs SubType s) = s ,

where the name SubType is used as both a type and a set.

Now, let us start defining the type of domain for the stable-failures model F .
At first, the type of events which consist of communications (whose type is ’a)
and the termination symbol � (written Tick in ASCII) is defined as follows:

datatype ’a event = Ev ’a | �

Then, the type of traces which may have the successful termination symbol �
in the last place as follows:

typedef ’a trace = "{s::(’a event list). � /∈ set (butlast s)}"

where the function butlast removes the last element of the list s and the

7.2 Domain 20

function set transforms a list to a set of elements contained in the list. The
basic operators over traces are defined from the corresponding operators over
lists with help of type-converters Rep_domT and Abs_domT. For example, the
concatenate operator � (written ^^ in ASCII) over traces is defined from the
concatenate operator @ over lists as follows:

consts
appt :: "’a trace ⇒ ’a trace ⇒ ’a trace" (infixr "�" 65)

defs
appt def : "s � t == Abs trace (Rep trace s @ Rep trace t)"

See the theory-file Trace.thy in the package CSP for more details. Many useful
lemmas on traces such as associativity are also given there.

Secondly, the type of domain for the traces model T is defined as the set of
subsets of traces which satisfy the healthiness condition T1 (i.e. non-empty and
prefix closed) as follows:

typedef ’a domT = "{T::(’a trace set). HC T1(T)}"

where HC_T1 is the encoded healthiness condition T1.

Isabelle has provided a type class of types together with a partial order ≤
(written <= in ASCII), and lemmas and theorems on such types have been
proven. Such lemmas and theorems can be applied to newly defined types,
provided such order ≤ over the types is defined and is proven to be a partial
order. In the case of domT, such order ≤ over domT can be defined from the
inclusion ⊆ as follows:

defs (overloaded)

subdomT def : "T ≤ S == (Rep domT T) ⊆ (Rep domT S)"

where “overloaded” means ≤ (to be proven to be a partial order) is instantiated.
See the theory-file Domain_T.thy in the package CSP_T for more details.

In the same way as domT, the set of failures satisfying the healthiness condition
F2 is given as a type as follows:

typedef ’a setF = "{F::(’a failure set). HC F2(F)}"

where ’a failure is a synonym which can be defined by the Isabelle command
types:

types ’a failure = "’a trace * ’a event set"

where * is a type constructor of pairs. And the partial order ≤ over setF is also
overloaded as follows:

defs (overloaded)

subsetF def : "F ≤ E == (Rep setF F) ⊆ (Rep setF E)"

7.2 Domain 21

See the theory-file Set_F.thy in the package CSP_F for more details.

Then, the type of domain for the stable-failures model F is defined as the
set of subsets of pairs of traces and failures which satisfy all the healthiness
conditions:

typedef
’a domF = "{TF::(’a domT * ’a setF).

HC T2(TF) ∧ HC T3(TF) ∧ HC F3(TF) ∧ HC F4(TF)}"

where HC_T2, HC_T3, HC_F3, and HC_F4 are the encoded healthiness conditions
T2, T3, F3, and F4. For example, T3 is encoded as follows:

consts HC T3 :: "(’a domT * ’a setF) ⇒ bool"

defs
HC T3 def :

"HC T3 TF == ∀ t . (t � 〈�〉 ∈t (fst TF) ∧ noTick t)
−→ (∀X . (t � 〈�〉 , X) ∈f (snd TF))"

where fst and snd are the functions for extracting the components of a pair:
fst(x , y) = x and snd(x , y) = y. The subscripts t and f are attached to
operators on traces and failures, respectively, e.g. ∈t and ∈f. The condition
noTick t means that the trace t does not contain �. This condition is not
explicitly written in the definition of T3 shown in Subsection 6.2 because t�〈�〉
implicitly implies that t has no �. On the other hand, � is a total function5

because Isabelle does not allow us to define truly partial functions. Therefore,
the condition noTick t is necessary. See the theory-file Domain_F.thy in the
package CSP_F for more details.

The partial order over domF is defined as the combination of the partial orders
≤ over domT and setF:

defs (overloaded)

subdomF def : "SF1 ≤ SF2 == (Rep domF SF1) ≤ (Rep domF SF2)"

where (Rep domF SF) has the type (’a domT * ’a setF), and the order over
pairs is defined in the usual way (see Infra_pair.thy in CSP):

defs (overloaded)

order pair def : "x ≤ y == (fst x) ≤ (fst y) ∧ (snd x) ≤ (snd y)"

In this case, it can be easily proven that ≤ over domF is a partial order indeed.
That means (domT, ≤) can be proven to be an instance of the type class of
partial ordered set as follows:

instance domF :: (type) order

5For example, 〈�〉 � 〈�〉 is meaningless and cannot be interpreted to 〈�, �〉, but such
application 〈�〉 � 〈�〉 of � is not forbidden.

7.3 Semantics 22

consts traces :: "’a proc ⇒ ’a domT"

primrec
"traces(STOP) = {〈〉}t"
"traces(SKIP) = {〈〉, 〈�〉}t"
"traces(DIV) = {〈〉}t"
"traces(a → P) = {t. t = 〈〉 ∨

(∃ s. t = 〈Ev a〉 � s ∧ s ∈t traces(P))}t"
"traces(? : X → P) = {t. t = 〈〉 ∨

(∃ a s. t = 〈Ev a〉 � s ∧ s ∈t traces(P a)∧ a ∈ X)}t"
"traces(P � Q) = traces(P) ∪t traces(Q)"

"traces(P � Q) = traces(P) ∪t traces(Q)"

"traces(!! : C • P) = {t. t = 〈〉 ∨ (∃ c ∈ C. t ∈t traces(P c)) }t"
"traces(IF b THENP ELSEQ) = (if b then traces(P) else traces(Q))"

"traces(P |[X]| Q) = {u. ∃ s t. u ∈ s |[X]|tr t ∧
s ∈t traces(P)∧ t ∈t traces(Q) }t"

"traces(P \ X) = {t. ∃ s. t = s \tr X ∧ s ∈t traces(P) }t"
"traces(P [[r]]) = {t. ∃ s. s [[r]]∗ t ∧ s ∈t traces(P) }t"
"traces(P o

9 Q) = {u. (∃ s. u = rmTick s ∧ s ∈t traces(P)) ∨
(∃ s t. u = s � t ∧ s � 〈�〉 ∈t traces(P) ∧

t ∈t traces(Q) ∧ noTick s) }t"
"traces(P 	n) = traces(P) ↓ n"

Figure 7: The encoding of the function traces

7.3 Semantics

The functions traces and failures for giving the meaning of processes are re-
cursively defined by primrec which is an Isabelle command used for defin-
ing functions whose argument has a recursive type defined by datatype such
as proc, see Figures 7 and 8. You will find the definitions of traces and
failures in the theory-file CSP_T_semantics.thy in the package CSP_T and
CSP_F_semantics.thy in CSP_F, respectively.

The encodings of the auxiliary functions |[X]|tr and \tr (see Subsection 6.2 for
the definitions) over traces are given in Trace_par.thy and Trace_hide.thy
respectively, and the encodings of [[r]]∗ and [[r]]inv are given in Trace_ren.thy
in the package CSP. Also, (rmTick s) is the trace obtained by removing �
from s and it is encoded in Trace_seq.thy. Furthermore, ↓ (rewritten .|.
in ASCII) is a restriction function which is given over both domT and setF, in
Domain_T_cms.thy in the package CSP_T and Set_F_cms.thy in CSP_F, respec-
tively.

Here, it is noted that the meaning [[P]]F of each process P is not exactly
(traces(P), failures(P)), but is Abs domF (traces(P), failures(P))
because the type ’a domF is a subtype of (’a domT * ’a setF), defined by
typedef. Therefore, it is convenient to define the following notations:

7.3 Semantics 23

consts failures :: "’a proc ⇒ ’a setF"

primrec
"failures(STOP) = {f . ∃X . f = (〈〉,X) }f"
"failures(SKIP) = {f . (∃X . f = (〈〉,X) ∧ X ⊆Evset) ∨

(∃X . f = (〈�〉,X)) }f"
"failures(DIV) = {}f"
"failures(a → P) = {f . (∃X . f = (〈〉,X) ∧ Ev a /∈ X) ∨

(∃ s X . f = (〈Ev a〉 � s,X) ∧
(s, X) ∈ failures(P)) }f"

"failures(? : X → P) = {f . (∃Y . f = (〈〉,Y) ∧ (Ev‘X)∩Y = {}) ∨
(∃ a s Y . f = (〈Ev a〉 � s,X) ∧

(s, X) ∈ failures(P a) ∧ a ∈ X) }f"
"failures(P � Q) = {f . (∃X . f = (〈〉,X) ∧

f ∈f failures(P) ∩f failures(Q)) ∨
(∃ s X . f = (s,X) ∧ s = 〈〉 ∧

f ∈f failures(P) ∪f failures(Q)) ∨
(∃X . f = (〈〉,X) ∧ X ⊆ Evset ∧

〈�〉 ∈t traces(P) ∪t traces(Q)) }f"
"failures(P � Q) = failures(P) ∪f failures(Q)"

"failures(!! : C • P) = {f . (∃ c ∈ C. f ∈f failures(P c)) }f"
"failures(IF b THENP ELSEQ) = (if b then failures(P) else failures(Q))"

"failures(P |[X]| Q) = {f . ∃ u Y Z. f = (u,Y ∪ Z) ∧
Y -((Ev‘X) ∪ {�}) = Z-((Ev‘X) ∪ {�}) ∧
(∃ s t. u ∈ s |[X]|tr t ∧ (s,Y)∈f failures(P)∧

(t,Z)∈f failures(Q))}f"
"failures(P \ X) = {f . ∃ s Y . f = (s \tr X ,Y) ∧

(s, (Ev‘X)∪Y)∈f failures(P) }f"
"failures(P [[r]]) = {f . ∃ s t X . f = (t,X) ∧ s [[r]]∗ t ∧

(s, [[r]]inv X)∈f failures(P) }f"
"failures(P o

9 Q) = {f . (∃ t X . f = (t,X) ∧
(t,X ∪ {�})∈f failures(P) ∧ noTick t) ∨

(∃ s t X . f = (t � t,X) ∧
s � 〈�〉 ∈t traces(P) ∧
(t,X)∈f failures(Q) ∧ noTick s) }f"

"failures(P 	n) = failures(P) ↓ n"

Figure 8: The encoding of the function failures

7.3 Semantics 24

consts
pairF:: "’a domT ⇒ ’a setF ⇒ ’a domF" ("(,,)")

fstF :: "’a domF ⇒ ’a domT"

sndF :: "’a domF ⇒ ’a setF"

defs
pairF def: "(T ,, F) == Abs domF (T, F)"

fstF def : "fstF == fst o Rep domF"

sndF def : "sndF == snd o Rep domF"

Then, the semantics [[P]]F , the process equivalence =F , and the process refine-
ment �F are defined as follows (see CSP_F_semantics.thy):

consts
semF :: "’a proc ⇒ ’a domF" ("[[]]F")
refF :: "’a proc ⇒ ’a proc ⇒ bool" (" �F ")

eqF :: "’a proc ⇒ ’a proc ⇒ bool" (" =F ")

defs
semF def: "[[P]]F == (traces(P) ,, failures(P))"

refF def: "P �F Q == [[Q]]F ≤ [[P]]F"
eqF def : "P =F Q == [[P]]F = [[Q]]F"

Here, it is important to check that (traces(P), failures(P)) is in domF
indeed. It is proven in the following lemma (see CSP_F_domain.thy):

lemma proc domF[simp]: "(traces(P), failures(P)) ∈ domF"

This lemma allows us to prove the following expected properties:

lemma fstF semF[simp]: "fstF [[P]]F = traces(P)"

lemma sndF semF[simp]: "sndF [[P]]F = failures(P)"

lemma cspF eqF semantics:

"(P =F Q) = ((traces(P) = traces(Q))∧
(failures(P) = failures(Q)))"

lemma cspF refF semantics:

"(P �F Q) = ((traces(Q) ≤ traces(P))∧
(failures(Q) ≤ failures(P)))"

At the end of this subsection, we would like to briefly tell the expressive power
of our Csp dialect. At first glance, the input language of Csp-Prover seems to
be weaker than full Csp as the generic internal choice operator �P 6 missing.
However, we have proven the following theorem which shows that our language
to be expressive with respect to the stable-failures domain.

theorem EX proc domF: "∀ SF . ∃P . [[P]]F = SF"

6P is an non-emptyset of processes and the semantics is given as:

traces(�P) =
⋃

{traces(P) | P ∈ P}
failures(�P) =

⋃
{failures(P) | P ∈ P}

7.4 Recursive process 25

datatype Event = In real | Out "real * nat"

datatype BufferName = Empty nat | Full real nat

consts funDef :: "(BufferName, Event) procDef"

recdef funDef "{}"
"funDef (f, (Empty n)) = In ? r -> (f (Full r n))"

"funDef (f, (Full r n)) = Out (r,n) -> (f (Empty (Suc n)))"

syntax " fun" :: "(BufferName, Event) procFun" ("fun")

translations "fun" == "curry funDef"

consts Buffer :: "Event proc"

defs Buffer def: "Buffer == (FIX fun)(Empty 0)"

Figure 9: An encoding of the example Buffer (also see Subsection 6.3)

This theorem and the proof are given in CSP_F_surj.thy in the package CSP_F.

7.4 Recursive process

The important task to describe recursive processes such as Buffer shown in
Subsection 6.3 is to define functions such as fun whose fixed point is used. The
most elegant way to define such functions is to use the Isabelle command recdef.
For example, Buffer can be expressed in Csp-Prover as shown in Figure 9 7.
Note that funDef is a non-recursive function, thus the measure is just the empty
set {}. The reason why recdef is used here is that pattern matching on the first
argument8 is available in definition by recdef. The pattern matching allows us
to define recursive processes in a readable way.

As mentioned in Subsection 6.3, (FIX fun) works well as the least fixed
point of fun only if fun ∈ ProcFun, and (FIX! gfun) works well as the unique
fixed point only if gfun ∈ gProcFun. In Csp-Prover, the sets of ProcFun and
gProcFun are defined in the theory file CSP_syntax.thy in the package CSP
as explained in Subsection 6.3, and the proofs fun ∈ ProcFun and gfun ∈
ProcFun are automatized well. For example, fun ∈ ProcFun of the example
Buffer can be proven by the following three steps (see Test_Buffer.thy in
Test):

7The types procFun and procDef are synonyms defined as follows:

types (’p,’a) procFun = "(’p => ’a proc) => (’p => ’a proc)"

types (’p,’a) procDef = "((’p => ’a proc) * ’p) => ’a proc"
8In definition of recursive processes, it is important to apply the pattern matching to the

second argument (i.e. process indexes) such as BufferName, however the pattern matching by
recdef is available only for the first argument. Therefore, the first argument f and the second
argument of funDef are combined into a tuple, then it is separated by the function curry, see
the definition of fun.

26

lemma ProcFun fun[simp]: "fun ∈ ProcFun" %% goal to be proven

apply (auto simp add: ProcFun def) %% unfolding ProcFun def

apply (induct tac p) %% induction on indexes

apply (auto) %% automatic proof

done

By applying the first command, the following subgoal is displayed.

goal (lemma (ProcFun fun), 1 subgoal):

1.
∧
p. (λX. funDef (X, p)) ∈ Procfun

Next, in order to instantiate p whose type is BufferName, structural induction
on p is applied by (induct tac p) because BufferName is defined by datatype
(note: it is not important whether p is recursively defined or not):

goal (lemma (ProcFun fun), 2 subgoals):

1.
∧
p nat. (λX. funDef (X, Empty nat)) ∈ Procfun

2.
∧
p real nat. (λX. funDef (X, Full real nat)) ∈ Procfun

Then, the subgoals can be automatically proven. In general, this proof strategy
is available for fun ∈ ProcFun as well as for fun ∈ gProcFun.

8 Verification

In order to verify the process equivalence P =F Q and the process refinement
P �F Q in Csp-Prover, Csp-Prover provides three kinds of strategies: (1) se-
mantical proof by the definition of traces and failures, (2) manually syntacti-
cal proof by algebraic Csp laws, and (3) semi-automatically syntactical proof by
tactics. It is recommended to take a look at the theory file Test_proof.thy in
the package Test. The theory file gives three different proofs mentioned above
of the following equality:

((a → P) |[{a}]| (a → Q)) =F a → (P |[{a}]| Q)

8.1 Semantical proof

In this proof style, the important lemmas are cspF eqF semantics, in traces,
and in failures. The lemma cspF eqF semantics shown in Subsection 7.3
translates the equality =F into the equality over traces and failures, then
lemmas in traces and in failures interpret traces(P) and failures(P)
in accordance with the semantic clauses, see Figures 7 and 8. For example,
when a subgoal contains the following form,

· · · ∧ t ∈ttraces(a → P) ∧ · · ·

and if the command (simp add: in traces) is applied, then it will be rewrit-
ten to the following subgoal (∗1):

8.1 Semantical proof 27

· · · ∧ (t = 〈〉 ∨ (∃ s . t = 〈Ev a〉 � s ∧ s ∈ttraces(P))) ∧ · · ·

On the other hand, if the command (simp add: traces.simps)9 was applied
instead of (simp add: in traces), it would be rewritten to the following sub-
goal (∗2):

· · · ∧ (t ∈t {t = 〈〉 ∨ (∃ s . t = 〈Ev a〉 � s ∧ s ∈ttraces(P))}t) ∧ · · ·

Here, note that it is not trivial to transform the subgoal (∗2) to (∗1) because
(t ∈t {t . · · ·}t) is an abbreviation of

t ∈ Rep domT (Abs domT {t . · · ·}),

thus the transform from (∗2) to (∗1) requires that {t . · · ·} ∈ domT, in other
words, {t . · · ·} is a non-empty and prefix-closed set.

In Csp-Prover, the required property ({t . · · ·} ∈ domT) for each operator has
already been proven in the theory-file CSP_T_traces.thy, and then the lemma
in traces is given in order to reduce the proof obligation. Similarly, you will
prefer in failures to failures.simps. In summary, the semantical proof will
proceed as follows:

1. P =F Q is rewritten to

(traces(P) = traces(Q)) ∧ (failures(P) = failures(Q))

by (simp add: cspF eqF semantics). For P �F Q , you will apply the
lemma (cspF refF semantics) instead.

2. (traces(P) = traces(Q)) is rewritten to two subgoals

(traces(P) ≤ traces(Q)) and (traces(Q) ≤ traces(P))

by (rule order antisym).

3. (traces(P) ≤ traces(Q)) is rewritten to
∧

t. (t ∈t traces(P) −→ t ∈t traces(Q))

by (rule subdomTI).

4. in traces is applied to each t ∈t traces(P).

5. Similarly, the lemmas (rule subsetFI) and in failures will be used
for failures(P).

Now, take a look at the proof script of the lemma semantical proof in
Test_proof.thy in Test. The proof proceeds in accordance with the above

9This rule traces.simps is automatically added to the simplification rules when traces is
defined by primrec. However, we do not recommend to use traces.simps as explained later
soon. Therefore, the rule is removed from the simplification rules by the command declare
traces.simps [simp del].

8.2 Manually syntactical proof 28

instruction 10. During the proof, the subgoals are sometimes a little complex.
It will be found that Csp-Prover assists the proof well.

8.2 Manually syntactical proof

Csp-Prover also provides a lot of algebraic Csp laws which have already been
proven by the semantical way mentioned in the previous subsection. Such al-
gebraic Csp laws allow us to prove the process equivalence and the process
refinement by syntactically rewriting process expressions.

The Csp laws implemented in Csp-Prover are given in Figures 10, · · ·, 16.
The Csp laws and their names such as (�-step) are almost the same as the laws
and the names given in [Ros98]. The differences from [Ros98] are denoted by
the superscripts ∗ and + attached to names. The superscript ∗ means modified
laws, and the superscript + means added laws. All the laws in Figures 10, · · ·,
16 have already been proven by the semantical way mentioned, thus they are
proven to be sound.

Here, you might have a question about completeness, thus for every P ,Q ∈’a
proc such that P =F Q , is it possible to syntactically prove the equality by the
Csp laws without using the semantics (i.e. [[P]]F = [[Q]]F) ? The answer is yes.
We will discuss the completeness in the other paper (not yet published), but
you can find the full proof in the theory-files in the package FNF_F.

In Figures 10, · · ·, 16, the labels written in ASCII such as "cspF reflex"
given for each block are the names of lemmas in Csp-Prover. Some lemmas such
as "cspF reflex" contains more than two laws. When such lemma is applied
to a subgoal, a law matching to the subgoal is selected and is applied.

Now, take a look at the proof script of the lemma syntactical proof in
Test_proof.thy in Test. The key laws to prove the following main goal are
step-laws.

goal (lemma (syntactical proof), 1 subgoal):

1. ((a → P) |[{a}]| (a → Q)) =F a → (P |[{a}]| Q)

However, you cannot directly apply (simp add: cspF step) because the equal-
ity is not = but is =F . We explain how to rewrite the expression by the Csp
laws step by step.

In general, it is firstly stated by either cspF rw left or cspF rw right 11

which side of =F is rewritten. For example, by applying (rule cspF rw left),
the main goal is rewritten to

10The lemmas whose name has the form par tr · · · relate to |[X]|tr over traces, and they
are given in Trace par.thy in CSP.

11The lemma cspF rw right includes [| P3 =F P2; P1 =F P2 |] =⇒ P1 =F P3, and it
can be derived from cspF trans and cspF sym. cspF rw left includes cspF trans

8.2 Manually syntactical proof 29

"cspF reflex"

P =F P (reflexivity)

"cspF sym"

P =F Q =⇒ Q =F P (symmetry)

"cspF trans"

[| P1 =F P2; P2 =F P3 |] =⇒ P1 =F P3 (transitivity)

"cspF decompo"

[| a = b; P =F Q |] =⇒ a → P =F b → Q (prefix-cong)

[| X = Y ;
∧

x . x ∈ X =⇒ P(x) =F Q(x) |]
=⇒ ? x : X → P(x) =F ? x : Y → Q(x) (?-cong)

[| P1 =F Q1; P2 =F Q2 |] =⇒ P1 � P2 =F Q1 � Q2 (�-cong)

[| P1 =F Q1; P2 =F Q2 |] =⇒ P1 � P2 =F Q1 � Q2 (�-cong)

[| C1 = C2;
∧

c. c ∈ C1 =⇒ P(c) =F Q(c) |]
=⇒ !! c : C1 → P(c) =F !! c : C2 → Q(c) (!!-cong)

[| P1 =F Q1; P2 =F Q2 |] =⇒ P1 |[X]| P2 =F Q1 |[X]| Q2 (|[X]|-cong)

[| X = Y ; P =F Q |] =⇒ P \ X =F Q \ Y (hide-cong)

[| r1 = r2; P =F Q |] =⇒ P [[r1]] =F Q [[r2]] (ren-cong)

[| P1 =F Q1; P2 =F Q2 |] =⇒ P1
o
9 P2 =F Q1

o
9 Q2 (o

9-cong)

[| n1 = n2; P =F Q |] =⇒ P � n1 =F Q � n2 (� -cong)+

Figure 10: Csp congruence laws

8.2 Manually syntactical proof 30

"cspF IF"

IF True THEN P ELSE Q =F P (if-true)
IF False THEN P ELSE Q =F Q (if-false)

"cspF idem"

P � P =F P (�-idem)
P � P =F P (�-idem)

"cspF commut"

P � Q =F Q � P (�-sym)
P � Q =F Q � P (�-sym)
P |[X]| Q =F Q |[X]| P (|[X]|-sym)

"cspF assoc"

P � (Q � R) =F (P � Q) � R (�-assoc)
P � (Q � R) =F (P � Q) � R (�-assoc)

"cspF unit"

P � Stop =F P (�-unit)
P � Div =F P (�-unit)

"cspF Rep int choice empty"

!! c : ∅ • P(c) =F DIV (!!-emptyset)+

"cspF Rep int choice const"

[| C �= ∅; ∀ c ∈ C .P(c) = Q |] =⇒ !! c : C • P(c) =F Q (!!-const)∗

"cspF Rep int choice union Int"

!! c : (C1 ∪ C2) • P(c) =F (!! c : C1 • P(c)) � (!! c : C2 • P(c)) (!!-union-�)∗

Figure 11: Csp basic laws

8.2 Manually syntactical proof 31

"cspF Dist"

C �= ∅ =⇒ (!! c : C • P(c)) � Q =F !! c : C • (P(c) � Q) (�-Dist)

C �= ∅ =⇒ (!! c : C • P(c)) |[X]| Q =F !! c : C • (P(c) |[X]| Q) (|[X]|-Dist)

(!! c : C • P(c)) \ X =F !! c : C • (P(c) \ X) (hide-Dist)

(!! c : C • P(c))[[r]] =F !! c : C • (P(c)[[r]]) ([[r]]-Dist)

(!! c : C • P(c)) o
9 Q =F !! c : C • (P(c) o

9 Q) (o
9-Dist)

(!! c : C • P(c)) � n =F !! c : C • (P(c) � n) (� -Dist)+

"cspF dist"

(P1 � P2) � Q =F (P1 � Q) � (P2 � Q) (�-dist)

(P1 � P2) |[X]| Q =F (P1 |[X]| Q) � (P2 |[X]| Q) (|[X]|-dist)

(P1 � P2) \ X =F (P1 \ X) � (P2 \ X) (hide-dist)

(P1 � P2)[[r]] =F (P1[[r]]) � (P2[[r]]) ([[r]]-dist)

(P1 � P2) o
9 Q =F (P1

o
9 Q) � (P2

o
9 Q) (o

9-dist)

(P1 � P2) � n =F (P1 � n) � (P2 � n) (� -dist)+

!!c : C • (P1(c) � P2(c)) =F (!!c : C • P1(c)) � (!!c : C • P2(c)) (!!-dist)

"cspF Ext dist"

(P1 � P2)[[r]] =F (P1[[r]]) � (P2[[r]]) ([[r]]-�-dist)

(P1 � P2) � n =F (P1 � n) � (P2 � n) (� -�-dist)+

Figure 12: Csp distributive laws

8.2 Manually syntactical proof 32

"cspF step"

Stop =F ? x : ∅ → P(x) (stop-step)

a → P =F ? x : {a} → P (prefix-step)

(? x : A → P(x)) � (? x : B → Q(x))
=F? x : (A ∪ B) → (IF (x ∈ A ∩ B) THEN P(x) � Q(x)

ELSE IF (x ∈ A) THEN P(x) ELSE Q(x)) (�-step)

(?x : A → P ′(x)) |[X]| (?x : B → Q ′(x))
=F (?x : ((X ∩ A ∩ B) ∪ (A − X) ∪ (B − X)) →

IF (x ∈ X)
THEN (P ′(x) |[X]| Q ′(x))
ELSE IF (x ∈ A ∩ B)

THEN ((P ′(x) |[X]| (?x : B → Q ′(x))) �
((?x : A → P ′(x)) |[X]| Q ′(x)))

ELSE IF (x ∈ A)
THEN (P ′(x) |[X]| (?x : B → Q ′(x)))
ELSE ((?x : A → P ′(x)) |[X]| Q ′(x))) (|[X]|-step)

(? x : A → P(x)) \ X
=F IF (A ∩X =F ∅)

THEN ? x : A → (P(x) \ X)
ELSE (? x : (A − X) → (P(x) \ X))

� (! x : (A ∩X) • (P(x) \ X)) (hide-step)

(? x : A → P(x))[[r]]
=F ? x : {x | ∃ a ∈ A. (a, x) ∈ r} →

(! a : {a ∈ A | (a, x) ∈ r} • (P(a)[[r]])) ([[r]]-step)

(? x : A → P(x)) o
9 Q =F ? x : A → (P(x) o

9 Q) (o
9-step)

(? x : A → P(x)) � (n + 1) =F ? x : A → (P(x) � n) (� -step)+

Figure 13: Csp step laws

8.2 Manually syntactical proof 33

"cspF step ext"

((?x : A → P ′(x)) � P ′′) |[X]| ((?x : B → Q ′(x)) � Q ′′)
=F (?x : ((X ∩A ∩ B) ∪ (A − X) ∪ (B − X)) →

IF (x ∈ X)
THEN (P ′(x) |[X]| Q ′(x))
ELSE IF (x ∈ A ∩ B)

THEN ((P ′(x) |[X]| ((?x : B → Q ′(x)) � Q ′′)) �
(((?x : A → P ′(x)) � P ′′) |[X]| Q ′(x)))

ELSE IF (x ∈ A)
THEN (P ′(x) |[X]| ((?x : B → Q ′(x)) � Q ′′))
ELSE (((?x : A → P ′(x)) � P ′′) |[X]| Q ′(x)))

� ((P ′′ |[X]| ((?x : B → Q ′(x)) � Q ′′)) �
(((?x : A → P ′(x)) � P ′′) |[X]| Q ′′)) (|[X]|-�-split)∗

((?x : A → P ′(x)) � P ′′) |[X]| (?x : B → Q ′(x))
=F (?x : ((X ∩A ∩ B) ∪ (A − X) ∪ (B − X)) →

IF (x ∈ X)
THEN (P ′(x) |[X]| Q ′(x))
ELSE IF (x ∈ A ∩ B)

THEN ((P ′(x) |[X]| (?x : B → Q ′(x))) �
(((?x : A → P ′(x)) � P ′′) |[X]| Q ′(x)))

ELSE IF (x ∈ A)
THEN (P ′(x) |[X]| (?x : B → Q ′(x)))
ELSE (((?x : A → P ′(x)) � P ′′) |[X]| Q ′(x)))

� (P ′′ |[X]| (?x : B → Q ′(x))) (|[X]|-�-input)∗

"cspF Ext choice SKIP DIV resolve"

P � SKIP = P � SKIP (�-skip-resolve)
P � DIV = P � DIV (�-div-resolve)

"cspF Depth rest Zero"

P � 0 =F DIV (� -zero)+

"cspF Depth rest min"

(P � n) �m =F P �min(n,m) (� -min)+

Figure 14: Csp extended step laws and depth-restriction laws

8.2 Manually syntactical proof 34

"cspF SKIP DIV"

SKIP � DIV =F SKIP (skip-div-�)

SKIP |[X]| SKIP =F SKIP (skip-|[X]|)
DIV |[X]| DIV =F DIV (div-|[X]|)
SKIP |[X]| DIV =F DIV (skip-div-|[X]|)

SKIP |[X]| (? x : A → P(x))
=F ? x : (A − X) → (SKIP |[X]| P(x)) (|[X]|-preterm)
DIV |[X]| (? x : A → P(x))
=F (? x : (A − X) → (DIV |[X]| P(x))) � DIV (div-|[X]|-step)

SKIP |[X]| ((? x : A → P(x)) � SKIP)
=F (? x : (A − X) → (SKIP |[X]| P(x))) � SKIP (skip-|[X]|-�-skip)
SKIP |[X]| ((? x : A → P(x)) � DIV)
=F (? x : (A − X) → (SKIP |[X]| P(x))) � DIV (skip-|[X]|-�-div)

DIV |[X]| (P � SKIP) =F DIV |[X]| P (div-|[X]|-�-skip)
DIV |[X]| (P � DIV) =F DIV |[X]| P (div-|[X]|-�-div)

SKIP \ X =F SKIP (skip-hide)
DIV \ X =F DIV (div-hide)

((? x : A → P(x)) � SKIP) \ X
=F ((? x : (A − X) → (P(x) \ X)) � SKIP)

� (! x : (A ∩ X) • (P(x) \ X)) (skip-hide-step)
((? x : A → P(x)) � DIV) \ X
=F ((? x : (A − X) → (P(x) \ X)) � DIV)

� (! x : (A ∩ X) • (P(x) \ X)) (div-hide-step)

SKIP[[r]] =F SKIP (skip-[[r]]-id)
DIV[[r]] =F DIV (div-[[r]]-id)
SKIP o

9 P =F P (o
9-unit-l)

DIV o
9 P =F DIV (div-o9)

((? x : A → P(x)) � SKIP) o
9 R

=F (? x : A → (P(x) o
9 R)) � R (skip-o9-step)

((? x : A → P(x)) � DIV) o
9 R

=F (? x : A → (P(x) o
9 R)) � DIV (div-o9-step)

SKIP � (n + 1) =F SKIP (skip- �)+

DIV � n =F DIV (div- �)+

Figure 15: Csp skip and div laws

8.2 Manually syntactical proof 35

"cspF Rep int choice input set"

!! c : C • (? x : A(c) → P(c, x))
=F !set X : {A(c) | c ∈ C}•

(? x : X → (!! c : {c ∈ C | x ∈ A(c)} • P(c, x))) (!!-input-!set)+

"cspF Rep int choice Ext Dist"

∀ c ∈ C .Q(c) ∈ {SKIP, DIV} =⇒
!!c : C • (P(c) � Q(c))
=F (!!c : C • P(c)) � (!!c : C • Q(c)) (!!-�-Dist)+

"cspF Rep int choice input Dist"

[| Q = SKIP ∨ Q = DIV |] =⇒
(!set X : X • (?x : X → P(x))) � Q
=F (?x :

⋃
X → P(x)) � Q (!!-input-Dist)+

"cspF input DIV"

? x : A → P(x)
=F ((? x : A → P(x)) � DIV) � (? x : A → DIV) (?-div)+

"cspF Rep int choice set DIV"

!! c : C • (!set X : X (c) • (? x : X → DIV))
=F !set X :

⋃
{X (c) | c ∈ C} • (? x : X → DIV) (!!-!set-div)+

"cspF input Rep int choice set subset"

if X ⊆ Y and (∀Y ∈ Y. ∃X ∈ X .X ⊆ Y ⊆ A) then
((? x : A → P(x)) � R) � (!set X : X • (? x : X → DIV))
=F ((? x : A → P(x)) � R) � (!set X : Y • (? x : X → DIV)) (?-!set-⊆)+

"cspF nat Depth rest"

P =F !nat n • (P � n) (!nat- �)+

Figure 16: Csp replicated internal choice laws and normalising laws

8.2 Manually syntactical proof 36

goal (lemma (syntactical proof), 2 subgoals):

1. ((a → P) |[{a}]| (a → Q)) =F ?P2.0
2. ?P2.0 =F a → (P |[{a}]| Q)

where ?P2.0 is a variable called schematic variable or unknown automatically
generated by Isabelle. Such variable will be instantiated later.

Next, it may be expected to apply the (|[X]|-step) law, but it is not available
yet. Before applying (|[X]|-step), (a → P) has to transformed to the form of
? a : Y → P ′(a). To do that, decompose the parallel operator in the first goal
by (rule cspF decompo). It generates the following subgoals:

goal (lemma (syntactical proof), 4 subgoals):

1. {a} = ?Y 1
2. a → P =F ?Q1.1
3. a → Q =F ?Q2.1
4. ?Q1.1|[?Y 1]| ?Q2.1 =F a → (P |[{a}]| Q)

The first goal is trivial. By applying (simp), the schematic variable ?Y 1 is
instantiated to {a} and the first goal disappears:

goal (lemma (syntactical proof), 3 subgoals):

1. a → P =F ?Q1.1
2. a → Q =F ?Q2.1
3. ?Q1.1 |[{a}]| ?Q2.1 =F a → (P |[{a}]| Q)

Here, apply (rule cspF step) to the first goal, then ?Q1.1 is instantiated to
? x : {a} → P as follows:

goal (lemma (syntactical proof), 2 subgoals):

1. a → Q =F ?Q2.1
2. (? x : {a} → P) |[{a}]| ?Q2.1 =F a → (P |[{a}]| Q)

Similarly, by (rule cspF step) again, you will get the following subgoal:

goal (lemma (syntactical proof), 1 subgoal):

1. (? x : {a} → P) |[{a}]| (? x : {a} → Q) =F a → (P |[{a}]| Q)

Then, you can apply the (|[X]|-step) law on the left side by (rule cspF rw left)
and (rule cspF step). And continue to apply the commands until done in
the proof script of the lemma syntactical proof in Test_proof.thy. You
will see the outline of the syntactical proof.

Hitherto, we have given the instruction for syntactical proof of =F . The
process refinement �F is also proven by a similar way. The lemmas (rule
cspF rw left), (rule cspF rw right), and (rule cspF decompo) can be
also applied to �F 12. The additional laws for �F are shown Figure 17.

In summary, the syntactical proof will proceed as follows:

1. It is selected by either (rule cspF rw left) or (rule cspF rw right)
which side of P =F Q (or P �F Q) is rewritten.

12For example, (rule cspF rw right) includes [| P3 =F P2; P1 	F P2 |] =⇒ P1 	F P3,
and (rule cspF decompo) includes [| a = b; P 	F Q |] =⇒ a → P 	F b → Q .

8.2 Manually syntactical proof 37

"cspF ref eq"

[| P �F Q ; Q �F P |] =⇒ P =F Q (�F -=F)

"cspF eq ref"

P =F Q =⇒ P �F Q (=F -�F)

"cspF Int choice left1"

P1 �F Q =⇒ P1 � P2 �F Q (�-left-1)

"cspF Int choice left2"

P2 �F Q =⇒ P1 � P2 �F Q (�-left-2)

"cspF Int choice right"

[| P �F Q1; P �F Q1 |] =⇒ P �F Q1 � Q2 (�-right)

"cspF Rep int choice left"

(∃ c. c ∈ C ∧ P(c) �F Q) =⇒ !! c : C • P(c) �F Q (!!-left)

"cspF Rep int choice right"

(
∧

c. c ∈ C =⇒ P �F Q(c)) =⇒ P �F !! c : C • Q(c) (!!-right)

"cspF decompo subset"

[| C2 ⊆ C1;
∧

c. c ∈ C2 =⇒ P(c) �F Q(c) |]
=⇒ !! c : C1 • P(c) �F !! c : C2 • Q(c) (!!-subset)

[| Y �= {}; Y ⊆ X ;
∧

x . x ∈ Y =⇒ P(x) �F Q(x) |]
=⇒ ! x : X • (x → P(x)) �F ? x : Y → Q(x) (!!-?-subset)

"cspF Ext choice right"

[| P �F Q1; P �F Q2 |] =⇒ P �F Q1 � Q2 (�-right)

Figure 17: Csp refinement laws

8.2 Manually syntactical proof 38

2. Decompose the expression by (rule cspF decompo) until the subexpres-
sion to be rewritten appears alone.

3. Apply the Csp rule by (rule cspF · · ·).

You will find a lot of syntactical proof technique in the theory-files (e.g. lemma
cspF fsfF Ext choice eqF in FNF_F_sf_ext.thy) in the package FNF_F. For
example, if you want to apply the law cspF assoc to a subgoal in the opposite
direction (i.e. (P � Q) � R =F P � (Q � R)), you can apply the com-
mand (rule cspF assoc[THEN cspF sym]). In this case, at first cspF sym is
applied to cspF assoc, then the result is applied to the subgoal.

In the rest of this subsection, we give Csp laws for recursive processes, see
Figures 18 and 19. The laws (Tarski-fix) and (Banach-fix) can replace fixed
point by unbounded internal choice. They may be useful for theoretical work.
On the other hand, the unwinding laws and the fixed-point induction laws will
be often used in practical verifications. The unwinding laws are intuitively
understandable, but the fixed-point induction laws might not be intuitive. We
pick up the law (induct-cpo) and explain it by using the example Buffer in
Figure 9.

As a simple example, we verify Buffer is deadlock-free, thus DF �F Buffer,
where the deadlock-free specification DF is defined as: µ X • (! x → X). See
the lemma manual_proof_Buffer in the theory file Test_Buffer.thy in the
package Test. After setting DF �F Buffer as the main goal and unfolding the
definition of Buffer, the following goal is displayed:

goal (lemma (manual proof Buffer), 1 subgoal):

1. DF �F (FIX fun) (Empty(0))

In general, the fixed point induction is applied at first. So, if you apply the
fixed point induction to the goal by (rule cspF fp induct right), you will
have the following three subgoals (∗):
goal (lemma (manual proof Buffer), 3 subgoals):

1. fun ∈ ProcFun

2. DF �F ?f (Empty(0))
3.

∧
p. ?f (p) �F fun(?f)(p)

Here, note that the fixed-point (FIX fun) on fun has been replaced by the
inductive property ?f (p) �F fun(?f)(p). However, it is actually difficult to
instantiate the schematic variable ?f later. The variable ?f is a function which
intuitively relates the right process (i.e. Buffer) to the left process (i.e. DF).
More exactly, it relates each process-index in BufferName to a reachable process
from DF. It would be better that such function ?f is given by users because it is
hard to automatically find such functions. However, Csp-Prover can assist to
find such functions. In this example, such function can be given as follows:

8.2 Manually syntactical proof 39

"cspF FIX eq"

(FIX fun)(p) =F (!nat n • ((fun(n)(λ p′. DIV))(p))) (Tarski-fix)

(FIX! fun)(p) =F (!nat n • (((fun(n)(λ p′. Any))(p)) � n)) (Banach-fix)

"cspF FIX FIX1"

fun ∈ gProcFun =⇒ (FIX fun)(p) =F (FIX! fun)(p) (FIX-FIX!)

"cspF unwind"

fun ∈ ProcFun =⇒ (FIX fun)(p) =F (fun(FIX fun))(p) (unwind-cpo)

fun ∈ gProcFun =⇒ (FIX! fun)(p) =F (fun(FIX fun))(p) (unwind-cms)

"cspF fp induct right"

[| fun ∈ ProcFun; Q �F f (p);∧
p. f (p) �F fun(f)(p) |] =⇒ Q �F (FIX fun)(p) (induct-cpo)

[| fun ∈ gProcFun; Q �F f (p);∧
p. f (p) �F fun(f)(p) |] =⇒ Q �F (FIX! fun)(p) (induct-cms-ref)

[| fun ∈ gProcFun; Q =F f (p);∧
p. f (p) =F fun(f)(p) |] =⇒ Q =F (FIX! fun)(p) (induct-cms-eq)

"cspF fp induct left"

[| fun ∈ gProcFun; f (p) �F Q ;∧
p. fun(f)(p) �F f (p) |] =⇒ (FIX! fun)(p) �F Q (induct-cms-ref)

[| fun ∈ gProcFun; f (p) =F Q ;∧
p. fun(f)(p) =F f (p) |] =⇒ (FIX! fun)(p) =F Q (induct-cms-eq)

Figure 18: Csp fixed-point laws

8.2 Manually syntactical proof 40

"cspF MU eq"

R ∈ ProcX
=⇒ (µ X • R(X)) =F (!natn • R(n)(DIV)) (µ-eq)

R ∈ gProcX
=⇒ (µ!X • R(X)) =F (!natn • ((R(n)(DIV)) � n)) (µ!-eq)

"cspF MU MU1"

R ∈ gProcX =⇒ (µ X • R(X)) =F (µ!X • R(X)) (µ-µ!)

"cspF unwind MU"

R ∈ ProcX =⇒ (µ X • R(X)) =F R(µ X • R(X)) (unwind-µ)

R ∈ gProcX =⇒ (µ!X • R(X)) =F R(µ!X • R(X)) (unwind-µ!)

"cspF fp induct MU right"

[| R ∈ ProcX ; Q �F R(Q) |] =⇒ Q �F (µ X • R(X)) (induct-µ)

[| R ∈ gProcX ; Q �F R(Q) |] =⇒ Q �F (µ!X • R(X)) (induct-µ!-ref)

[| R ∈ gProcX ; Q =F R(Q) |] =⇒ Q =F (µ!X • R(X)) (induct-µ!-eq)

"cspF fp induct MU left"

[| R ∈ gProcX ; R(Q) �F Q |] =⇒ (µ X • R(X)) �F Q (induct-µ!-ref)

[| R ∈ gProcX ; R(Q) =F Q |] =⇒ (µ X • R(X)) =F Q (induct-µ!-eq)

Figure 19: Csp fixed-point laws (single)

8.3 Semi-automatically syntactical proof 41

consts
Buffer to DF :: "BufferName ⇒ Event proc"

primrec
"Buffer to DF (Empty n) = DF"

"Buffer to DF (Full r n) = DF"

Then, it is possible to apply the fixed point induction whose ?f has been in-
stantiated to Buffer to DF by

(rule cspF fp induct right[of "Buffer to DF"])

The application generates the following subgoals instead of (∗):
goal (lemma (manual proof Buffer), 3 subgoals):

1. fun ∈ ProcFun

2. DF �F Buffer to DF(Empty(0))

3.
∧

p. Buffer to DF(p) �F fun(Buffer to DF)(p)

The subgoals 1 and 2 can be easily proven by (simp all add: DF def). The
variable p in the subgoal 3 can be instantiated to (Empty nat) and (Full real nat)
by (induct tac p) as explained at the end of Subsection 7.4. And thereafter,
by applying (simp all add: DF def), the following two subgoals are obtained:

goal (lemma (manual proof Buffer), 2 subgoals):

1. µ X • (! x • x → X) �F ? x : (range In) → (µ X • (! x • x → X))
2.

∧
real nat . µ X • (! x • x → X) �F Out(real ,nat) → (µ X • (! x • x → X))

These two subgoals are easily proven by unwinding µ (i.e. cspF unwind MU)
and decomposition (i.e. cspF decompo subset). See the proof script in the
lemma manual_proof_Buffer.

8.3 Semi-automatically syntactical proof

In Subsection 8.2, we explained the syntactical proof. In this proof, you can
completely control which subexpression is rewritten. It may be sometimes con-
venient for theoretical works, but may be redundant for practical verification.
In this subsection, we give semi-automatic tactics to apply Csp laws as much
as possible.

The most useful tactics are cspF_hsf_left_tac and cspF_hsf_right_tac
which sequentialise processes in left-hand sides and in right-hand sides, respec-
tively. The tactic cspF_hsf_left_tac repeatedly applies the following Csp
laws to processes in left-hand sides with the following priority (i.e. the law
cspF_choice_IF has the highest priority).

1. The law cspF_choice_IF, which consists of (cspF_IF), (cspF_idem),
(cspF_unit), etc to simplify processes.

2. The law cspF_SKIP_DIV_sort, which is derived from (cspF_commut) and
(cspF_assoc) to sort processes over � to the form ? x : X → P(x) � SKIP

8.3 Semi-automatically syntactical proof 42

or ? x : X → P(x) � DIV if unguarded SKIP or DIV exists.

3. The law cspF_SKIP_DIV_resolve, which is derived from (cspF_SKIP_DIV),
(cspF_Ext_choice_SKIP_DIV_resolve), and (cspF_step_ext) to sequen-
tialise processes together with SKIP or DIV.

4. The law cspF_step, to sequentialise processes.

5. The law cspF_all_dist, which consists of cspF_dist, cspF_Dist, and
cspF_Ext_dist to distribute operators on choice operators.

6. The laws cspF_unwind and cspF_unwind_MU to unwind recursive pro-
cesses.

7. The law cspF_free_decompo to decompose operators, which are not guarded
by prefix or prefix choice or replicated internal choice, to avoid infinite un-
winding.

8. The law cspF_reflex, applied to subexpressions which are not rewritten.

Symmetrically, the tactic cspF_hsf_right_tac applies the Csp laws to pro-
cesses in right-hand sides. In addition, a tactic cspF_hsf_tac is given as the
combination of cspF_hsf_left_tac and cspF_hsf_right_tac, thus you can
apply a tactic cspF_hsf_tac to sequentialise processes in both-hand sides, by
the following command:

apply (tactic {* cspF hsf tac n *})

where the tactic is applied to nth subgoal. Note that you may consecutively
apply cspF_hsf_tac more than twice because an application of a Csp law can
make the other Csp law applicable. If you want to automatically apply the
tactic as repeatedly as possible, the Isabelle option +, which expresses one or
more repetitions, is useful:

apply (tactic {* cspF hsf tac n *})+

Take a look at the proof-script of the lemma tactical proof in Test_proof.thy
in Test. By the tactic, the lemma is easily proven.

Another useful tactic is cspF simp with tac13, which tries to apply a law
proven by users to every subexpression. Thus, it repeatedly decomposes a pro-
cess, check whether the law can be applied to subexpressions, and then applies
it if possible. For example, assume that the following law has already been
proven:

lemma new law: "(P � Q) � P =F (P � Q)"

Then, you can apply the law to every subexpression in the subgoal 1 by

apply (tactic {* cspF simp with tac "new law" 1 *})
13Similarly to the case of cspF hsf tac, cspF simp with tac is the combination of

cspF simp with left tac and cspF simp with right tac.

43

To simultaneously apply two or more proven laws, the command lemmas will
be useful, for example to combine law1 and law2 to laws:

lemmas laws = law1 law2

An example in which the tactic cspF simp with tac is often used is given in
theory-files in the package DM. Also, the tactic can be used for separating a large
proof into some partial proofs.

The other tactics are given as sub-tactics of the tactic cspF hsf tac for
avoiding meaningless rewriting. For example the tactic cspF step tac focuses
on applying step-laws, thus it applies cspF_choice_IF,cspF_SKIP_DIV_resolve,
cspF_step, cspF_free_decompo, and cspF_reflex, while it does not apply
distributive laws or unwinding laws. Similarly, the tactics cspF dist tac,
cspF unwind tac, and cspF sort tac focus on distribution, unwinding, and
sorting, respectively.

9 Conclusion

This User-Guide is a draft version, and will be updated near future. Please keep
to check the Csp-Prover’s web site:

http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html

Also Csp-Prover is still being developed and improved. Your feedback would
be very welcome!

References

[Asp00] D. Aspinall. Proof general: A generic tool for proof development. In
TACAS 2000, LNCS 1785, pages 38–42. Springer, 2000.

[CS01] E. M. Clarke and H. Schlingloff. Model checking. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning. Elsevier
Science, 2001.

[ep202] eft/pos 2000 Specification, version 1.0.1. EP2 Consortium, 2002.

[IR05] Y. Isobe and M. Roggenbach. A generic theorem prover of CSP re-
finement. In TACAS 2005, LNCS 3440, pages 108–123. Springer,
2005.

[NPW02] T. Nipkow, L. C. Paulon, and M. Wenzel. Isabelle/HOL. LNCS 2283.
Springer, 2002. http://www4.in.tum.de/~nipkow/LNCS2283/.

[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice
Hall, 1998. Or No.68 in
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/pubs.html.

