(*-------------------------------------------*
| CSP-Prover on Isabelle2004 |
| November 2004 |
| |
| CSP-Prover on Isabelle2005 |
| October 2005 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory RS = Norm_seq:
(*****************************************************************
1. Definition of Restriction Spaces (RS)
2. RS ==> MS
3. Metric Fixed point induction
4.
*****************************************************************)
consts
restriction :: "'a::ms0 => nat => 'a::ms0" ("_ .|. _" [55,56] 55)
(******** X-symbols ********)
syntax (output)
"_restriction" :: "'a::ms0 => nat => 'a::ms0" ("_ .|. _" [55,56] 55)
syntax (xsymbols)
"_restriction" :: "'a::ms0 => nat => 'a::ms0" ("_ \<down> _" [55,56] 55)
translations
"x \<down> n" == "x .|. n"
(**********************************************************
restriction space (rs)
**********************************************************)
axclass rs < ms0
zero_eq_rs: "ALL (x::'a::ms0) (y::'a::ms0). x .|. 0 = y .|. 0"
min_rs : "ALL (x::'a::ms0) (m::nat) (n::nat).
(x .|. m) .|. n = x .|. (min m n)"
diff_rs : "ALL (x::'a::ms0) (y::'a::ms0).
(x ~= y) --> (EX n. x .|. n ~= y .|. n)"
declare zero_eq_rs [simp]
lemma diff_rs_Suc:
"ALL n (x::'a::rs) y. x .|. n ~= y .|. n --> (EX m. n = Suc m) "
apply (rule allI)
apply (induct_tac n)
by (auto)
(**********************************************************
restriction space --> metric space
**********************************************************)
consts
distance_nat_set :: "('a::ms0 * 'a::ms0) => nat set"
distance_nat :: "('a::ms0 * 'a::ms0) => nat"
distance_rs_set :: "('a::ms0 * 'a::ms0) => real set"
defs
distance_nat_set_def :
"distance_nat_set xy ==
{n. ((fst xy) .|. n) = ((snd xy) .|. n)}"
distance_nat_def :
"distance_nat xy == MAX (distance_nat_set xy)"
distance_rs_set_def :
"distance_rs_set xy == {(1/2)^n |n. n:distance_nat_set xy}"
defs (overloaded)
distance_rs_def : "distance xy == GLB (distance_rs_set xy)"
(**********************************************************
complete restriction space (crs)
**********************************************************)
axclass ms_rs < ms, rs
axclass cms_rs < cms, ms_rs
(**********************************************************
RS lemmas
**********************************************************)
(*** contraposition of diff_rs ***)
lemma contra_diff_rs:
"[| ALL n. (x::'a::rs) .|. n = y .|. n |] ==> (x = y)"
apply (erule contrapos_pp)
by (simp add: diff_rs)
(*** diff_rs inv ***)
lemma contra_diff_rs_inv:
"[| (x::'a::rs) .|. n ~= y .|. n |] ==> (x ~= y)"
apply (auto)
done
(*** zero distance ***)
lemma distance_rs_zero[simp]:
"distance ((x::'a::rs), x) = 0"
apply (simp add: distance_rs_def distance_rs_set_def)
apply (simp add: distance_nat_set_def)
by (simp add: zero_GLB_pow)
(*---------------------------*
| equal-preserv |
*---------------------------*)
lemma rest_equal_preserve:
"[| (x::'a::rs) .|. n = y .|. n ; m <= n |] ==> x .|. m = y .|. m"
apply (insert min_rs)
apply (drule_tac x="x" in spec)
apply (drule_tac x="n" in spec)
apply (drule_tac x="m" in spec)
apply (insert min_rs)
apply (drule_tac x="y" in spec)
apply (drule_tac x="n" in spec)
apply (drule_tac x="m" in spec)
by (simp add: min_is)
lemma rest_equal_preserve_Suc:
"(x::'a::rs) .|. Suc n = y .|. Suc n ==> x .|. n = y .|. n"
apply (rule rest_equal_preserve)
by (auto)
lemma rest_nonequal_preserve:
"[| (x::'a::rs) .|. m ~= y .|. m ; m <= n |] ==> x .|. n ~= y .|. n"
apply (erule contrapos_pp)
apply (simp)
apply (rule rest_equal_preserve)
by (simp_all)
(*---------------------------*
| distance_nat_set hasMAX |
*---------------------------*)
lemma distance_nat_set_hasMAX :
"(x::'a::rs) ~= y ==> (distance_nat_set (x,y)) hasMAX"
apply (insert EX_MIN_nat[of "{m. x .|. m ~= y .|. m}"])
apply (simp add: diff_rs)
apply (erule exE)
apply (simp add: isMIN_def)
apply (insert diff_rs_Suc)
apply (drule_tac x="n" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (simp)
apply (erule exE)
(* m must be the max *)
apply (simp add: hasMAX_def)
apply (rule_tac x="m" in exI)
apply (simp add: distance_nat_set_def isMAX_def)
apply (case_tac "x .|. m = y .|. m")
apply (simp add: isUB_def)
apply (intro allI impI)
apply (simp add: isLB_def)
apply (erule conjE)
apply (case_tac "Suc m <= ya")
apply (rotate_tac 3)
apply (erule contrapos_pp)
apply (rule rest_nonequal_preserve)
apply (simp_all)
apply (force)
(* x .|. m ~= y .|. m *) (* --> contradict for MIN *)
apply (simp add: isLB_def)
apply (erule conjE)
apply (drule_tac x="m" in spec)
apply (simp)
done
(*---------------------------*
| isMAX <--> isGLB |
*---------------------------*)
lemma distance_isMAX_isGLB:
"n isMAX distance_nat_set ((x::'a::rs), y)
==> (1/2)^n isGLB distance_rs_set (x, y)"
apply (simp add: distance_rs_set_def)
apply (simp add: isGLB_def isLB_def)
apply (rule conjI)
(* LB *)
apply (intro allI impI)
apply (simp add: isMAX_def isUB_def)
apply (elim conjE exE)
apply (drule_tac x="na" in spec)
apply (simp add: power_decreasing)
(* GLB *)
apply (intro allI impI)
apply (drule_tac x="(1 / 2) ^ n" in spec)
apply (drule mp)
apply (rule_tac x="n" in exI, simp_all)
apply (simp add: isMAX_def)
done
(*---------------------------*
| distance_set hasGLB |
*---------------------------*)
lemma distance_rs_set_hasGLB :
"(distance_rs_set ((x::'a::rs),y)) hasGLB"
apply (simp add: hasGLB_def)
apply (case_tac "x = y")
apply (simp add: distance_rs_set_def)
apply (simp add: distance_nat_set_def)
apply (rule_tac x="0" in exI)
apply (simp add: zero_isGLB_pow)
apply (insert distance_nat_set_hasMAX[of x y])
apply (simp add: hasMAX_def)
apply (erule exE)
apply (rule_tac x="(1/2)^xa" in exI)
by (simp add: distance_isMAX_isGLB)
(*---------------------------*
| MAX <--> GLB |
*---------------------------*)
lemma distance_rs_nat_lm:
"[| (x::'a::rs) ~= y ; distance_nat (x,y) = n ; distance (x,y) = r |]
==> r = (1 / 2) ^ n"
apply (simp add: distance_nat_def MAX_iff distance_nat_set_hasMAX)
apply (simp add: distance_rs_def GLB_iff distance_rs_set_hasGLB)
apply (insert distance_isMAX_isGLB[of n x y])
by (simp add: GLB_unique)
lemma distance_iff1:
"(x::'a::rs) ~= y
==> distance (x,y) = (1 / 2) ^ (distance_nat (x,y))"
by (simp add: distance_rs_nat_lm)
lemma distance_iff2:
"(y::'a::rs) ~= x
==> distance (x,y) = (1 / 2) ^ (distance_nat (x,y))"
apply (rule distance_iff1)
by (force)
lemmas distance_iff = distance_iff1 distance_iff2
(*---------------------------*
| less than 1B |
*---------------------------*)
lemma distance_rs_less_one:
"distance ((x::'a::rs), y) <= 1"
apply (case_tac "x=y", simp)
apply (simp add: distance_iff)
apply (rule order_trans)
apply (subgoal_tac "(1 / 2) ^ distance_nat (x, y) <= (1 / 2) ^ 0")
apply (assumption)
apply (rule power_decreasing)
apply (simp_all)
done
(*---------------------------*
| distance_nat iff |
*---------------------------*)
lemma isMAX_distance_nat1 :
"(x::'a::rs) ~= y ==> (n isMAX distance_nat_set (x,y)) = (distance_nat (x,y) = n)"
apply (simp add: distance_nat_def)
by (simp add: distance_nat_set_hasMAX MAX_iff)
lemmas distance_nat_isMAX1 = isMAX_distance_nat1[THEN sym]
lemma distance_nat_isMAX_sym1:
"(x::'a::rs) ~= y ==> (n = distance_nat (x,y)) = (n isMAX distance_nat_set (x,y))"
by (auto simp add: isMAX_distance_nat1)
lemma isMAX_distance_nat2 :
"(y::'a::rs) ~= x ==> (n isMAX distance_nat_set (x,y)) = (distance_nat (x,y) = n)"
apply (rule isMAX_distance_nat1)
by (auto)
lemmas distance_nat_isMAX2 = isMAX_distance_nat2[THEN sym]
lemma distance_nat_isMAX_sym2:
"(y::'a::rs) ~= x ==> (n = distance_nat (x,y)) = (n isMAX distance_nat_set (x,y))"
by (auto simp add: isMAX_distance_nat2)
lemmas distance_nat_iff = distance_nat_isMAX1 distance_nat_isMAX_sym1
distance_nat_isMAX2 distance_nat_isMAX_sym2
(*** for insert ***)
lemma distance_nat_is:
"(x::'a::rs) ~= y ==> distance_nat (x,y) isMAX distance_nat_set (x,y)"
apply (insert distance_nat_isMAX1[of x y "distance_nat (x,y)"])
by (simp)
(*============================================================*
| |
| (restriction space ==> metric space) |
| |
| instance x :: (type) rs ==> instance x :: (type) ms |
| |
| by positive_rs |
| diagonal_rs |
| symmetry_rs |
| triangle_inequality_rs |
| |
*============================================================*)
(*** positive_rs ***)
lemma positive_rs[simp]: "0 <= distance (x::'a::rs,y)"
apply (case_tac "x = y")
by (simp_all add: distance_iff zero_le_power)
(*** diagonal_rs ***)
lemma diagonal_rs_only_if: "(distance((x::'a::rs),y) = 0) ==> (x = y)"
apply (case_tac "x = y", simp)
by (simp add: distance_iff)
lemma diagonal_rs: "(distance((x::'a::rs),y) = 0) = (x = y)"
apply (rule iffI)
apply (simp add: diagonal_rs_only_if)
by (simp)
lemma diagonal_rs_neq: "((x::'a::rs) ~= y) ==> 0 < distance((x::'a::rs), y)"
apply (case_tac "distance(x, y) = 0")
apply (simp add: diagonal_rs)
apply (insert positive_rs[of x y])
by (simp del: positive_rs)
(*** symmetry_rs ***)
lemma symmetry_nat_lm:
"[| (x::'a::rs) ~= y;
distance_nat (x,y) = n; distance_nat (y,x) = m |] ==> n = m"
apply (simp add: distance_nat_iff)
apply (rule MAX_unique)
apply (simp)
by (simp add: isMAX_def isUB_def distance_nat_set_def)
lemma symmetry_nat:
"(x::'a::rs) ~= y ==> distance_nat (x,y) = distance_nat (y,x)"
by (simp add: symmetry_nat_lm)
lemma symmetry_rs: "distance((x::'a::rs),y) = distance(y,x)"
apply (case_tac "x = y", simp)
apply (simp add: distance_iff)
by (insert symmetry_nat[of x y], simp)
(*** triangle_inequality_rs ***)
lemma triangle_inequality_nat_lm:
"[| (x::'a::rs) ~= y ; y ~= z ; x ~= z ;
distance_nat (x,z) = n1 ;
distance_nat (x,y) = n2 ;
distance_nat (y,z) = n3 |]
==> min n2 n3 <= n1"
apply (simp add: distance_nat_iff)
apply (simp add: distance_nat_set_def)
apply (simp add: isMAX_def)
apply (subgoal_tac "min n3 n2 = min n2 n3")
apply (subgoal_tac "x .|. min n2 n3 = z .|. min n3 n2")
apply (simp add: isUB_def)
(* FOR x .|. min n2 n3 = z .|. min n3 n2 *)
apply (insert min_rs)
apply (frule_tac x="x" in spec)
apply (frule_tac x="y" in spec)
apply (frule_tac x="y" in spec)
apply (drule_tac x="z" in spec)
apply (drule_tac x="n2" in spec)
apply (drule_tac x="n2" in spec)
apply (drule_tac x="n3" in spec)
apply (drule_tac x="n3" in spec)
apply (drule_tac x="n3" in spec)
apply (drule_tac x="n3" in spec)
apply (drule_tac x="n2" in spec)
apply (drule_tac x="n2" in spec)
apply (simp)
by (simp add: min_def)
lemma triangle_inequality_nat:
"[| (x::'a::rs) ~= y ; y ~= z ; x ~= z |]
==> min (distance_nat (x,y)) (distance_nat (y,z)) <= distance_nat (x,z)"
by (simp add: triangle_inequality_nat_lm)
lemma triangle_inequality_neq:
"[| (x::'a::rs) ~= y ; y ~= z ; x ~= z |]
==> distance (x,z) <= max (distance (x,y)) (distance (y,z))"
apply (simp add: distance_iff)
apply (insert triangle_inequality_nat[of x y z], simp)
apply (case_tac "distance_nat (x, y) <= distance_nat (y, z)")
apply (simp add: min_is)
apply (subgoal_tac "((1::real) / 2) ^ distance_nat (y, z)
<= (1 / 2) ^ distance_nat (x, y)")
apply (simp add: max_is)
apply (simp add: power_decreasing)
apply (simp add: power_decreasing)
(* ~ distance_nat (x, y) <= distance_nat (y, z) *)
apply (simp add: min_is)
apply (subgoal_tac "((1::real) / 2) ^ distance_nat (x, y)
<= (1 / 2) ^ distance_nat (y, z)")
apply (simp add: max_is)
apply (simp add: power_decreasing)
apply (simp add: power_decreasing)
done
lemma triangle_inequality_max:
"distance ((x::'a::rs),z) <= max (distance (x,y)) (distance (y,z))"
apply (case_tac "x = y", simp add: max_is)
apply (case_tac "y = z", simp add: max_is)
apply (case_tac "x = z", simp add: max_def)
by (simp add: triangle_inequality_neq)
(*** triangle_inequality ***)
lemma triangle_inequality_rs:
"distance ((x::'a::rs),z) <= distance (x,y) + distance (y,z)"
apply (insert triangle_inequality_max[of x z y])
apply (subgoal_tac "max (distance (x, y)) (distance (y, z))
<= distance (x, y) + distance (y, z)")
apply (blast intro: order_trans)
by (simp)
(**********************************************************
.|. <--> distance_nat
**********************************************************)
(*---------------------------*
| distance_nat satisfies |
*---------------------------*)
lemma distance_nat_rest:
"[| (x::'a::rs) ~= y ; distance_nat (x, y) = n |]
==> x .|. n = y .|. n"
apply (simp add: distance_nat_iff)
apply (simp add: isMAX_def)
by (simp add: distance_nat_set_def)
(*---------------------------*
| distance_nat is max |
*---------------------------*)
lemma distance_nat_rest_Suc:
"[| (x::'a::rs) ~= y ; distance_nat (x, y) = n |]
==> x .|. (Suc n) ~= y .|. (Suc n)"
apply (simp add: distance_nat_iff)
apply (simp add: isMAX_def isUB_def)
apply (simp add: distance_nat_set_def)
apply (case_tac "x .|. Suc n ~=
y .|. Suc n", simp)
apply (erule conjE)
apply (drule_tac x="Suc n" in spec)
by (simp)
(*---------------------------*
| distance_nat_le |
*---------------------------*)
(* 1 only if *)
lemma distance_nat_le_1_only_if:
"[| (x::'a::rs) ~= y ; x .|. n = y .|. n |] ==> n <= distance_nat (x,y)"
apply (insert distance_nat_is[of x y])
apply (simp add: isMAX_def isUB_def)
apply (erule conjE)
apply (drule_tac x="n" in spec)
apply (drule mp)
apply (simp add: distance_nat_set_def)
by (simp)
(* 1 if *)
lemma distance_nat_le_1_if:
"[| (x::'a::rs) ~= y ; n <= distance_nat (x,y) |] ==> x .|. n = y .|. n"
apply (insert distance_nat_is[of x y])
apply (simp add: isMAX_def isUB_def)
apply (erule conjE)
apply (simp add: distance_nat_set_def)
apply (rule rest_equal_preserve)
by (simp_all)
(* 1 iff *)
lemma distance_nat_le_1:
"(x::'a::rs) ~= y ==> (x .|. n = y .|. n) = (n <= distance_nat (x,y))"
apply (rule iffI)
apply (simp add: distance_nat_le_1_only_if)
apply (simp add: distance_nat_le_1_if)
done
(* 2 iff *)
lemma distance_nat_le_2:
"(x::'a::rs) ~= y
==> (x .|. n ~= y .|. n) = (distance_nat (x,y) < n)"
by (auto simp add: distance_nat_le_1)
(*---------------------------*
| distance_nat_less |
*---------------------------*)
(* 1 only if *)
lemma distance_nat_less_1_only_if:
"(x::'a::rs) ~= y
==> (x::'a::rs) .|. (Suc n) = y .|. (Suc n) ==> n < distance_nat (x,y)"
by (simp add: distance_nat_le_1)
(* 1 if *)
lemma distance_nat_less_1_if:
"(x::'a::rs) ~= y
==> n < distance_nat (x,y) ==> x .|. (Suc n) = y .|. (Suc n)"
apply (insert distance_nat_is[of x y], simp)
apply (simp add: isMAX_def distance_nat_set_def)
apply (rule rest_equal_preserve[of x "distance_nat (x, y)" y "Suc n"])
by (simp_all)
(* 1 iff *)
lemma distance_nat_less_1:
"(x::'a::rs) ~= y
==> (x .|. (Suc n) = y .|. (Suc n)) = (n < distance_nat (x,y)) "
apply (intro allI iffI)
apply (simp add: distance_nat_less_1_only_if)
apply (simp add: distance_nat_less_1_if)
done
(* 2 iff *)
lemma distance_nat_less_2:
"(x::'a::rs) ~= y
==> (x .|. (Suc n) ~= y .|. (Suc n)) = (distance_nat (x,y) <= n)"
by (auto simp add: distance_nat_less_1)
(**********************************************************
.|. <--> distance
**********************************************************)
(*---------------------------*
| distance_rs_le |
*---------------------------*)
(* 1 only if *)
lemma distance_rs_le_1_only_if:
"(x::'a::rs) .|. n = y .|. n ==> distance(x,y) <= (1/2)^n"
apply (case_tac "x = y", simp add: zero_le_power)
apply (simp add: distance_iff)
apply (simp add: distance_nat_le_1)
by (simp add: power_decreasing)
(* 1 if *)
lemma distance_rs_le_1_if:
"distance((x::'a::rs),y) <= (1/2)^n ==> x .|. n = y .|. n"
apply (case_tac "x = y", simp)
apply (simp add: distance_iff)
apply (simp add: distance_nat_le_1)
apply (rule rev_power_decreasing)
by (simp_all)
(* 1 iff *)
lemma distance_rs_le_1:
"((x::'a::rs) .|. n = y .|. n) = (distance(x,y) <= (1/2)^n)"
apply (rule iffI)
apply (simp add: distance_rs_le_1_only_if)
apply (simp add: distance_rs_le_1_if)
done
(* 2 iff *)
lemma distance_rs_le_2:
"((x::'a::rs) .|. n ~= y .|. n) = ((1/2)^n < distance(x,y))"
by (auto simp add: distance_rs_le_1)
(*****************************
distance_rs_less
*****************************)
(* 1 only if *)
lemma distance_rs_less_1_only_if:
"(x::'a::rs) .|. (Suc n) = y .|. (Suc n) ==> distance(x,y) < (1/2)^n"
apply (case_tac "x = y", simp)
apply (simp add: distance_rs_le_1)
apply (subgoal_tac "distance (x, y) < distance (x, y) * 2")
apply (simp)
apply (simp)
by (simp add: diagonal_rs_neq)
(* 1 if *)
lemma distance_rs_less_1_if:
"distance((x::'a::rs),y) < (1/2)^n ==> x .|. (Suc n) = y .|. (Suc n)"
apply (case_tac "x = y", simp)
apply (simp add: distance_iff)
apply (simp add: distance_nat_less_1)
apply (rule rev_power_decreasing_strict)
by (simp_all)
(* 1 iff *)
lemma distance_rs_less_1:
"((x::'a::rs) .|. (Suc n) = y .|. (Suc n)) = (distance(x,y) < (1/2)^n)"
apply (intro allI iffI)
apply (simp add: distance_rs_less_1_only_if)
apply (simp add: distance_rs_less_1_if)
done
(* 2 iff *)
lemma distance_rs_less_2:
"((x::'a::rs) .|. (Suc n) ~= y .|. (Suc n)) = ((1/2)^n <= distance(x,y))"
by (auto simp add: distance_rs_less_1)
(*********************************************************************
Limit (ms_rs)
*********************************************************************)
(*---------------------------*
| mini_number_cauchy_rest |
*---------------------------*)
lemma mini_number_cauchy_rest:
"normal (xs::'a::ms_rs infinite_seq)
==> (ALL n m. k <= n & k <= m --> (xs n) .|. k = (xs m) .|. k)"
apply (intro allI impI)
apply (simp add: normal_def)
apply (drule_tac x="n" in spec)
apply (drule_tac x="m" in spec)
apply (simp add: distance_rs_le_1)
apply (subgoal_tac "((1::real) / 2) ^ min n m <= (1 / 2) ^ k")
apply (simp)
by (simp add: power_decreasing)
(*---------------------------*
| rest_Limit |
*---------------------------*)
lemma rest_Limit:
"(ALL n. y .|. n = (xs n) .|. n)
==> (xs::'a::ms_rs infinite_seq) convergeTo y"
apply (simp add: convergeTo_def)
apply (intro allI impI)
apply (subgoal_tac "EX n. ((1::real) / 2) ^ n < eps") (* ... 1 *)
apply (erule exE)
apply (rule_tac x="n" in exI)
apply (intro allI impI)
apply (rename_tac eps N n)
apply (drule_tac x="n" in spec)
apply (simp add: distance_rs_le_1)
apply (subgoal_tac "((1::real) / 2) ^ n <= (1 / 2) ^ N") (* ... 2 *)
apply (simp)
(* 2 *)
apply (simp add: power_decreasing)
(* 1 *)
apply (simp add: pow_convergence)
done
(*********************************************************************
for constructiveness of prefix
*********************************************************************)
lemma contra_diff_rs_Suc:
"[| ALL n. (x::'a::rs) .|. (Suc n) = y .|. (Suc n) |] ==> (x = y)"
apply (erule contrapos_pp)
apply (simp)
apply (insert diff_rs)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (simp)
apply (erule exE)
apply (rule_tac x="n" in exI)
apply (rule rest_nonequal_preserve)
by (auto)
(*---------------------------*
| for contractiveness |
*---------------------------*)
lemma rest_Suc_dist_half:
"[| ALL n. ((x1::'a::rs) .|. n = x2 .|. n) =
((y1::'a::rs) .|. (Suc n) = y2 .|. (Suc n)) |]
==> (1/2) * distance(x1,x2) = distance(y1,y2)"
apply (case_tac "x1 = x2")
apply (simp)
apply (subgoal_tac "y1 = y2") (* ...1 *)
apply (simp)
(* 1 *)
apply (rule contra_diff_rs_Suc, simp)
(* x1 ~= x2 *)
apply (case_tac "y1 = y2", simp)
apply (rotate_tac 1)
apply (erule contrapos_np)
apply (rule contra_diff_rs, simp)
(* x1 ~= x2 & y1 ~= y2 *)
apply (simp add: distance_iff)
apply (subgoal_tac
"distance_nat (y1, y2) = Suc (distance_nat (x1, x2))") (* ... 2 *)
apply (simp)
apply (rule order_antisym)
(* <= *)
apply (insert nat_zero_or_Suc)
apply (rotate_tac -1)
apply (drule_tac x="distance_nat (y1, y2)" in spec)
apply (erule disjE, simp)
apply (erule exE, simp)
apply (simp add: distance_nat_le_1)
(* => *)
apply (simp add: distance_nat_le_1)
apply (drule_tac x="distance_nat (x1, x2)" in spec)
apply (simp)
done
(*********************************************************************
rest_to_dist_pair (fun and pair)
*********************************************************************)
lemma rest_to_dist_pair:
"[| xps ~= {} ;
(ALL n. (ALL x:(xps::(('a::rs) * ('a::rs)) set).
(fst x) .|. n = (snd x) .|. n) --> ((y1::'b::rs) .|. n = y2 .|. n)) |]
==> (EX x. x:xps & distance(y1,y2) <= distance((fst x), (snd x)))"
apply (case_tac "y1 = y2", force)
(* y1 ~= y2 *)
apply (insert distance_nat_is[of y1 y2], simp)
apply (simp add: distance_iff)
apply (drule_tac x="Suc (distance_nat (y1, y2))" in spec)
apply (simp add: distance_nat_rest_Suc)
apply (erule bexE)
apply (rule_tac x="fst x" in exI)
apply (rule_tac x="snd x" in exI)
apply (simp add: distance_rs_less_2)
done
(*** two sets (e.g. for domT and domF) ***)
lemma rest_to_dist_pair_two:
"[| xps ~= {} ; yps ~= {} ;
(ALL n.
(ALL x:(xps::(('a::rs) * ('a::rs)) set). (fst x) .|. n = (snd x) .|. n) &
(ALL y:(yps::(('b::rs) * ('b::rs)) set). (fst y) .|. n = (snd y) .|. n)
--> ((z1::'c::rs) .|. n = z2 .|. n)) |]
==> (EX x. x:xps & distance(z1,z2) <= distance((fst x), (snd x))) |
(EX y. y:yps & distance(z1,z2) <= distance((fst y), (snd y)))"
apply (case_tac "z1 = z2", force)
(* z1 ~= z2 *)
apply (insert distance_nat_is[of z1 z2], simp)
apply (simp add: distance_iff)
apply (drule_tac x="Suc (distance_nat (z1, z2))" in spec)
apply (simp add: distance_nat_rest_Suc)
apply (elim bexE disjE)
apply (rule disjI1)
apply (rule_tac x="fst x" in exI)
apply (rule_tac x="snd x" in exI)
apply (simp add: distance_rs_less_2)
apply (rule disjI2)
apply (rule_tac x="fst y" in exI)
apply (rule_tac x="snd y" in exI)
apply (simp add: distance_rs_less_2)
done
(************************************************************
.|. <--> distance lemma (different types)
************************************************************)
(*** subset ***)
lemma rest_distance_subset:
"[| ALL n. ((x::'a::rs) .|. n = y .|. n) --> ((X::'b::rs) .|. n = Y .|. n) |]
==> distance(X, Y) <= distance(x, y)"
apply (case_tac "X = Y", simp)
apply (case_tac "x = y", simp)
apply (insert contra_diff_rs[of X Y], simp) (* contradiction *)
(* x ~= y & X ~= Y *)
apply (simp add: distance_rs_le_1)
apply (simp add: distance_iff)
done
(*** eq ***)
lemma rest_distance_eq:
"[| ALL n. ((x::'a::rs) .|. n = y .|. n) = ((X::'b::rs) .|. n = Y .|. n) |]
==> distance(x, y) = distance(X, Y)"
apply (rule order_antisym)
by (simp_all add: rest_distance_subset)
(*----------------------------------------------------------*
| |
| Metric Fixed point induction |
| |
| constructive & continuous |
| |
*----------------------------------------------------------*)
consts
constructive_rs :: "('a::rs => 'b::rs) => bool"
continuous_rs :: "('a::rs => bool) => bool"
defs
constructive_rs_def :
"constructive_rs f ==
(ALL x y n. x .|. n = y .|. n
--> (f x) .|. (Suc n) = (f y) .|. (Suc n))"
continuous_rs_def :
"continuous_rs R ==
(ALL x. ~ R x --> (EX n. ALL y. y .|. n = x .|. n --> ~ R y))"
(**********************************************************
Construction --> Contraction
**********************************************************)
lemma contst_to_contra_alpha:
"constructive_rs f ==> contraction_alpha f (1/2)"
apply (simp add: contraction_alpha_def map_alpha_def)
apply (intro allI)
apply (case_tac "x=y", simp)
apply (case_tac "f x = f y", simp)
apply (simp add: distance_iff)
apply (simp add: constructive_rs_def)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (simp add: distance_nat_le_1)
apply (drule_tac x="distance_nat (x, y)" in spec)
apply (simp)
apply (subgoal_tac
"((1::real)/2) ^ distance_nat (f x, f y)
<= ((1::real)/2) ^ (Suc (distance_nat (x, y)))") (* ... 1 *)
apply (simp)
(* 1 *)
apply (rule power_decreasing)
by (simp_all)
(*** contractive ***)
lemma contst_to_contra: "constructive_rs f ==> contraction f"
apply (simp add: contraction_def)
apply (rule_tac x="1/2" in exI)
apply (simp add: contst_to_contra_alpha)
done
(**********************************************************
Construction --> Contraction
**********************************************************)
lemma contra_alpha_to_contst:
"contraction_alpha f (1/2) ==> constructive_rs f"
apply (simp add: constructive_rs_def)
apply (intro allI impI)
apply (simp add: contraction_alpha_def map_alpha_def)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
by (simp add: distance_rs_le_1)
(*========================================================*
| Metric Fixed Point Induction |
*========================================================*)
theorem cms_fixpoint_induction:
"[| (R::'a::cms_rs => bool) x ; continuous_rs R ;
constructive_rs f ; inductivefun R f |]
==> f hasUFP & R (UFP f)"
apply (insert Banach_thm[of f x])
apply (simp add: contst_to_contra)
apply (erule conjE)
(* to use a contradiction *)
apply (case_tac "R (UFP f)", simp)
apply (simp add: continuous_rs_def)
apply (drule_tac x="UFP f" in spec, simp)
apply (erule exE)
apply (simp add: convergeTo_def)
apply (drule_tac x="(1/2)^n" in spec, simp)
apply (elim conjE exE)
apply (drule_tac x="na" in spec, simp)
apply (simp add: distance_rs_less_1[THEN sym])
apply (drule_tac x="(f ^ na) x" in spec)
apply (drule mp)
apply (rule rest_equal_preserve_Suc, simp)
by (simp add: inductivefun_all_n)
(*----------------------------------------------------------*
| |
| !!! order and restriction space !!! |
| |
*----------------------------------------------------------*)
axclass rs_order0 < rs, order
axclass rs_order < rs_order0
rs_order_iff:
"ALL (x::'a::rs_order0) y.
(ALL n. x .|. n <= y .|. n) = (x <= y)"
axclass ms_rs_order < ms, rs_order
axclass cms_rs_order < cms_rs, rs_order
lemma not_rs_orderI:
"~ x .|. n <= y .|. n ==> ~ ((x::'a::rs_order) <= y)"
apply (insert rs_order_iff)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
by (auto)
lemma rs_order_if:
"((x::'a::rs_order) <= y) ==> x .|. n <= y .|. n"
apply (insert rs_order_iff)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
by (auto)
(*----------------------------------------------------------*
| |
| Fixed point induction for refinement (CMS) |
| |
*----------------------------------------------------------*)
(************************************************************
continuity lemma for refinement
************************************************************)
lemma continuous_rs_Ref_fun: "continuous_rs (Ref_fun (z::'a::rs_order))"
apply (simp add: continuous_rs_def)
apply (intro allI impI)
apply (simp add: Ref_fun_def)
apply (simp)
apply (subgoal_tac "~ (ALL n. z .|. n <= x .|. n)")
apply (simp)
apply (elim conjE exE)
apply (rule_tac x="n" in exI)
apply (intro allI impI)
apply (rotate_tac -1)
apply (drule sym)
apply (rule not_rs_orderI)
apply (simp)
apply (simp add: rs_order_iff)
done
(************************************************************
continuity lemma for (Reverse) refinement
************************************************************)
lemma continuous_rs_Rev_fun: "continuous_rs (Rev_fun (z::'a::rs_order))"
apply (simp add: continuous_rs_def)
apply (intro allI impI)
apply (simp add: Rev_fun_def)
apply (subgoal_tac "~ (ALL n. x .|. n <= z .|. n)")
apply (simp)
apply (elim conjE exE)
apply (rule_tac x="n" in exI)
apply (intro allI impI)
apply (rotate_tac -1)
apply (drule sym)
apply (rule not_rs_orderI)
apply (simp)
apply (simp add: rs_order_iff)
done
(************************************************************
Metric Fixed Point Induction for refinement
************************************************************)
theorem cms_fixpoint_induction_ref:
"[| constructive_rs f ; mono f ; X <= f X ; Y = f Y |]
==> (X::'a::cms_rs_order) <= Y"
apply (insert cms_fixpoint_induction[of "Ref_fun X" X f])
apply (simp add: continuous_rs_Ref_fun)
apply (simp add: Ref_fun_def)
apply (subgoal_tac "inductivefun (op <= X) f")
apply (insert UFP_is[of f])
apply (simp add: isUFP_def)
(* inductiveness *)
apply (simp add: inductivefun_def)
apply (intro allI impI)
apply (simp add: mono_def)
apply (drule_tac x="X" in spec)
apply (drule_tac x="x" in spec)
apply (simp)
done
(************************************************************
Metric Fixed Point Induction for refinement (rev)
************************************************************)
theorem cms_fixpoint_induction_rev:
"[| constructive_rs f ; mono f ; f X <= X ; Y = f Y |]
==> (Y::'a::cms_rs_order) <= X"
apply (insert cms_fixpoint_induction[of "Rev_fun X" X f])
apply (simp add: continuous_rs_Rev_fun)
apply (simp add: Rev_fun_def)
apply (subgoal_tac "inductivefun (%Y. Y <= X) f")
apply (insert UFP_is[of f], simp)
apply (simp add: isUFP_def)
(* inductiveness *)
apply (simp add: inductivefun_def)
apply (intro allI impI)
apply (simp add: mono_def)
apply (drule_tac x="x" in spec)
apply (drule_tac x="X" in spec)
apply (simp)
done
end
lemma diff_rs_Suc:
∀n x y. x .|. n ≠ y .|. n --> (∃m. n = Suc m)
lemma contra_diff_rs:
∀n. x .|. n = y .|. n ==> x = y
lemma contra_diff_rs_inv:
x .|. n ≠ y .|. n ==> x ≠ y
lemma distance_rs_zero:
distance (x, x) = 0
lemma rest_equal_preserve:
[| x .|. n = y .|. n; m ≤ n |] ==> x .|. m = y .|. m
lemma rest_equal_preserve_Suc:
x .|. Suc n = y .|. Suc n ==> x .|. n = y .|. n
lemma rest_nonequal_preserve:
[| x .|. m ≠ y .|. m; m ≤ n |] ==> x .|. n ≠ y .|. n
lemma distance_nat_set_hasMAX:
x ≠ y ==> (distance_nat_set (x, y)) hasMAX
lemma distance_isMAX_isGLB:
n isMAX distance_nat_set (x, y) ==> (1 / 2) ^ n isGLB distance_rs_set (x, y)
lemma distance_rs_set_hasGLB:
(distance_rs_set (x, y)) hasGLB
lemma distance_rs_nat_lm:
[| x ≠ y; distance_nat (x, y) = n; distance (x, y) = r |] ==> r = (1 / 2) ^ n
lemma distance_iff1:
x ≠ y ==> distance (x, y) = (1 / 2) ^ distance_nat (x, y)
lemma distance_iff2:
y ≠ x ==> distance (x, y) = (1 / 2) ^ distance_nat (x, y)
lemmas distance_iff:
x ≠ y ==> distance (x, y) = (1 / 2) ^ distance_nat (x, y)
y ≠ x ==> distance (x, y) = (1 / 2) ^ distance_nat (x, y)
lemmas distance_iff:
x ≠ y ==> distance (x, y) = (1 / 2) ^ distance_nat (x, y)
y ≠ x ==> distance (x, y) = (1 / 2) ^ distance_nat (x, y)
lemma distance_rs_less_one:
distance (x, y) ≤ 1
lemma isMAX_distance_nat1:
x ≠ y ==> n isMAX distance_nat_set (x, y) = (distance_nat (x, y) = n)
lemmas distance_nat_isMAX1:
x1 ≠ y1 ==> (distance_nat (x1, y1) = n1) = n1 isMAX distance_nat_set (x1, y1)
lemmas distance_nat_isMAX1:
x1 ≠ y1 ==> (distance_nat (x1, y1) = n1) = n1 isMAX distance_nat_set (x1, y1)
lemma distance_nat_isMAX_sym1:
x ≠ y ==> (n = distance_nat (x, y)) = n isMAX distance_nat_set (x, y)
lemma isMAX_distance_nat2:
y ≠ x ==> n isMAX distance_nat_set (x, y) = (distance_nat (x, y) = n)
lemmas distance_nat_isMAX2:
y1 ≠ x1 ==> (distance_nat (x1, y1) = n1) = n1 isMAX distance_nat_set (x1, y1)
lemmas distance_nat_isMAX2:
y1 ≠ x1 ==> (distance_nat (x1, y1) = n1) = n1 isMAX distance_nat_set (x1, y1)
lemma distance_nat_isMAX_sym2:
y ≠ x ==> (n = distance_nat (x, y)) = n isMAX distance_nat_set (x, y)
lemmas distance_nat_iff:
x1 ≠ y1 ==> (distance_nat (x1, y1) = n1) = n1 isMAX distance_nat_set (x1, y1)
x ≠ y ==> (n = distance_nat (x, y)) = n isMAX distance_nat_set (x, y)
y1 ≠ x1 ==> (distance_nat (x1, y1) = n1) = n1 isMAX distance_nat_set (x1, y1)
y ≠ x ==> (n = distance_nat (x, y)) = n isMAX distance_nat_set (x, y)
lemmas distance_nat_iff:
x1 ≠ y1 ==> (distance_nat (x1, y1) = n1) = n1 isMAX distance_nat_set (x1, y1)
x ≠ y ==> (n = distance_nat (x, y)) = n isMAX distance_nat_set (x, y)
y1 ≠ x1 ==> (distance_nat (x1, y1) = n1) = n1 isMAX distance_nat_set (x1, y1)
y ≠ x ==> (n = distance_nat (x, y)) = n isMAX distance_nat_set (x, y)
lemma distance_nat_is:
x ≠ y ==> distance_nat (x, y) isMAX distance_nat_set (x, y)
lemma positive_rs:
0 ≤ distance (x, y)
lemma diagonal_rs_only_if:
distance (x, y) = 0 ==> x = y
lemma diagonal_rs:
(distance (x, y) = 0) = (x = y)
lemma diagonal_rs_neq:
x ≠ y ==> 0 < distance (x, y)
lemma symmetry_nat_lm:
[| x ≠ y; distance_nat (x, y) = n; distance_nat (y, x) = m |] ==> n = m
lemma symmetry_nat:
x ≠ y ==> distance_nat (x, y) = distance_nat (y, x)
lemma symmetry_rs:
distance (x, y) = distance (y, x)
lemma triangle_inequality_nat_lm:
[| x ≠ y; y ≠ z; x ≠ z; distance_nat (x, z) = n1.0; distance_nat (x, y) = n2.0; distance_nat (y, z) = n3.0 |] ==> min n2.0 n3.0 ≤ n1.0
lemma triangle_inequality_nat:
[| x ≠ y; y ≠ z; x ≠ z |] ==> min (distance_nat (x, y)) (distance_nat (y, z)) ≤ distance_nat (x, z)
lemma triangle_inequality_neq:
[| x ≠ y; y ≠ z; x ≠ z |] ==> distance (x, z) ≤ max (distance (x, y)) (distance (y, z))
lemma triangle_inequality_max:
distance (x, z) ≤ max (distance (x, y)) (distance (y, z))
lemma triangle_inequality_rs:
distance (x, z) ≤ distance (x, y) + distance (y, z)
lemma distance_nat_rest:
[| x ≠ y; distance_nat (x, y) = n |] ==> x .|. n = y .|. n
lemma distance_nat_rest_Suc:
[| x ≠ y; distance_nat (x, y) = n |] ==> x .|. Suc n ≠ y .|. Suc n
lemma distance_nat_le_1_only_if:
[| x ≠ y; x .|. n = y .|. n |] ==> n ≤ distance_nat (x, y)
lemma distance_nat_le_1_if:
[| x ≠ y; n ≤ distance_nat (x, y) |] ==> x .|. n = y .|. n
lemma distance_nat_le_1:
x ≠ y ==> (x .|. n = y .|. n) = (n ≤ distance_nat (x, y))
lemma distance_nat_le_2:
x ≠ y ==> (x .|. n ≠ y .|. n) = (distance_nat (x, y) < n)
lemma distance_nat_less_1_only_if:
[| x ≠ y; x .|. Suc n = y .|. Suc n |] ==> n < distance_nat (x, y)
lemma distance_nat_less_1_if:
[| x ≠ y; n < distance_nat (x, y) |] ==> x .|. Suc n = y .|. Suc n
lemma distance_nat_less_1:
x ≠ y ==> (x .|. Suc n = y .|. Suc n) = (n < distance_nat (x, y))
lemma distance_nat_less_2:
x ≠ y ==> (x .|. Suc n ≠ y .|. Suc n) = (distance_nat (x, y) ≤ n)
lemma distance_rs_le_1_only_if:
x .|. n = y .|. n ==> distance (x, y) ≤ (1 / 2) ^ n
lemma distance_rs_le_1_if:
distance (x, y) ≤ (1 / 2) ^ n ==> x .|. n = y .|. n
lemma distance_rs_le_1:
(x .|. n = y .|. n) = (distance (x, y) ≤ (1 / 2) ^ n)
lemma distance_rs_le_2:
(x .|. n ≠ y .|. n) = ((1 / 2) ^ n < distance (x, y))
lemma distance_rs_less_1_only_if:
x .|. Suc n = y .|. Suc n ==> distance (x, y) < (1 / 2) ^ n
lemma distance_rs_less_1_if:
distance (x, y) < (1 / 2) ^ n ==> x .|. Suc n = y .|. Suc n
lemma distance_rs_less_1:
(x .|. Suc n = y .|. Suc n) = (distance (x, y) < (1 / 2) ^ n)
lemma distance_rs_less_2:
(x .|. Suc n ≠ y .|. Suc n) = ((1 / 2) ^ n ≤ distance (x, y))
lemma mini_number_cauchy_rest:
normal xs ==> ∀n m. k ≤ n ∧ k ≤ m --> xs n .|. k = xs m .|. k
lemma rest_Limit:
∀n. y .|. n = xs n .|. n ==> xs convergeTo y
lemma contra_diff_rs_Suc:
∀n. x .|. Suc n = y .|. Suc n ==> x = y
lemma rest_Suc_dist_half:
∀n. (x1.0 .|. n = x2.0 .|. n) = (y1.0 .|. Suc n = y2.0 .|. Suc n) ==> 1 / 2 * distance (x1.0, x2.0) = distance (y1.0, y2.0)
lemma rest_to_dist_pair:
[| xps ≠ {}; ∀n. (∀x∈xps. fst x .|. n = snd x .|. n) --> y1.0 .|. n = y2.0 .|. n |] ==> ∃x. x ∈ xps ∧ distance (y1.0, y2.0) ≤ distance (fst x, snd x)
lemma rest_to_dist_pair_two:
[| xps ≠ {}; yps ≠ {}; ∀n. (∀x∈xps. fst x .|. n = snd x .|. n) ∧ (∀y∈yps. fst y .|. n = snd y .|. n) --> z1.0 .|. n = z2.0 .|. n |] ==> (∃x. x ∈ xps ∧ distance (z1.0, z2.0) ≤ distance (fst x, snd x)) ∨ (∃y. y ∈ yps ∧ distance (z1.0, z2.0) ≤ distance (fst y, snd y))
lemma rest_distance_subset:
∀n. x .|. n = y .|. n --> X .|. n = Y .|. n ==> distance (X, Y) ≤ distance (x, y)
lemma rest_distance_eq:
∀n. (x .|. n = y .|. n) = (X .|. n = Y .|. n) ==> distance (x, y) = distance (X, Y)
lemma contst_to_contra_alpha:
constructive_rs f ==> contraction_alpha f (1 / 2)
lemma contst_to_contra:
constructive_rs f ==> contraction f
lemma contra_alpha_to_contst:
contraction_alpha f (1 / 2) ==> constructive_rs f
theorem cms_fixpoint_induction:
[| R x; continuous_rs R; constructive_rs f; inductivefun R f |] ==> f hasUFP ∧ R (UFP f)
lemma not_rs_orderI:
¬ x .|. n ≤ y .|. n ==> ¬ x ≤ y
lemma rs_order_if:
x ≤ y ==> x .|. n ≤ y .|. n
lemma continuous_rs_Ref_fun:
continuous_rs (Ref_fun z)
lemma continuous_rs_Rev_fun:
continuous_rs (Rev_fun z)
theorem cms_fixpoint_induction_ref:
[| constructive_rs f; mono f; X ≤ f X; Y = f Y |] ==> X ≤ Y
theorem cms_fixpoint_induction_rev:
[| constructive_rs f; mono f; f X ≤ X; Y = f Y |] ==> Y ≤ X