Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory Set_F (*-------------------------------------------*
| CSP-Prover on Isabelle2004 |
| December 2004 |
| August 2005 (modified) |
| |
| CSP-Prover on Isabelle2005 |
| October 2005 (modified) |
| April 2006 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory Set_F = Trace:
(*****************************************************************
1.
2.
3.
4.
*****************************************************************)
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* Union (B ` A) = (UN x:A. B x) *)
(* Inter (B ` A) = (INT x:A. B x) *)
declare Union_image_eq [simp del]
declare Inter_image_eq [simp del]
(***********************************************************
type def (Failure Part)
***********************************************************)
types 'a failure = "'a trace * 'a event set" (* synonym *)
consts
HC_F2 :: "'a failure set => bool"
defs
HC_F2_def : "HC_F2 F == (ALL s X Y. ((s,X) : F & Y <= X) --> (s,Y) : F)"
typedef 'a setF = "{F::('a failure set). HC_F2(F)}"
apply (rule_tac x ="{}" in exI)
by (simp add: HC_F2_def)
declare Rep_setF [simp]
(***********************************************************
operators on setF
***********************************************************)
consts
memF :: "'a failure => 'a setF => bool" ("(_/ :f _)" [50, 51] 50)
CollectF :: "('a failure => bool) => 'a setF"("CollectF")
UnionF :: "'a setF set => 'a setF" ("UnionF _" [90] 90)
InterF :: "'a setF set => 'a setF" ("InterF _" [90] 90)
empF :: "'a setF" ("{}f")
UNIVF :: "'a setF" ("UNIVf")
defs
memF_def : "x :f F == x : (Rep_setF F)"
CollectF_def : "CollectF P == Abs_setF (Collect P)"
UnionF_def : "UnionF Fs == Abs_setF (Union (Rep_setF ` Fs))"
InterF_def : "InterF Fs == Abs_setF (Inter (Rep_setF ` Fs))"
empF_def : "{}f == Abs_setF {}"
UNIVF_def : "UNIVf == Abs_setF UNIV"
(******** X-symbols ********)
syntax (output)
"_memFX" :: "'a failure => 'a setF => bool" ("(_/ :f _)" [50, 51] 50)
"_UnionFX" :: "'a setF set => 'a setF" ("UnionF _" [90] 90)
"_InterFX" :: "'a setF set => 'a setF" ("InterF _" [90] 90)
syntax (xsymbols)
"_memFX" :: "'a failure => 'a setF => bool" ("(_/ ∈f _)" [50, 51] 50)
"_UnionFX" :: "'a setF set => 'a setF" ("\<Union>f _" [90] 90)
"_InterFX" :: "'a setF set => 'a setF" ("\<Inter>f _" [90] 90)
translations
"f ∈f F" == "f :f F"
"\<Union>f Fs" == "UnionF Fs"
"\<Inter>f Fs" == "InterF Fs"
(******** syntactic sugar ********)
syntax
"_nonmemF" :: "'a failure => 'a setF => bool" ("(_/ ~:f _)" [50, 51] 50)
"_UnF" :: "'a setF => 'a setF => 'a setF" ("_ UnF _" [65,66] 65)
"_IntF" :: "'a setF => 'a setF => 'a setF" ("_ IntF _" [70,71] 70)
"@CollF" :: "pttrn => bool => 'a setF" ("(1{_./ _}f)")
"@FinsetF" :: "args => 'a setF" ("{(_)}f")
translations
"x ~:f F" == "~ x :f F"
"F UnF E" == "\<Union>f {F,E}"
"F IntF E" == "\<Inter>f {F,E}"
"{x. P}f" == "Abs_setF {x. P}"
"{X}f" == "Abs_setF {X}"
(******** X-symbols ********)
syntax (output)
"_nonmemFX" :: "'a failure => 'a setF => bool" ("(_/ ~:f _)" [50, 51] 50)
"_UnFX" :: "'a setF => 'a setF => 'a setF" ("_ UnF _" [65,66] 65)
"_IntFX" :: "'a setF => 'a setF => 'a setF" ("_ IntF _" [70,71] 70)
syntax (xsymbols)
"_nonmemFX" :: "'a failure => 'a setF => bool" ("(_/ ∉f _)" [50, 51] 50)
"_UnFX" :: "'a setF => 'a setF => 'a setF" ("_ ∪f _" [65,66] 65)
"_IntFX" :: "'a setF => 'a setF => 'a setF" ("_ ∩f _" [70,71] 70)
translations
"f ∉f F" == "f ~:f F"
"F ∪f E" == "F UnF E"
"F ∩f E" == "F IntF E"
(*********************************************************
The relation (<=) is defined over setF
*********************************************************)
instance setF :: (type) ord
by (intro_classes)
defs (overloaded)
subsetF_def : "F <= E == (Rep_setF F) <= (Rep_setF E)"
psubsetF_def : "F < E == (Rep_setF F) < (Rep_setF E)"
(*********************************************************
The relation (<=) is a partial order
*********************************************************)
instance setF :: (type) order
apply (intro_classes)
apply (unfold subsetF_def psubsetF_def)
apply (simp)
apply (erule order_trans, simp)
apply (drule order_antisym, simp)
apply (simp add: Rep_setF_inject)
apply (simp only: order_less_le Rep_setF_inject)
done
(***********************************************************
lemmas
***********************************************************)
(*******************************
basic
*******************************)
lemma setF_F2:
"[| F : setF ; (s,X) : F ; Y <= X |] ==> (s,Y) : F"
apply (simp add: setF_def)
apply (unfold HC_F2_def)
apply (drule_tac x="s" in spec)
apply (drule_tac x="X" in spec)
apply (drule_tac x="Y" in spec)
by (simp)
(*** {} in setF ***)
lemma emptyset_in_setF[simp]: "{} : setF"
by (simp add: setF_def HC_F2_def)
(*******************************
check in setF
*******************************)
(*** [] (for STOP) ***)
lemma nilt_in_setF[simp]: "{(<>, X) |X. X <= EvsetTick} : setF"
by (auto simp add: setF_def HC_F2_def)
(*** [Tick] (for SKIP) ***)
lemma nilt_Tick_in_setF[simp]: "{(<>, X) |X. X <= Evset} Un
{(<Tick>, X) |X. X <= EvsetTick} : setF"
apply (simp add: setF_def HC_F2_def)
apply (intro allI impI)
apply (elim conjE disjE)
by (simp_all)
(*** Union ***)
lemma setF_Union_in_setF: "(Union (Rep_setF ` Fs)) : setF"
apply (simp add: setF_def HC_F2_def)
apply (intro allI impI)
apply (erule conjE)
apply (erule bexE)
apply (rename_tac s X Y F)
apply (rule_tac x="F" in bexI)
apply (rule setF_F2)
by (simp_all)
(*** Un ***)
lemma setF_Un_in_setF:
"(Rep_setF F Un Rep_setF E) : setF"
apply (insert setF_Union_in_setF[of "{F,E}"])
by (simp)
(*** Inter ***)
lemma setF_Inter_in_setF: "(Inter (Rep_setF ` Fs)) : setF"
apply (simp add: setF_def HC_F2_def)
apply (intro allI impI)
apply (rule ballI)
apply (rename_tac s X Y F)
apply (erule conjE)
apply (drule_tac x="F" in bspec, simp)
apply (rule setF_F2)
by (simp_all)
(*** Int ***)
lemma setF_Int_in_setF:
"(Rep_setF F Int Rep_setF E) : setF"
apply (insert setF_Inter_in_setF[of "{F,E}"])
by (simp)
lemmas in_setF = setF_Union_in_setF setF_Un_in_setF
setF_Inter_in_setF setF_Int_in_setF
(*******************************
setF type --> set type
*******************************)
(*** UnionF ***)
lemma setF_UnionF_Rep:
"Rep_setF (UnionF Fs) = Union (Rep_setF ` Fs)"
by (simp add: UnionF_def Abs_setF_inverse in_setF)
(*** UnF ***)
lemma setF_UnF_Rep:
"Rep_setF (F UnF E) = (Rep_setF F) Un (Rep_setF E)"
by (simp add: setF_UnionF_Rep)
(*** InterF ***)
lemma setF_InterF_Rep:
"Rep_setF (InterF Fs) = Inter (Rep_setF ` Fs)"
by (simp add: InterF_def Abs_setF_inverse in_setF)
(*** IntF ***)
lemma setF_IntF_Rep:
"Rep_setF (F IntF E) = (Rep_setF F) Int (Rep_setF E)"
by (simp add: setF_InterF_Rep)
(*********************************************************
memF
*********************************************************)
(* memF_F2 *)
lemma memF_F2:
"[| (s,X) :f F ; Y <= X |] ==> (s,Y) :f F"
apply (simp add: memF_def)
apply (rule setF_F2)
by (simp_all)
(* UnionF *)
lemma memF_UnionF_only_if:
"sX :f UnionF Fs ==> EX F:Fs. sX :f F"
by (simp add: memF_def setF_UnionF_Rep)
lemma memF_UnionF_if:
"[| F:Fs ; sX :f F |] ==> sX :f UnionF Fs"
apply (subgoal_tac "Fs ~= {}")
apply (simp add: memF_def setF_UnionF_Rep)
apply (rule_tac x="F" in bexI)
by (auto)
lemma memF_UnionF[simp]:
"sX :f UnionF Fs = (EX F:Fs. sX :f F)"
apply (rule iffI)
apply (simp add: memF_UnionF_only_if)
by (auto simp add: memF_UnionF_if)
(* InterF *)
lemma memF_InterF_only_if:
"sX :f InterF Fs ==> ALL F:Fs. sX :f F"
by (simp add: memF_def setF_InterF_Rep)
lemma memF_InterF_if:
"ALL F:Fs. sX :f F ==> sX :f InterF Fs"
by (simp add: memF_def setF_InterF_Rep)
lemma memF_InterF[simp]:
"sX :f InterF Fs = (ALL F:Fs. sX :f F)"
apply (rule iffI)
apply (rule memF_InterF_only_if, simp_all)
by (simp add: memF_InterF_if)
(* empty *)
lemma memF_empF[simp]: "sX ~:f {}f"
apply (simp add: memF_def empF_def)
by (simp add: Abs_setF_inverse)
(* pair *)
lemma memF_pair_iff: "(f :f F) = (EX s X. f = (s,X) & (s,X) :f F)"
apply (rule)
apply (rule_tac x="fst f" in exI)
apply (rule_tac x="snd f" in exI)
by (auto)
lemma memF_pairI: "(EX s X. f = (s,X) & (s,X) :f F) ==> (f :f F)"
by (auto)
lemma memF_pairE_lm: "[| f :f F ; (EX s X. f = (s,X) & (s,X) :f F) --> R |] ==> R"
apply (drule mp)
apply (rule_tac x="fst f" in exI)
apply (rule_tac x="snd f" in exI)
by (auto)
lemma memF_pairE: "[| f :f F ; !! s X. [| f = (s,X) ; (s,X) :f F |] ==> R |] ==> R"
apply (erule memF_pairE_lm)
by (auto)
(*********************************************************
subsetF
*********************************************************)
lemma subsetFI [intro!]: "(!! s X. (s, X) :f E ==> (s, X) :f F) ==> E <= F"
by (auto simp add: subsetF_def memF_def)
lemma subsetFE [elim!]:
"[| E <= F ; (!!s X. (s, X) :f E ==> (s, X) :f F) ==> R |] ==> R"
by (auto simp add: subsetF_def memF_def)
lemma subsetFE_ALL:
"[| E <= F ; (ALL s X. (s, X) :f E --> (s, X) :f F) ==> R |] ==> R"
by (auto simp add: subsetF_def memF_def)
lemma subsetF_iff: "((E::'a setF) <= F)
= (ALL s X. (s, X) :f E --> (s, X) :f F)"
by (auto)
(*** {}f is bottom ***)
lemma BOT_is_bottom_setF[simp]: "{}f <= F"
by (simp add: subsetF_iff)
lemma memF_subsetF: "[| (s,X) :f E ; E <= F |] ==> (s,X) :f F"
by (simp add: subsetF_iff)
(*********************************************************
UnF
*********************************************************)
lemma UnF_commut: "E UnF F = F UnF E"
apply (rule order_antisym)
by (simp_all add: subsetF_iff)
lemma UnF_assoc: "(E UnF F) UnF R = E UnF (F UnF R)"
apply (rule order_antisym)
by (simp_all add: subsetF_iff)
lemma UnF_left_commut: "E UnF (F UnF R) = F UnF (E UnF R)"
apply (rule order_antisym)
by (simp_all add: subsetF_iff)
lemmas UnF_rules = UnF_commut UnF_assoc UnF_left_commut
(*********************************************************
IntF
*********************************************************)
lemma IntF_commut: "E IntF F = F IntF E"
apply (rule order_antisym)
by (simp_all add: subsetF_iff)
lemma IntF_assoc: "(E IntF F) IntF R = E IntF (F IntF R)"
apply (rule order_antisym)
by (simp_all add: subsetF_iff)
lemma IntF_left_commut: "E IntF (F IntF R) = F IntF (E IntF R)"
apply (rule order_antisym)
by (simp_all add: subsetF_iff)
lemmas IntF_rules = IntF_commut IntF_assoc IntF_left_commut
(*********************************************************
CollectT
*********************************************************)
(*** open ***)
lemma CollectF_open[simp]: "{u. u :f F}f = F"
apply (subgoal_tac "{f. f :f F} : setF")
apply (auto simp add: memF_def Abs_setF_inverse)
by (simp add: Rep_setF_inverse)
lemma CollectF_open_memF: "{f. P f} : setF ==> f :f {f. P f}f = P f"
by (simp add: memF_def Abs_setF_inverse)
(****************** to add them again ******************)
declare Union_image_eq [simp]
declare Inter_image_eq [simp]
end
lemma setF_F2:
[| F ∈ setF; (s, X) ∈ F; Y ⊆ X |] ==> (s, Y) ∈ F
lemma emptyset_in_setF:
{} ∈ setF
lemma nilt_in_setF:
{(<>, X) |X. X ⊆ EvsetTick} ∈ setF
lemma nilt_Tick_in_setF:
{(<>, X) |X. X ⊆ Evset} ∪ {(<Tick>, X) |X. X ⊆ EvsetTick} ∈ setF
lemma setF_Union_in_setF:
Union (Rep_setF ` Fs) ∈ setF
lemma setF_Un_in_setF:
Rep_setF F ∪ Rep_setF E ∈ setF
lemma setF_Inter_in_setF:
Inter (Rep_setF ` Fs) ∈ setF
lemma setF_Int_in_setF:
Rep_setF F ∩ Rep_setF E ∈ setF
lemmas in_setF:
Union (Rep_setF ` Fs) ∈ setF
Rep_setF F ∪ Rep_setF E ∈ setF
Inter (Rep_setF ` Fs) ∈ setF
Rep_setF F ∩ Rep_setF E ∈ setF
lemmas in_setF:
Union (Rep_setF ` Fs) ∈ setF
Rep_setF F ∪ Rep_setF E ∈ setF
Inter (Rep_setF ` Fs) ∈ setF
Rep_setF F ∩ Rep_setF E ∈ setF
lemma setF_UnionF_Rep:
Rep_setF (UnionF Fs) = Union (Rep_setF ` Fs)
lemma setF_UnF_Rep:
Rep_setF (F UnF E) = Rep_setF F ∪ Rep_setF E
lemma setF_InterF_Rep:
Rep_setF (InterF Fs) = Inter (Rep_setF ` Fs)
lemma setF_IntF_Rep:
Rep_setF (F IntF E) = Rep_setF F ∩ Rep_setF E
lemma memF_F2:
[| (s, X) :f F; Y ⊆ X |] ==> (s, Y) :f F
lemma memF_UnionF_only_if:
sX :f UnionF Fs ==> ∃F∈Fs. sX :f F
lemma memF_UnionF_if:
[| F ∈ Fs; sX :f F |] ==> sX :f UnionF Fs
lemma memF_UnionF:
(sX :f UnionF Fs) = (∃F∈Fs. sX :f F)
lemma memF_InterF_only_if:
sX :f InterF Fs ==> ∀F∈Fs. sX :f F
lemma memF_InterF_if:
∀F∈Fs. sX :f F ==> sX :f InterF Fs
lemma memF_InterF:
(sX :f InterF Fs) = (∀F∈Fs. sX :f F)
lemma memF_empF:
sX ~:f {}f
lemma memF_pair_iff:
(f :f F) = (∃s X. f = (s, X) ∧ (s, X) :f F)
lemma memF_pairI:
∃s X. f = (s, X) ∧ (s, X) :f F ==> f :f F
lemma memF_pairE_lm:
[| f :f F; (∃s X. f = (s, X) ∧ (s, X) :f F) --> R |] ==> R
lemma memF_pairE:
[| f :f F; !!s X. [| f = (s, X); (s, X) :f F |] ==> R |] ==> R
lemma subsetFI:
(!!s X. (s, X) :f E ==> (s, X) :f F) ==> E ≤ F
lemma subsetFE:
[| E ≤ F; (!!s X. (s, X) :f E ==> (s, X) :f F) ==> R |] ==> R
lemma subsetFE_ALL:
[| E ≤ F; ∀s X. (s, X) :f E --> (s, X) :f F ==> R |] ==> R
lemma subsetF_iff:
(E ≤ F) = (∀s X. (s, X) :f E --> (s, X) :f F)
lemma BOT_is_bottom_setF:
{}f ≤ F
lemma memF_subsetF:
[| (s, X) :f E; E ≤ F |] ==> (s, X) :f F
lemma UnF_commut:
E UnF F = F UnF E
lemma UnF_assoc:
E UnF F UnF R = E UnF (F UnF R)
lemma UnF_left_commut:
E UnF (F UnF R) = F UnF (E UnF R)
lemmas UnF_rules:
E UnF F = F UnF E
E UnF F UnF R = E UnF (F UnF R)
E UnF (F UnF R) = F UnF (E UnF R)
lemmas UnF_rules:
E UnF F = F UnF E
E UnF F UnF R = E UnF (F UnF R)
E UnF (F UnF R) = F UnF (E UnF R)
lemma IntF_commut:
E IntF F = F IntF E
lemma IntF_assoc:
E IntF F IntF R = E IntF (F IntF R)
lemma IntF_left_commut:
E IntF (F IntF R) = F IntF (E IntF R)
lemmas IntF_rules:
E IntF F = F IntF E
E IntF F IntF R = E IntF (F IntF R)
E IntF (F IntF R) = F IntF (E IntF R)
lemmas IntF_rules:
E IntF F = F IntF E
E IntF F IntF R = E IntF (F IntF R)
E IntF (F IntF R) = F IntF (E IntF R)
lemma CollectF_open:
{u. u :f F}f = F
lemma CollectF_open_memF:
{f. P f} ∈ setF ==> (f :f {f. P f}f) = P f