Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F/FNF_F
theory FNF_F_nf_id(*-------------------------------------------* | CSP-Prover on Isabelle2005 | | February 2006 | | April 2006 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory FNF_F_nf_id = FNF_F_nf_def: (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* disj_not1: (~ P | Q) = (P --> Q) *) declare disj_not1 [simp del] (* The following simplification rules are deleted in this theory file *) (* P (if Q then x else y) = ((Q --> P x) & (~ Q --> P y)) *) declare split_if [split del] (***************************************************************** 1. =F --> = 2. 3. *****************************************************************) (*---------------------------------------------------------* | syntactically identical ? | *---------------------------------------------------------*) (*===========================================================* | fnfF_nat_proc | *===========================================================*) (*** Q ***) lemma fnfF_syntactical_equality_Q_lm: "[| ? :A1 -> Pf1 [+] DIV |~| !set Y:Ys1 .. ? a:Y -> DIV <=F ? :A2 -> Pf2 [+] SKIP |~| !set Y:Ys2 .. ? a:Y -> DIV |] ==> False" apply (simp add: cspF_semantics) apply (elim conjE) apply (simp add: subdomT_iff) apply (drule_tac x="<Tick>" in spec) apply (simp add: in_traces) done lemma fnfF_syntactical_equality_Q: "[| Q1 = SKIP | Q1 = DIV ; Q2 = SKIP | Q2 = DIV ; ? :A1 -> Pf1 [+] Q1 |~| !set Y:Ys1 .. ? a:Y -> DIV =F ? :A2 -> Pf2 [+] Q2 |~| !set Y:Ys2 .. ? a:Y -> DIV |] ==> Q1 = Q2" apply (elim disjE) apply (simp_all add: cspF_eq_ref_iff) apply (insert fnfF_syntactical_equality_Q_lm [of A2 Pf2 Ys2 A1 Pf1 Ys1]) apply (simp) apply (insert fnfF_syntactical_equality_Q_lm [of A1 Pf1 Ys1 A2 Pf2 Ys2]) apply (simp) done (*** A ***) lemma fnfF_syntactical_equality_Union_lm: "[| Union Ys1 <= A1 ; Union Ys2 <= A2 ; Q = SKIP | Q = DIV ; ? :A1 -> Pf1 [+] Q |~| !set Y:Ys1 .. ? a:Y -> DIV <=F ? :A2 -> Pf2 [+] Q |~| !set Y:Ys2 .. ? a:Y -> DIV |] ==> A2 <= A1" apply (simp add: cspF_semantics) apply (elim conjE) apply (simp add: subdomT_iff) apply (rule subsetI) apply (drule_tac x="<Ev x>" in spec) apply (erule disjE) apply (simp add: in_traces) apply (elim disjE bexE) apply (simp) apply (force) apply (simp add: in_traces) apply (elim disjE bexE) apply (simp) apply (force) done lemma fnfF_syntactical_equality_Union: "[| Union Ys1 <= A1 ; Union Ys2 <= A2 ; Q = SKIP | Q = DIV ; ? :A1 -> Pf1 [+] Q |~| !set Y:Ys1 .. ? a:Y -> DIV =F ? :A2 -> Pf2 [+] Q |~| !set Y:Ys2 .. ? a:Y -> DIV |] ==> A1 = A2" apply (simp add: cspF_eq_ref_iff) apply (rule equalityI) apply (simp add: fnfF_syntactical_equality_Union_lm[of Ys2 A2 Ys1 A1 Q Pf2 Pf1]) apply (simp add: fnfF_syntactical_equality_Union_lm[of Ys1 A1 Ys2 A2 Q Pf1 Pf2]) done (*** Yf ***) lemma fnfF_syntactical_equality_Yf_DIV_lm: "[| Union Ys1 <= A ; Union Ys2 <= A ; fnfF_set_condition A Ys1 ; ? :A -> Pf1 [+] DIV |~| !set Y:Ys1 .. ? a:Y -> DIV <=F ? :A -> Pf2 [+] DIV |~| !set Y:Ys2 .. ? a:Y -> DIV |] ==> Ys2 <= Ys1" apply (rule subsetI) apply (simp add: cspF_semantics) apply (elim conjE) apply (simp add: subsetF_iff) apply (simp add: in_failures) apply (simp add: in_traces) apply (drule_tac x="<>" in spec) apply (simp) apply (drule_tac x="UNIV - (Ev ` x)" in spec) apply (drule mp) apply (rule_tac x="x" in bexI) apply (simp_all) apply (elim conjE bexE) apply (subgoal_tac "a <= x") apply (unfold fnfF_set_condition_def) apply (drule_tac x="x" in spec) apply (drule mp) apply (rule conjI) apply (rule_tac x="a" in bexI) apply (simp) apply (simp) apply (rule subsetI) apply (simp) apply (rule disjI1) apply (subgoal_tac "xa : Union Ys2") apply (force) apply (force) apply (simp) apply (fold fnfF_set_condition_def) apply (auto) done lemma fnfF_syntactical_equality_Yf_SKIP_lm: "[| Union Ys1 <= A ; Union Ys2 <= A ; fnfF_set_condition A Ys1 ; ? :A -> Pf1 [+] SKIP |~| !set Y:Ys1 .. ? a:Y -> DIV <=F ? :A -> Pf2 [+] SKIP |~| !set Y:Ys2 .. ? a:Y -> DIV |] ==> Ys2 <= Ys1" apply (rule subsetI) apply (simp add: cspF_semantics) apply (elim conjE) apply (simp add: subsetF_iff) apply (simp add: in_failures) apply (simp add: in_traces) apply (drule_tac x="<>" in spec) apply (simp) apply (drule_tac x="UNIV - (Ev ` x)" in spec) apply (drule mp) apply (rule_tac x="x" in bexI) apply (simp_all) apply (case_tac "UNIV - Ev ` x <= Evset") apply (simp add: Evset_def) apply (force) apply (simp) apply (elim conjE bexE) apply (subgoal_tac "a <= x") apply (unfold fnfF_set_condition_def) apply (drule_tac x="x" in spec) apply (drule mp) apply (rule conjI) apply (rule_tac x="a" in bexI) apply (simp) apply (simp) apply (rule subsetI) apply (simp) apply (rule disjI1) apply (subgoal_tac "xa : Union Ys2") apply (force) apply (force) apply (simp) apply (fold fnfF_set_condition_def) apply (auto) done lemma fnfF_syntactical_equality_Yf: "[| Union Ys1 <= A ; Union Ys2 <= A ; fnfF_set_condition A Ys1 ; fnfF_set_condition A Ys2 ; Q = SKIP | Q = DIV ; ? :A -> Pf1 [+] Q |~| !set Y:Ys1 .. ? a:Y -> DIV =F ? :A -> Pf2 [+] Q |~| !set Y:Ys2 .. ? a:Y -> DIV |] ==> Ys1 = Ys2" apply (simp add: cspF_eq_ref_iff) apply (erule disjE) apply (rule equalityI) apply (simp add: fnfF_syntactical_equality_Yf_SKIP_lm[of Ys2 A Ys1 Pf2 Pf1]) apply (simp add: fnfF_syntactical_equality_Yf_SKIP_lm[of Ys1 A Ys2 Pf1 Pf2]) apply (rule equalityI) apply (simp add: fnfF_syntactical_equality_Yf_DIV_lm[of Ys2 A Ys1 Pf2 Pf1]) apply (simp add: fnfF_syntactical_equality_Yf_DIV_lm[of Ys1 A Ys2 Pf1 Pf2]) done (*** Pf ***) (* T DIV *) lemma fnfF_syntactical_equality_Pf_T_DIV_lm: "[| a:A ; ? :A -> Pf1 [+] DIV |~| !set Y:Ys .. ? a:Y -> DIV <=T ? :A -> Pf2 [+] DIV |~| !set Y:Ys .. ? a:Y -> DIV |] ==> Pf1 a <=T Pf2 a" apply (simp add: cspT_semantics) apply (simp add: subdomT_iff) apply (simp add: in_traces) apply (intro allI impI) apply (drule_tac x="<Ev a> ^^ t" in spec) apply (insert trace_nil_or_Tick_or_Ev) apply (drule_tac x="t" in spec) apply (elim disjE conjE exE) apply (auto) done (* T SKIP *) lemma fnfF_syntactical_equality_Pf_T_SKIP_lm: "[| a:A ; ? :A -> Pf1 [+] SKIP |~| !set Y:Ys .. ? a:Y -> DIV <=T ? :A -> Pf2 [+] SKIP |~| !set Y:Ys .. ? a:Y -> DIV |] ==> Pf1 a <=T Pf2 a" apply (simp add: cspT_semantics) apply (simp add: subdomT_iff) apply (simp add: in_traces) apply (intro allI impI) apply (drule_tac x="<Ev a> ^^ t" in spec) apply (insert trace_nil_or_Tick_or_Ev) apply (drule_tac x="t" in spec) apply (elim disjE conjE exE) apply (auto) done (* F DIV *) lemma fnfF_syntactical_equality_Pf_F_DIV_lm: "[| a:A ; ? :A -> Pf1 [+] DIV |~| !set Y:Ys .. ? a:Y -> DIV <=F ? :A -> Pf2 [+] DIV |~| !set Y:Ys .. ? a:Y -> DIV |] ==> Pf1 a <=F Pf2 a" apply (simp add: cspF_cspT_semantics) apply (erule conjE) apply (rule conjI) apply (rule fnfF_syntactical_equality_Pf_T_DIV_lm) apply (simp) apply (simp) apply (simp add: subsetF_iff) apply (simp add: in_failures) apply (intro allI impI) apply (drule_tac x="<Ev a> ^^ s" in spec) apply (drule_tac x="X" in spec) apply (insert trace_nil_or_Tick_or_Ev) apply (drule_tac x="s" in spec) apply (elim disjE conjE exE) apply (force) apply (force) apply (force) done (* F SKIP *) lemma fnfF_syntactical_equality_Pf_F_SKIP_lm: "[| a:A ; ? :A -> Pf1 [+] SKIP |~| !set Y:Ys .. ? a:Y -> DIV <=F ? :A -> Pf2 [+] SKIP |~| !set Y:Ys .. ? a:Y -> DIV |] ==> Pf1 a <=F Pf2 a" apply (simp add: cspF_cspT_semantics) apply (erule conjE) apply (rule conjI) apply (rule fnfF_syntactical_equality_Pf_T_SKIP_lm) apply (simp) apply (simp) apply (simp add: subsetF_iff) apply (simp add: in_failures) apply (intro allI impI) apply (drule_tac x="<Ev a> ^^ s" in spec) apply (drule_tac x="X" in spec) apply (insert trace_nil_or_Tick_or_Ev) apply (drule_tac x="s" in spec) apply (elim disjE conjE exE) apply (force) apply (force) apply (force) done lemma fnfF_syntactical_equality_Pf: "[| a:A ; Q = SKIP | Q = DIV ; ? :A -> Pf1 [+] Q |~| !set Y:Ys .. ? a:Y -> DIV =F ? :A -> Pf2 [+] Q |~| !set Y:Ys .. ? a:Y -> DIV |] ==> Pf1 a =F Pf2 a" apply (simp add: cspF_eq_ref_iff) apply (erule disjE) apply (simp add: fnfF_syntactical_equality_Pf_F_SKIP_lm[of a A Pf1 Ys Pf2]) apply (simp add: fnfF_syntactical_equality_Pf_F_SKIP_lm[of a A Pf2 Ys Pf1]) apply (simp add: fnfF_syntactical_equality_Pf_F_DIV_lm[of a A Pf1 Ys Pf2]) apply (simp add: fnfF_syntactical_equality_Pf_F_DIV_lm[of a A Pf2 Ys Pf1]) done (*------------------------------------------------------------------* | fnfF_proc ---> syntactical equality | *------------------------------------------------------------------*) lemma fnfF_syntactical_equality_only_if_lm: "P1 : fnfF_proc ==> ALL P2. (P2 : fnfF_proc & P1 =F P2) --> P1 = P2" apply (rule fnfF_proc.induct[of P1]) apply (simp) apply (intro allI impI) apply (elim conjE) apply (rotate_tac -2) apply (erule fnfF_proc.elims) apply (simp) apply (subgoal_tac "Q = Qa") apply (subgoal_tac "A = Aa") apply (subgoal_tac "Ys = Ysa") apply (subgoal_tac "Pf = Pfa") apply (simp) (* Pf *) apply (simp add: expand_fun_eq) apply (rule allI) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (case_tac "x:Aa") apply (simp) apply (elim bexE conjE) apply (drule_tac x="Pfa x" in spec) apply (drule mp) apply (rule conjI) apply (simp) apply (simp only: fnfF_syntactical_equality_Pf) apply (simp) apply (simp) apply (simp add: fnfF_syntactical_equality_Yf) apply (rule fnfF_syntactical_equality_Union) apply (simp_all) apply (rule fnfF_syntactical_equality_Q) apply (simp_all) done lemma fnfF_syntactical_equality_only_if: "[| P1 : fnfF_proc ; P2 : fnfF_proc ; P1 =F P2 |] ==> P1 = P2" apply (simp add: fnfF_syntactical_equality_only_if_lm) done (*--------------------------* | theorem | *--------------------------*) theorem fnfF_syntactical_equality: "[| P1 : fnfF_proc ; P2 : fnfF_proc |] ==> (P1 =F P2) = (P1 = P2)" apply (rule iffI) apply (simp only: fnfF_syntactical_equality_only_if) apply (simp) done (*===========================================================* | XfnfF_proc | *===========================================================*) theorem XfnfF_syntactical_equality: "[| P1 : XfnfF_proc ; P2 : XfnfF_proc |] ==> (P1 =F P2) = (P1 = P2)" apply (rule iffI) apply (simp add: XfnfF_proc_def) apply (elim conjE exE) apply (simp) apply (subgoal_tac "Pf = Pfa") apply (simp) apply (simp add: expand_fun_eq) apply (rule allI) apply (drule_tac x="x" in spec)+ apply (subgoal_tac "Pf x =F Pfa x") apply (simp add: fnfF_syntactical_equality) apply (rule cspF_rw_left) apply (simp) apply (rule cspF_rw_right) apply (simp) apply (rule cspF_decompo) apply (simp) apply (simp) apply (simp) done (****************** to add them again ******************) declare split_if [split] declare disj_not1 [simp] end
lemma fnfF_syntactical_equality_Q_lm:
? :A1.0 -> Pf1.0 [+] DIV |~| !set Y:Ys1.0 .. ? a:Y -> DIV <=F ? :A2.0 -> Pf2.0 [+] SKIP |~| !set Y:Ys2.0 .. ? a:Y -> DIV ==> False
lemma fnfF_syntactical_equality_Q:
[| Q1.0 = SKIP ∨ Q1.0 = DIV; Q2.0 = SKIP ∨ Q2.0 = DIV; ? :A1.0 -> Pf1.0 [+] Q1.0 |~| !set Y:Ys1.0 .. ? a:Y -> DIV =F ? :A2.0 -> Pf2.0 [+] Q2.0 |~| !set Y:Ys2.0 .. ? a:Y -> DIV |] ==> Q1.0 = Q2.0
lemma fnfF_syntactical_equality_Union_lm:
[| Union Ys1.0 ⊆ A1.0; Union Ys2.0 ⊆ A2.0; Q = SKIP ∨ Q = DIV; ? :A1.0 -> Pf1.0 [+] Q |~| !set Y:Ys1.0 .. ? a:Y -> DIV <=F ? :A2.0 -> Pf2.0 [+] Q |~| !set Y:Ys2.0 .. ? a:Y -> DIV |] ==> A2.0 ⊆ A1.0
lemma fnfF_syntactical_equality_Union:
[| Union Ys1.0 ⊆ A1.0; Union Ys2.0 ⊆ A2.0; Q = SKIP ∨ Q = DIV; ? :A1.0 -> Pf1.0 [+] Q |~| !set Y:Ys1.0 .. ? a:Y -> DIV =F ? :A2.0 -> Pf2.0 [+] Q |~| !set Y:Ys2.0 .. ? a:Y -> DIV |] ==> A1.0 = A2.0
lemma fnfF_syntactical_equality_Yf_DIV_lm:
[| Union Ys1.0 ⊆ A; Union Ys2.0 ⊆ A; fnfF_set_condition A Ys1.0; ? :A -> Pf1.0 [+] DIV |~| !set Y:Ys1.0 .. ? a:Y -> DIV <=F ? :A -> Pf2.0 [+] DIV |~| !set Y:Ys2.0 .. ? a:Y -> DIV |] ==> Ys2.0 ⊆ Ys1.0
lemma fnfF_syntactical_equality_Yf_SKIP_lm:
[| Union Ys1.0 ⊆ A; Union Ys2.0 ⊆ A; fnfF_set_condition A Ys1.0; ? :A -> Pf1.0 [+] SKIP |~| !set Y:Ys1.0 .. ? a:Y -> DIV <=F ? :A -> Pf2.0 [+] SKIP |~| !set Y:Ys2.0 .. ? a:Y -> DIV |] ==> Ys2.0 ⊆ Ys1.0
lemma fnfF_syntactical_equality_Yf:
[| Union Ys1.0 ⊆ A; Union Ys2.0 ⊆ A; fnfF_set_condition A Ys1.0; fnfF_set_condition A Ys2.0; Q = SKIP ∨ Q = DIV; ? :A -> Pf1.0 [+] Q |~| !set Y:Ys1.0 .. ? a:Y -> DIV =F ? :A -> Pf2.0 [+] Q |~| !set Y:Ys2.0 .. ? a:Y -> DIV |] ==> Ys1.0 = Ys2.0
lemma fnfF_syntactical_equality_Pf_T_DIV_lm:
[| a ∈ A; ? :A -> Pf1.0 [+] DIV |~| !set Y:Ys .. ? a:Y -> DIV <=T ? :A -> Pf2.0 [+] DIV |~| !set Y:Ys .. ? a:Y -> DIV |] ==> Pf1.0 a <=T Pf2.0 a
lemma fnfF_syntactical_equality_Pf_T_SKIP_lm:
[| a ∈ A; ? :A -> Pf1.0 [+] SKIP |~| !set Y:Ys .. ? a:Y -> DIV <=T ? :A -> Pf2.0 [+] SKIP |~| !set Y:Ys .. ? a:Y -> DIV |] ==> Pf1.0 a <=T Pf2.0 a
lemma fnfF_syntactical_equality_Pf_F_DIV_lm:
[| a ∈ A; ? :A -> Pf1.0 [+] DIV |~| !set Y:Ys .. ? a:Y -> DIV <=F ? :A -> Pf2.0 [+] DIV |~| !set Y:Ys .. ? a:Y -> DIV |] ==> Pf1.0 a <=F Pf2.0 a
lemma fnfF_syntactical_equality_Pf_F_SKIP_lm:
[| a ∈ A; ? :A -> Pf1.0 [+] SKIP |~| !set Y:Ys .. ? a:Y -> DIV <=F ? :A -> Pf2.0 [+] SKIP |~| !set Y:Ys .. ? a:Y -> DIV |] ==> Pf1.0 a <=F Pf2.0 a
lemma fnfF_syntactical_equality_Pf:
[| a ∈ A; Q = SKIP ∨ Q = DIV; ? :A -> Pf1.0 [+] Q |~| !set Y:Ys .. ? a:Y -> DIV =F ? :A -> Pf2.0 [+] Q |~| !set Y:Ys .. ? a:Y -> DIV |] ==> Pf1.0 a =F Pf2.0 a
lemma fnfF_syntactical_equality_only_if_lm:
P1.0 ∈ fnfF_proc ==> ∀P2. P2 ∈ fnfF_proc ∧ P1.0 =F P2 --> P1.0 = P2
lemma fnfF_syntactical_equality_only_if:
[| P1.0 ∈ fnfF_proc; P2.0 ∈ fnfF_proc; P1.0 =F P2.0 |] ==> P1.0 = P2.0
theorem fnfF_syntactical_equality:
[| P1.0 ∈ fnfF_proc; P2.0 ∈ fnfF_proc |] ==> (P1.0 =F P2.0) = (P1.0 = P2.0)
theorem XfnfF_syntactical_equality:
[| P1.0 ∈ XfnfF_proc; P2.0 ∈ XfnfF_proc |] ==> (P1.0 =F P2.0) = (P1.0 = P2.0)