Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F_domain(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | December 2004 | | June 2005 (modified) | | August 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | April 2006 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_F_domain = CSP_T_traces + CSP_F_failures: (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* disj_not1: (~ P | Q) = (P --> Q) *) declare disj_not1 [simp del] (********************************************************* domF *********************************************************) (*--------------------------------* | STOP | *--------------------------------*) (* T2 *) lemma STOP_T2 : "HC_T2 (traces(STOP), failures(STOP))" by (simp add: HC_T2_def in_traces in_failures) (* F3 *) lemma STOP_F3 : "HC_F3 (traces(STOP), failures(STOP))" by (simp add: HC_F3_def in_traces in_failures) (* T3_F4 *) lemma STOP_T3_F4 : "HC_T3_F4 (traces(STOP), failures(STOP))" by (auto simp add: HC_T3_F4_def in_traces in_failures) (*** STOP_domF ***) lemma STOP_domF : "(traces(STOP), failures(STOP)) : domF" apply (simp add: domF_iff) apply (simp add: STOP_T2) apply (simp add: STOP_F3) apply (simp add: STOP_T3_F4) done (*--------------------------------* | SKIP | *--------------------------------*) (* T2 *) lemma SKIP_T2 : "HC_T2 (traces(SKIP), failures(SKIP))" by (simp add: HC_T2_def in_traces in_failures) (* F3 *) lemma SKIP_F3 : "HC_F3 (traces(SKIP), failures(SKIP))" apply (simp add: HC_F3_def in_traces in_failures) by (auto simp add: Evset_def) (* T3_F4 *) lemma SKIP_T3_F4 : "HC_T3_F4 (traces(SKIP), failures(SKIP))" by (auto simp add: HC_T3_F4_def in_traces in_failures) (*** SKIP_domF ***) lemma SKIP_domF : "(traces(SKIP), failures(SKIP)) : domF" apply (simp add: domF_iff) apply (simp add: SKIP_T2) apply (simp add: SKIP_F3) apply (simp add: SKIP_T3_F4) done (*--------------------------------* | DIV | *--------------------------------*) (* T2 *) lemma DIV_T2 : "HC_T2 (traces(DIV), failures(DIV))" by (simp add: HC_T2_def in_traces in_failures) (* F3 *) lemma DIV_F3 : "HC_F3 (traces(DIV), failures(DIV))" by (simp add: HC_F3_def in_traces in_failures) (* T3_F4 *) lemma DIV_T3_F4 : "HC_T3_F4 (traces(DIV), failures(DIV))" by (auto simp add: HC_T3_F4_def in_traces in_failures) (*** DIV_domF ***) lemma DIV_domF : "(traces(DIV), failures(DIV)) : domF" apply (simp add: domF_iff) apply (simp add: DIV_T2) apply (simp add: DIV_F3) apply (simp add: DIV_T3_F4) done (*--------------------------------* | Act_prefix | *--------------------------------*) (* T2 *) lemma Act_prefix_T2 : "(traces(P), failures(P)) : domF ==> HC_T2 (traces(a -> P), failures(a -> P))" apply (simp add: HC_T2_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE, simp) apply (simp add: domF_def HC_T2_def) apply (elim conjE) apply (drule_tac x="sa" in spec) by (force) (* F3 *) lemma Act_prefix_F3 : "(traces(P), failures(P)) : domF ==> HC_F3 (traces(a -> P), failures(a -> P))" apply (simp add: HC_F3_def in_traces in_failures) apply (intro allI impI) apply (elim conjE disjE, simp) apply (case_tac "Ev a ~: Y", simp) (* show "Ev a : Y --> contradict" *) apply (drule_tac x="Ev a" in spec, simp) apply (drule_tac x="<>" in spec, simp) apply (elim conjE exE, simp) apply (simp add: domF_def HC_F3_def) apply (elim conjE) apply (drule_tac x="sa" in spec) apply (drule_tac x="X" in spec) apply (drule_tac x="Y" in spec) apply (simp) apply (drule mp) apply (intro allI impI) apply (drule_tac x="aa" in spec, simp) apply (drule_tac x="sa ^^ <aa>" in spec) apply (simp add: appt_assoc) by (simp) (* T3_F4 *) lemma Act_prefix_T3_F4 : "(traces(P), failures(P)) : domF ==> HC_T3_F4 (traces(a -> P), failures(a -> P))" apply (simp add: HC_T3_F4_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE) apply (insert trace_nil_or_Tick_or_Ev) apply (drule_tac x="s" in spec) apply (erule disjE, simp) (* s ^^ <Tick> = <> --> contradict *) apply (erule disjE, simp) (* s = <> --> contradict *) apply (erule disjE, simp) (* s = <Tick> --> contradict *) apply (elim conjE exE) (* s = [Ev a]t ^^ sb *) apply (simp add: domF_iff HC_T3_F4_def) apply (elim conjE exE) apply (drule_tac x="sb" in spec) apply (simp add: appt_assoc) done (*** Act_prefix_domF ***) lemma Act_prefix_domF : "(traces(P), failures(P)) : domF ==> (traces(a -> P), failures(a -> P)) : domF" apply (simp (no_asm) add: domF_iff) apply (simp add: Act_prefix_T2) apply (simp add: Act_prefix_F3) apply (simp add: Act_prefix_T3_F4) done (*--------------------------------* | Ext_pre_choice | *--------------------------------*) (* T2 *) lemma Ext_pre_choice_T2 : "ALL a. (traces(Pf a), failures(Pf a)) : domF ==> HC_T2 (traces(? :X -> Pf), failures(? :X -> Pf))" apply (simp add: HC_T2_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE, simp) apply (drule_tac x="a" in spec) apply (simp add: domF_def HC_T2_def) apply (elim conjE) apply (drule_tac x="sa" in spec) by (force) (* F3 *) lemma Ext_pre_choice_F3 : "ALL a. (traces(Pf a), failures(Pf a)) : domF ==> HC_F3 (traces(? :X -> Pf), failures(? :X -> Pf))" apply (simp add: HC_F3_def in_traces in_failures) apply (intro allI impI) apply (elim conjE disjE, simp) (* s = <> *) apply (case_tac "EX a. Ev a :Ev ` X Int (Xa Un Y)") (* show contradiction" *) apply (elim conjE exE) apply (drule_tac x="Ev a" in spec) apply (drule mp) apply (simp) (* show "Ev a : Y" *) apply (elim conjE disjE) apply (fast) (* contradict *) apply (simp) apply (drule_tac x="a" in spec) apply (drule_tac x="a" in spec) apply (simp) apply (drule_tac x="s" in spec) apply (simp) apply (fast) (* contradict *) apply (fast) (* Ev ` X Int (Xa Un Y) = {} *) (* s ~= <> *) apply (elim conjE exE, simp) apply (drule_tac x="a" in spec) apply (simp add: domF_def HC_F3_def) apply (elim conjE) apply (drule_tac x="sa" in spec) apply (drule_tac x="Xa" in spec) apply (drule_tac x="Y" in spec) apply (simp) apply (drule mp) apply (intro allI impI) apply (drule_tac x="aa" in spec, simp) apply (drule_tac x="a" in spec) apply (drule_tac x="sa ^^ <aa>" in spec) apply (simp add: appt_assoc) by (simp) (* T3_F4 *) lemma Ext_pre_choice_T3_F4 : "ALL a. (traces(Pf a), failures(Pf a)) : domF ==> HC_T3_F4 (traces(? :X -> Pf), failures(? :X -> Pf))" apply (simp add: HC_T3_F4_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE) apply (insert trace_nil_or_Tick_or_Ev) apply (drule_tac x="s" in spec) apply (erule disjE, simp) (* contradict *) apply (erule disjE, simp) (* s = <> --> contradict *) apply (erule disjE, simp) (* s = <Tick> --> contradict *) apply (elim conjE exE) (* s = [Ev aa]t ^^ sb *) apply (drule_tac x="a" in spec) apply (simp add: domF_iff HC_T3_F4_def) apply (elim conjE exE) apply (drule_tac x="sb" in spec) apply (simp add: appt_assoc) done (*** Ext_pre_choice_domF ***) lemma Ext_pre_choice_domF : "ALL a. (traces(Pf a), failures(Pf a)) : domF ==> (traces(? :X -> Pf), failures(? :X -> Pf)) : domF" apply (simp (no_asm) add: domF_iff) apply (simp add: Ext_pre_choice_T2) apply (simp add: Ext_pre_choice_F3) apply (simp add: Ext_pre_choice_T3_F4) done (*--------------------------------* | Ext_choice | *--------------------------------*) (* T2 *) lemma Ext_choice_T2 : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> HC_T2 (traces(P [+] Q), failures(P [+] Q))" apply (simp add: HC_T2_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE) apply (simp add: domF_def HC_T2_def) apply (elim conjE) apply (drule_tac x="s" in spec) apply (drule_tac x="s" in spec) by (fast) (* F3 *) lemma Ext_choice_F3 : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> HC_F3 (traces(P [+] Q), failures(P [+] Q))" apply (simp add: HC_F3_def in_traces in_failures) apply (intro allI impI) apply (elim conjE disjE) apply (simp_all add: domF_def HC_F3_def) apply (auto simp add: Evset_def) done (* T3_F4 *) lemma Ext_choice_T3_F4 : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> HC_T3_F4 (traces(P [+] Q), failures(P [+] Q))" apply (simp add: HC_T3_F4_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE) apply (simp add: domF_iff HC_T3_F4_def) apply (elim conjE) apply (drule_tac x="s" in spec) apply (drule_tac x="s" in spec) by (auto) (*** Ext_choice_domF ***) lemma Ext_choice_domF : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> (traces(P [+] Q), failures(P [+] Q)) : domF" apply (simp (no_asm) add: domF_iff) apply (simp add: Ext_choice_T2) apply (simp add: Ext_choice_F3) apply (simp add: Ext_choice_T3_F4) done (*--------------------------------* | Int_choice | *--------------------------------*) (* T2 *) lemma Int_choice_T2 : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> HC_T2 (traces(P |~| Q), failures(P |~| Q))" apply (simp add: HC_T2_def in_traces in_failures) apply (simp add: domF_def HC_T2_def) by (auto) (* F3 *) lemma Int_choice_F3 : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> HC_F3 (traces(P |~| Q), failures(P |~| Q))" apply (simp add: HC_F3_def in_traces in_failures) apply (simp add: domF_def HC_F3_def) by (auto) (* T3_F4 *) lemma Int_choice_T3_F4 : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> HC_T3_F4 (traces(P |~| Q), failures(P |~| Q))" apply (simp add: HC_T3_F4_def in_traces in_failures) apply (simp add: domF_iff HC_T3_F4_def) by (auto) (*** Int_choice_domF ***) lemma Int_choice_domF : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> (traces(P |~| Q), failures(P |~| Q)) : domF" apply (simp (no_asm) add: domF_iff) apply (simp add: Int_choice_T2) apply (simp add: Int_choice_F3) apply (simp add: Int_choice_T3_F4) done (*--------------------------------* | Rep_int_choice | *--------------------------------*) (* T2 *) lemma Union_proc_T2: "ALL c. (Tf c, Ff c) : domF ==> HC_T2 ({t. t = <> | (EX c:C. t :t Tf c)}t, {f. EX c:C. f :f Ff c}f)" apply (simp add: HC_T2_def) apply (simp add: in_traces) apply (simp add: in_failures) apply (intro allI impI) apply (elim conjE bexE exE) apply (rule disjI2) apply (drule_tac x="c" in spec) apply (rule_tac x="c" in bexI) apply (simp add: domF_def HC_T2_def) by (auto) lemma Rep_int_choice_T2 : "ALL c. (traces(Pf c), failures(Pf c)) : domF ==> HC_T2 (traces(!! :C .. Pf), failures(!! :C .. Pf))" apply (simp add: traces_def failures_def) apply (simp add: Union_proc_T2) done (* F3 *) lemma Union_proc_F3: "ALL c. (Tf c, Ff c) : domF ==> HC_F3 ({t. t = <> | (EX c:C. t :t Tf c)}t, {f. EX c:C. f :f Ff c}f)" apply (simp add: HC_F3_def) apply (simp add: in_traces) apply (simp add: in_failures) apply (intro allI) apply (intro impI) apply (elim conjE bexE) apply (rule_tac x="c" in bexI) apply (drule_tac x="c" in spec) apply (rule domF_F3) apply (auto) done lemma Rep_int_choice_F3 : "ALL c. (traces(Pf c), failures(Pf c)) : domF ==> HC_F3 (traces(!! :C .. Pf), failures(!! :C .. Pf))" apply (simp add: traces_def failures_def) apply (simp add: Union_proc_F3) done (* T3_F4 *) lemma Union_proc_T3_F4: "ALL c. (Tf c, Ff c) : domF ==> HC_T3_F4 ({t. t = <> | (EX c:C. t :t Tf c)}t, {f. EX c:C. f :f Ff c}f)" apply (simp add: HC_T3_F4_def) apply (simp add: in_traces) apply (simp add: in_failures) apply (auto) apply (rule_tac x="c" in bexI) apply (rule domF_F4) apply (simp_all) apply (rule_tac x="c" in bexI) apply (rule domF_T3) apply (simp_all) done lemma Rep_int_choice_T3_F4 : "ALL c. (traces(Pf c), failures(Pf c)) : domF ==> HC_T3_F4 (traces(!! :C .. Pf), failures(!! :C .. Pf))" apply (simp add: traces_def failures_def) apply (simp add: Union_proc_T3_F4) done (*** F ***) lemma Union_proc_domF: "ALL c. (Tf c, Ff c) : domF ==> ({t. t = <> | (EX c:C. t :t Tf c)}t, {f. EX c:C. f :f Ff c}f) : domF" apply (simp (no_asm) add: domF_iff) apply (simp add: Union_proc_T2) apply (simp add: Union_proc_F3) apply (simp add: Union_proc_T3_F4) done (*** Rep_int_choice_domF ***) lemma Rep_int_choice_domF : "ALL c. (traces(Pf c), failures(Pf c)) : domF ==> (traces(!! :C .. Pf), failures(!! :C .. Pf)) : domF" apply (simp add: traces_def failures_def) apply (simp add: Union_proc_domF) done (*--------------------------------* | IF | *--------------------------------*) (* T2 *) lemma IF_T2 : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> HC_T2 (traces(IF b THEN P ELSE Q), failures(IF b THEN P ELSE Q))" by (simp add: HC_T2_def in_traces in_failures domF_def) (* F3 *) lemma IF_F3 : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> HC_F3 (traces(IF b THEN P ELSE Q), failures(IF b THEN P ELSE Q))" by (simp add: HC_F3_def in_traces in_failures domF_def) (* T3_F4 *) lemma IF_T3_F4 : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> HC_T3_F4 (traces(IF b THEN P ELSE Q), failures(IF b THEN P ELSE Q))" by (simp add: HC_T3_F4_def in_traces in_failures domF_iff) (*** IF_domF ***) lemma IF_domF : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> (traces(IF b THEN P ELSE Q), failures(IF b THEN P ELSE Q)) : domF" apply (simp (no_asm) add: domF_iff) apply (simp add: IF_T2) apply (simp add: IF_F3) apply (simp add: IF_T3_F4) done (*--------------------------------* | Parallel | *--------------------------------*) (*** T2 ***) lemma Parallel_T2 : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> HC_T2 (traces(P |[X]| Q), failures(P |[X]| Q))" apply (simp add: HC_T2_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE) apply (rule_tac x="sa" in exI) apply (rule_tac x="t" in exI) apply (simp) apply (simp add: domF_def HC_T2_def) apply (elim conjE) apply (drule_tac x="sa" in spec) apply (drule_tac x="t" in spec) apply (drule mp, rule_tac x="Y" in exI, simp) apply (drule mp, rule_tac x="Z" in exI, simp) by (simp) (*** F3 ***) lemma Parallel_F3_lm1: "X1 Un (X2 Un X3) - X = (X1 - X) Un (X2 - X) Un (X3 - X)" by (auto) lemma Parallel_F3_lm2: "[| X1 = X2 ; Y1 = Y2 |] ==> X1 Un Y1 = X2 Un Y2" by (auto) lemma Parallel_F3 : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> HC_F3 (traces(P |[X]| Q), failures(P |[X]| Q))" apply (simp add: HC_F3_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE) apply (rename_tac u X12 Y X1 X2 s t) (* (u, X12) :f [[P |[X]| Q]]F *) (* (s, X1) :f [[P]]F *) (* (t, X2) :f [[Q]]F *) (* X12 = X1 Un X2 *) apply (rule_tac x= "X1 Un ({a. a : Y & (a = Tick | a : Ev ` X) & s ^^ <a> ~:t traces(P)} Un {a. a : Y & a ~= Tick & a ~: Ev ` X})" in exI) (* Z1 *) apply (rule_tac x= "X2 Un ({a. a : Y & (a = Tick | a : Ev ` X) & t ^^ <a> ~:t traces(Q)} Un {a. a : Y & a ~= Tick & a ~: Ev ` X})" in exI) (* Z2 *) apply (subgoal_tac "noTick s & noTick t", simp) apply (rule conjI) (* show X12 Un Y = X1 Un Z1 Un Z2 *) apply (rule equalityI) (* <= *) apply (rule subsetI, simp) apply (erule disjE, simp) apply (erule disjE, simp) apply (simp) apply (drule_tac x="x" in spec, simp) apply (drule_tac x="s ^^ <x>" in spec) apply (drule_tac x="t ^^ <x>" in spec) (* no sync *) apply (case_tac "x ~= Tick & x ~: Ev ` X", simp) (* sync *) apply (simp add: par_tr_last) apply (erule disjE, simp) apply (force) apply (rotate_tac -2) apply (erule disjE, simp) apply (force) apply (simp) apply (force) (* => *) apply (force) apply (rule conjI) (* show X1 Un ... = X2 Un ... *) apply (simp add: Parallel_F3_lm1) apply (rule Parallel_F3_lm2) apply (rule Parallel_F3_lm2) apply (simp) apply (force) apply (simp) (* condition 2 *) apply (rule_tac x="s" in exI) apply (rule_tac x="t" in exI) apply (simp) apply (simp add: domF_def HC_F3_def) apply (elim conjE) apply (drule_tac x="s" in spec) apply (drule_tac x="t" in spec) apply (drule_tac x="X1" in spec) apply (drule_tac x="X2" in spec) apply (drule_tac x="{a. a : Y & (a = Tick | a : Ev ` X) & s ^^ <a> ~:t traces(P)} Un {a. a : Y & a ~= Tick & a ~: Ev ` X}" in spec) apply (drule_tac x="{a. a : Y & (a = Tick | a : Ev ` X) & t ^^ <a> ~:t traces(Q)} Un {a. a : Y & a ~= Tick & a ~: Ev ` X}" in spec) apply (simp) (* left *) apply (drule mp) apply (intro allI impI) apply (drule_tac x="a" in spec, simp) apply (drule_tac x="s ^^ <a>" in spec) apply (drule_tac x="t" in spec) apply (erule disjE) apply (simp add: par_tr_last) apply (fast) apply (erule disjE, simp) apply (simp add: HC_T2_def) apply (drule_tac x="s" in spec) apply (drule_tac x="t" in spec) apply (force) (* right *) apply (drule mp) apply (intro allI impI) apply (drule_tac x="a" in spec, simp) apply (drule_tac x="s" in spec) apply (drule_tac x="t ^^ <a>" in spec) apply (erule disjE) apply (simp add: par_tr_last) apply (fast) apply (erule disjE) apply (simp add: HC_T2_def) apply (drule_tac x="s" in spec) apply (drule_tac x="t" in spec) apply (force) apply (simp) apply (simp) (* notick s & notick t *) apply (simp add: par_tr_noTick_decompo) done (* T3_F4 *) lemma Parallel_T3_F4 : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> HC_T3_F4 (traces(P |[X]| Q), failures(P |[X]| Q))" apply (simp add: HC_T3_F4_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE) apply (simp add: par_tr_last) apply (elim conjE exE) apply (rule conjI) (* F4 *) apply (rule_tac x="Evset" in exI) apply (rule_tac x="Evset" in exI) apply (simp) apply (rule_tac x="s'" in exI) apply (rule_tac x="t'" in exI) apply (simp add: domF_def HC_F4_def) (* T3 *) apply (rule allI) apply (rule_tac x="Xa" in exI) apply (rule_tac x="Xa" in exI) apply (simp) apply (rule_tac x="sa" in exI) apply (rule_tac x="t" in exI) apply (simp add: domF_def HC_T3_def) apply (fast) done (*** Parallel_domF ***) lemma Parallel_domF : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> (traces(P |[X]| Q), failures(P |[X]| Q)) : domF" apply (simp (no_asm) add: domF_iff) apply (simp add: Parallel_T2) apply (simp add: Parallel_F3) apply (simp add: Parallel_T3_F4) done (*--------------------------------* | Hiding | *--------------------------------*) (*** T2 ***) lemma Hiding_T2 : "(traces(P), failures(P)) : domF ==> HC_T2 (traces(P -- X), failures(P -- X))" apply (simp add: HC_T2_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE) apply (rule_tac x="sa" in exI) apply (simp add: domF_def HC_T2_def) apply (elim conjE) apply (drule_tac x="sa" in spec) by (force) (*** F3 ***) lemma Hiding_F3 : "(traces(P), failures(P)) : domF ==> HC_F3 (traces(P -- X), failures(P -- X))" apply (simp add: HC_F3_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE) apply (rename_tac t Y Z s) apply (rule_tac x="s" in exI, simp) apply (simp add: domF_def HC_F3_def) apply (elim conjE) apply (drule_tac x="s" in spec) apply (drule_tac x="Ev ` X Un Y" in spec) apply (drule_tac x="Z - Ev ` X" in spec) apply (simp) apply (drule mp) apply (intro allI impI) apply (drule_tac x="a" in spec) apply (simp) apply (insert event_Tick_or_Ev) apply (drule_tac x="a" in spec) apply (erule disjE) (* Tick *) apply (drule_tac x="s ^^ <Tick>" in spec) apply (simp) (* Ev *) apply (elim conjE exE) apply (drule_tac x="s ^^ <Ev aa>" in spec) apply (simp) apply (subgoal_tac "aa ~: X", simp_all) apply (force) apply (subgoal_tac "Ev ` X Un Y Un (Z - Ev ` X) = Ev ` X Un (Y Un Z)", simp) by (auto) (* T3_F4 *) lemma Hiding_T3_F4 : "(traces(P), failures(P)) : domF ==> HC_T3_F4 (traces(P -- X), failures(P -- X))" apply (simp add: HC_T3_F4_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE) apply (drule sym) apply (simp add: hide_tr_decompo) apply (elim conjE exE) apply (rotate_tac -1) apply (drule sym) apply (subgoal_tac "(EX t''. t' = t'' ^^ <Tick> & sett t'' <= Ev ` X)") apply (elim conjE exE) apply (simp) (* F4 *) apply (rule conjI) apply (rule_tac x="s' ^^ t''" in exI) apply (simp) apply (subgoal_tac "t'' --tr X = <>", simp) apply (simp add: domF_def HC_F4_def) apply (elim conjE) apply (drule_tac x="s' ^^ t''" in spec) apply (subgoal_tac "noTick t''") apply (simp add: appt_assoc) apply (simp add: noTick_def) apply (force) apply (simp add: hide_tr_nilt_sett) (* T3 *) apply (rule allI) apply (rule_tac x="sa" in exI, simp) apply (simp add: domF_def HC_T3_def) apply (elim conjE) apply (drule_tac x="s' ^^ t''" in spec, simp) apply (subgoal_tac "noTick t''") apply (simp add: appt_assoc) apply (simp add: noTick_def) apply (force) apply (auto simp add: hide_tr_Tick_sett) done (*** Hiding_domF ***) lemma Hiding_domF : "(traces(P), failures(P)) : domF ==> (traces(P -- X), failures(P -- X)) : domF" apply (simp (no_asm) add: domF_iff) apply (simp add: Hiding_T2) apply (simp add: Hiding_F3) apply (simp add: Hiding_T3_F4) done (*--------------------------------* | Renaming | *--------------------------------*) (*** T2 ***) lemma Renaming_T2 : "(traces(P), failures(P)) : domF ==> HC_T2 (traces(P [[r]]), failures(P [[r]]))" apply (simp add: HC_T2_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE) apply (rule_tac x="sa" in exI) apply (simp add: domF_def HC_T2_def) apply (elim conjE) apply (drule_tac x="sa" in spec) by (force) (*** F3 ***) lemma Renaming_F3 : "(traces(P), failures(P)) : domF ==> HC_F3 (traces(P [[r]]), failures(P [[r]]))" apply (simp add: HC_F3_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE) apply (rule_tac x="sa" in exI, simp) apply (simp add: domF_def HC_F3_def) apply (elim conjE) apply (drule_tac x="sa" in spec) apply (drule_tac x="[[r]]inv X" in spec) apply (drule_tac x="[[r]]inv Y" in spec) apply (drule mp) apply (simp add: ren_tr_noTick_right) apply (intro allI impI) apply (simp add: ren_inv_def) apply (erule bexE) apply (fold ren_inv_def) apply (drule_tac x="eb" in spec, simp) (* Tick *) apply (erule disjE) apply (drule_tac x=" sa ^^ <a>" in spec) apply (simp add: ren_tr_noTick_right) (* Ev *) apply (elim conjE exE) apply (drule_tac x=" sa ^^ <Ev aa>" in spec) apply (simp add: ren_tr_noTick_right) by (simp) (* T3_F4 *) lemma Renaming_T3_F4 : "(traces(P), failures(P)) : domF ==> HC_T3_F4 (traces(P [[r]]), failures(P [[r]]))" apply (simp add: HC_T3_F4_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE) apply (simp add: ren_tr_appt_decompo) apply (elim conjE exE) apply (case_tac "~ noTick s1", simp) apply (simp) (* F4 *) apply (rule conjI) apply (rule_tac x="s1" in exI, simp) apply (simp add: domF_def HC_F4_def) apply (elim conjE) apply (drule_tac x="s1" in spec, simp) apply (rule memF_F2, simp, simp) (* T3 *) apply (rule allI) apply (rule_tac x="s1 ^^ <Tick>" in exI) apply (simp add: domF_def HC_T3_def) apply (fast) done (*** Renaming_domF ***) lemma Renaming_domF : "(traces(P), failures(P)) : domF ==> (traces(P [[r]]), failures(P [[r]])) : domF" apply (simp (no_asm) add: domF_iff) apply (simp add: Renaming_T2) apply (simp add: Renaming_F3) apply (simp add: Renaming_T3_F4) done (*--------------------------------* | Seq_compo | *--------------------------------*) (*** T2 ***) lemma Seq_compo_T2 : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> HC_T2 (traces(P ;; Q), failures(P ;; Q))" apply (simp add: HC_T2_def in_traces in_failures) apply (intro allI) apply (rule conjI) (* case 1 *) apply (intro impI) apply (rule disjI1) apply (rule_tac x="s" in exI, simp) apply (simp add: domF_def HC_T2_def) apply (elim conjE) apply (drule_tac x="s" in spec) apply (force) (* case 2 *) apply (intro impI) apply (elim conjE exE disjE) apply (rule disjI2) apply (rule_tac x="sa" in exI) apply (rule_tac x="t" in exI) apply (simp add: domF_def HC_T2_def) apply (elim conjE) apply (rotate_tac 4) apply (drule_tac x="t" in spec) apply (force) done (*** F3 ***) lemma Seq_compo_F3 : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> HC_F3 (traces(P ;; Q), failures(P ;; Q))" apply (simp add: HC_F3_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE disjE) (* case 1 *) apply (simp add: domF_def HC_F3_def) apply (elim conjE) apply (drule_tac x="s" in spec) apply (drule_tac x="insert Tick X" in spec) apply (drule_tac x="Y-{Tick}" in spec) apply (simp) apply (drule mp) apply (intro allI impI) apply (drule_tac x="a" in spec, simp) apply (simp add: not_Tick_to_Ev) apply (elim conjE exE, simp) apply (rotate_tac -3) apply (drule_tac x="s ^^ <Ev aa>" in spec, simp) apply (subgoal_tac "insert Tick (X Un (Y - {Tick})) = insert Tick (X Un Y)", simp) apply (force) (* case 2 *) apply (simp add: domF_def HC_F3_def) apply (elim conjE) apply (rotate_tac -2) apply (drule_tac x="t" in spec) apply (drule_tac x="X" in spec) apply (drule_tac x="Y" in spec) apply (simp) apply (drule mp) apply (intro allI impI) apply (drule_tac x="a" in spec, simp) apply (elim conjE) apply (rotate_tac -1) apply (drule_tac x="sa" in spec) apply (rotate_tac -1) apply (drule_tac x="t ^^ <a>" in spec) apply (simp add: appt_assoc) apply (rule disjI2) apply (rule_tac x="sa" in exI) apply (rule_tac x="t" in exI) apply (simp) done (* T3_F4 *) lemma Seq_compo_T3_F4 : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> HC_T3_F4 (traces(P ;; Q), failures(P ;; Q))" apply (simp add: HC_T3_F4_def in_traces in_failures) apply (intro allI impI) apply (elim conjE disjE) (* case 1 *) apply (elim conjE exE) apply (subgoal_tac "noTick (s ^^ <Tick>) ~= noTick (rmTick sa)", simp) apply (simp (no_asm_use)) apply (drule sym) apply (simp) (* case 2 *) apply (elim conjE exE) apply (case_tac "~ noTick sa", simp) apply (insert trace_last_nil_or_unnil) apply (drule_tac x="t" in spec) apply (simp) (* <> *) apply (erule disjE) apply (rotate_tac -5) apply (drule_tac sym, simp) (* contradict *) (* ... <Tick> *) apply (elim conjE exE, simp) apply (simp add: appt_assoc_sym) apply (erule conjE) apply (rule conjI) (* F4 *) apply (rule disjI2) apply (rule_tac x="sa" in exI) apply (rule_tac x="sb" in exI) apply (simp add: domF_def HC_F4_def) (* T3 *) apply (rule allI) apply (rule_tac x="sa" in exI) apply (rule_tac x="t" in exI) apply (simp add: appt_assoc_sym domF_def HC_T3_def) done (*** Seq_compo_domF ***) lemma Seq_compo_domF : "[| (traces(P), failures(P)) : domF ; (traces(Q), failures(Q)) : domF |] ==> (traces(P ;; Q), failures(P ;; Q)) : domF" apply (simp (no_asm) add: domF_iff) apply (simp add: Seq_compo_T2) apply (simp add: Seq_compo_F3) apply (simp add: Seq_compo_T3_F4) done (*--------------------------------* | Depth_rest | *--------------------------------*) (*** T2 ***) lemma Depth_rest_T2 : "(traces(P), failures(P)) : domF ==> HC_T2 (traces(P |. n), failures(P |. n))" apply (simp add: HC_T2_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE) apply (simp add: domF_def HC_T2_def) apply (elim conjE) apply (drule_tac x="s" in spec) by (force) (*** F3 ***) lemma Depth_rest_F3 : "(traces(P), failures(P)) : domF ==> HC_F3 (traces(P |. n), failures(P |. n))" apply (simp add: HC_F3_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE) apply (simp add: domF_def HC_F3_def) apply (elim conjE) apply (drule_tac x="s" in spec) apply (drule_tac x="X" in spec) apply (drule_tac x="Y" in spec) apply (simp) apply (erule disjE) apply (simp) apply (simp) apply (elim conjE exE) apply (simp) done (* T3_F4 *) lemma Depth_rest_T3_F4 : "(traces(P), failures(P)) : domF ==> HC_T3_F4 (traces(P |. n), failures(P |. n))" apply (simp add: HC_T3_F4_def in_traces in_failures) apply (intro allI impI) apply (elim conjE exE) apply (simp) (* F4 *) apply (rule conjI) apply (simp add: domF_def HC_F4_def) (* T3 *) apply (simp add: domF_def HC_T3_def) apply (case_tac "Suc (lengtht s) < n") apply (simp) apply (simp) apply (fast) done (*** Depth_rest_domF ***) lemma Depth_rest_domF : "(traces(P), failures(P)) : domF ==> (traces(P |. n), failures(P |. n)) : domF" apply (simp (no_asm) add: domF_iff) apply (simp add: Depth_rest_T2) apply (simp add: Depth_rest_F3) apply (simp add: Depth_rest_T3_F4) done (*--------------------------------* | proc | *--------------------------------*) lemma proc_domF[simp]: "(traces(P), failures(P)) : domF" apply (induct_tac P) apply (simp add: STOP_domF) apply (simp add: SKIP_domF) apply (simp add: DIV_domF) apply (simp add: Act_prefix_domF) apply (simp add: Ext_pre_choice_domF) apply (simp add: Ext_choice_domF) apply (simp add: Int_choice_domF) apply (simp add: Rep_int_choice_domF) apply (simp add: IF_domF) apply (simp add: Parallel_domF) apply (simp add: Hiding_domF) apply (simp add: Renaming_domF) apply (simp add: Seq_compo_domF) apply (simp add: Depth_rest_domF) done (*--------------------------------* | fstF sndF | *--------------------------------*) lemma fstF_proc_domF[simp]: "fstF (traces(P),, failures(P)) = traces(P)" by (simp add: pairF) lemma sndF_proc_domF[simp]: "sndF (traces(P),, failures(P)) = failures(P)" by (simp add: pairF) lemma fstF_semF[simp]: "fstF [[P]]F = traces(P)" by (simp add: semF_def) lemma sndF_semF[simp]: "sndF [[P]]F = failures(P)" by (simp add: semF_def) (*--------------------------------* | =F and <=F | *--------------------------------*) lemma cspF_eqF_semantics: "(P =F Q) = ((traces P = traces Q) & (failures P = failures Q))" apply (simp add: eqF_def) apply (simp add: eqF_decompo) done lemma cspF_eqF_eqT_semantics: "(P =F Q) = ((P =T Q) & (failures P = failures Q))" apply (simp add: eqT_def) apply (simp add: semT_def) apply (simp add: cspF_eqF_semantics) done lemma cspF_refF_semantics: "(P <=F Q) = ((traces Q <= traces P) & (failures Q <= failures P))" apply (simp add: refF_def) apply (simp add: subdomF_decompo) done lemma cspF_refF_refT_semantics: "(P <=F Q) = ((P <=T Q) & (failures Q <= failures P))" apply (simp add: refT_def) apply (simp add: semT_def) apply (simp add: cspF_refF_semantics) done lemma cspF_eqF_prod_semantics: "(f =F' g) = ((ALL x. traces (f x) = traces(g x)) & (ALL x. failures (f x) = failures (g x)))" apply (simp add: eqF_prod_def) apply (simp add: cspF_eqF_semantics) by (auto) lemma cspF_eqF_prod_eqT_semantics: "(f =F' g) = (f =T' g & (ALL x. failures (f x) = failures (g x)))" apply (simp add: eqT_prod_def) apply (simp add: eqT_def) apply (simp add: semT_def) apply (simp add: cspF_eqF_prod_semantics) done lemma cspF_refF_prod_semantics: "(f <=F' g) = ((ALL x. traces (g x) <= traces(f x)) & (ALL x. failures (g x) <= failures (f x)))" apply (simp add: refF_prod_def) apply (simp add: cspF_refF_semantics) apply (rule iffI) by (auto) lemma cspF_refF_prod_eqT_semantics: "(f <=F' g) = (f <=T' g & (ALL x. failures (g x) <= failures (f x)))" apply (simp add: refT_prod_def) apply (simp add: refT_def) apply (simp add: semT_def) apply (simp add: cspF_refF_prod_semantics) done lemmas cspF_semantics = cspF_eqF_semantics cspF_refF_semantics cspF_eqF_prod_semantics cspF_refF_prod_semantics lemmas cspF_cspT_semantics = cspF_eqF_eqT_semantics cspF_refF_refT_semantics cspF_eqF_prod_eqT_semantics cspF_refF_prod_eqT_semantics (*--------------------------------* | Timeout | *--------------------------------*) lemma in_failures_Timeout1: "(f :f failures(P [> Q)) = (f :f failures(Q) | (EX s X. f = (s, X) & s ~= <> & (s, X) :f failures(P)) | (EX X. f = (<>, X) & X <= Evset & <Tick> :t traces(P)))" apply (rule) (* <= *) apply (simp add: in_failures) apply (elim conjE exE disjE) apply (simp_all) apply (simp add: in_traces) apply (rule disjI1) apply (rule domF_F2_F4, simp_all) (* <= *) apply (simp add: in_failures in_traces) apply (elim conjE exE disjE, simp_all) apply (auto elim: memF_pairE) done lemma in_failures_Timeout2: "(f :f failures(P [>def Q)) = (f :f failures(Q) | (EX s X. f = (s, X) & s ~= <> & (s, X) :f failures(P)) | (EX X. f = (<>, X) & X <= Evset & <Tick> :t traces(P)))" apply (simp add: Timeout_def) apply (simp add: in_failures_Timeout1) done lemmas in_failures_Timeout = in_failures_Timeout1 in_failures_Timeout2 (*--------------------------------* | Depth rest | *--------------------------------*) lemma semF_Depth_rest: "[[P |. n]]F = [[P]]F .|. n" apply (simp add: semF_def) apply (simp add: traces.simps) apply (simp add: failures.simps) apply (simp add: rest_domF_def) apply (simp add: restTF_def) apply (simp add: pairF_def) apply (simp add: Abs_domF_inverse) apply (simp add: pair_restriction_def) done (*---------------------------------------------------* | Healthiness conditions for proc | *---------------------------------------------------*) lemma proc_T2: "(s, X) :f failures(P) ==> s :t traces(P)" apply (insert pairF_domF_T2[of "s" "X" "(traces(P),, failures(P))"]) by (simp) lemma proc_T3: "[| s ^^ <Tick> :t traces(P) ; noTick s |] ==> (s ^^ <Tick>, X) :f failures(P)" apply (insert pairF_domF_T3[of "s" "(traces(P),, failures(P))" "X"]) by (simp) lemma proc_T3_Tick: "<Tick> :t traces(P) ==> (<Tick>, X) :f failures(P)" apply (insert proc_T3[of "<>" P X]) by (simp) lemma proc_F4: "[| s ^^ <Tick> :t traces(P) ; noTick s |] ==> (s, Evset) :f failures(P)" apply (insert pairF_domF_F4[of "s" "(traces(P),, failures(P))"]) by (simp) lemma proc_F3: "[| (s, X) :f failures(P) ; noTick s ; (ALL a. a : Y --> s ^^ <a> ~:t traces(P)) |] ==> (s, X Un Y) :f failures(P)" apply (insert pairF_domF_F3[of "s" "X" "(traces(P),, failures(P))" "Y"]) by (simp) lemma proc_F3I: "[| (s, X) :f failures(P) ; noTick s ; (ALL a. a : Y --> s ^^ <a> ~:t traces(P)) ; Z = X Un Y |] ==> (s, Z) :f failures(P)" by (simp add: proc_F3) (*** F2_F4 ***) lemma proc_F2_F4: "[| s ^^ <Tick> :t traces(P) ; noTick s ; X <= Evset|] ==> (s, X) :f failures(P)" apply (insert pairF_domF_F2_F4[of "s" "(traces(P),, failures(P))" "X"]) by (simp) (*** T2_T3 ***) lemma proc_T2_T3: "[| (s ^^ <Tick>, X) :f failures(P) ; noTick s |] ==> (s ^^ <Tick>, Y) :f failures(P)" apply (rule proc_T3) apply (rule proc_T2) by (simp_all) (*------------------------------------------------------* | Union in domF (used for generic internal choice | *------------------------------------------------------*) lemma non_empty_UnionT_UnionF_T2: "Ps ~= {} ==> HC_T2 (UnionT {traces P |P. P : Ps} , UnionF {failures P |P. P : Ps})" apply (simp add: HC_T2_def) apply (intro allI impI) apply (subgoal_tac "{traces P |P. P : Ps} ~= {}") apply (simp) apply (elim conjE bexE exE) apply (simp) apply (rule_tac x="traces Pa" in exI) apply (rule conjI) apply (rule_tac x="Pa" in exI) apply (simp) apply (simp add: proc_T2) by (auto) lemma non_empty_UnionT_UnionF_F3: "Ps ~= {} ==> HC_F3 (UnionT {traces P |P. P : Ps} , UnionF {failures P |P. P : Ps})" apply (simp add: HC_F3_def) apply (intro allI impI) apply (subgoal_tac "{traces P |P. P : Ps} ~= {}") apply (simp) apply (elim conjE exE) apply (simp) apply (rule_tac x="failures Pa" in exI) apply (rule conjI) apply (rule_tac x="Pa" in exI) apply (simp) apply (rule proc_F3) apply (simp_all) apply (intro allI impI) apply (drule_tac x="a" in spec) apply (simp) apply (drule_tac x="traces Pa" in spec) apply (erule disjE) apply (drule_tac x="Pa" in spec) apply (simp) apply (simp) apply (auto) done lemma non_empty_UnionT_UnionF_T3_F4: "Ps ~= {} ==> HC_T3_F4 (UnionT {traces P |P. P : Ps} , UnionF {failures P |P. P : Ps})" apply (simp add: HC_T3_F4_def) apply (intro allI impI) apply (subgoal_tac "{traces P |P. P : Ps} ~= {}") apply (simp) apply (elim conjE bexE exE) apply (simp) apply (rule conjI) apply (rule_tac x="failures Pa" in exI) apply (rule conjI) apply (fast) apply (rule proc_F4) apply (simp_all) apply (rule allI) apply (rule_tac x="failures Pa" in exI) apply (rule conjI) apply (fast) apply (rule proc_T3) apply (simp_all) by (auto) lemma non_empty_UnionT_UnionF_domF: "Ps ~= {} ==> (UnionT {traces P |P. P : Ps} , UnionF {failures P |P. P : Ps}) : domF" apply (simp (no_asm) add: domF_iff) apply (simp add: non_empty_UnionT_UnionF_T2) apply (simp add: non_empty_UnionT_UnionF_F3) apply (simp add: non_empty_UnionT_UnionF_T3_F4) done (*------------------------------------------------------* | Union in domF (used for generic internal choice | *------------------------------------------------------*) lemma UnionT_UnionF_T2: "HC_T2 ({t. t = <> | (EX P:Ps. t :t traces(P)) }t , {f. EX P:Ps. f :f failures(P)}f )" apply (simp add: HC_T2_def) apply (intro allI impI) apply (simp add: in_traces_Union_proc) apply (simp add: in_failures_Union_proc) apply (elim conjE bexE exE) apply (rule disjI2) apply (rule_tac x="P" in bexI) apply (simp add: proc_T2) apply (simp) done lemma UnionT_UnionF_F3: "HC_F3 ({t. t = <> | (EX P:Ps. t :t traces(P)) }t , {f. EX P:Ps. f :f failures(P)}f )" apply (simp add: HC_F3_def) apply (intro allI impI) apply (simp add: in_traces_Union_proc) apply (simp add: in_failures_Union_proc) apply (elim conjE bexE exE) apply (simp) apply (rule_tac x="P" in bexI) apply (rule proc_F3) apply (simp_all) done lemma UnionT_UnionF_T3_F4: "HC_T3_F4 ({t. t = <> | (EX P:Ps. t :t traces(P)) }t , {f. EX P:Ps. f :f failures(P)}f )" apply (simp add: HC_T3_F4_def) apply (intro allI impI) apply (simp add: in_traces_Union_proc) apply (simp add: in_failures_Union_proc) apply (elim conjE bexE exE) apply (simp) apply (elim bexE) apply (rule conjI) apply (rule_tac x="P" in bexI) apply (rule proc_F4) apply (simp_all) apply (rule allI) apply (rule_tac x="P" in bexI) apply (rule proc_T3) apply (simp_all) done lemma UnionT_UnionF_domF: "({t. t = <> | (EX P:Ps. t :t traces(P)) }t , {f. EX P:Ps. f :f failures(P)}f) : domF" apply (simp (no_asm) add: domF_iff) apply (simp add: UnionT_UnionF_T2) apply (simp add: UnionT_UnionF_F3) apply (simp add: UnionT_UnionF_T3_F4) done (****************** to add them again ******************) declare disj_not1 [simp] end
lemma STOP_T2:
HC_T2 (traces STOP, failures STOP)
lemma STOP_F3:
HC_F3 (traces STOP, failures STOP)
lemma STOP_T3_F4:
HC_T3_F4 (traces STOP, failures STOP)
lemma STOP_domF:
(traces STOP, failures STOP) ∈ domF
lemma SKIP_T2:
HC_T2 (traces SKIP, failures SKIP)
lemma SKIP_F3:
HC_F3 (traces SKIP, failures SKIP)
lemma SKIP_T3_F4:
HC_T3_F4 (traces SKIP, failures SKIP)
lemma SKIP_domF:
(traces SKIP, failures SKIP) ∈ domF
lemma DIV_T2:
HC_T2 (traces DIV, failures DIV)
lemma DIV_F3:
HC_F3 (traces DIV, failures DIV)
lemma DIV_T3_F4:
HC_T3_F4 (traces DIV, failures DIV)
lemma DIV_domF:
(traces DIV, failures DIV) ∈ domF
lemma Act_prefix_T2:
(traces P, failures P) ∈ domF ==> HC_T2 (traces (a -> P), failures (a -> P))
lemma Act_prefix_F3:
(traces P, failures P) ∈ domF ==> HC_F3 (traces (a -> P), failures (a -> P))
lemma Act_prefix_T3_F4:
(traces P, failures P) ∈ domF ==> HC_T3_F4 (traces (a -> P), failures (a -> P))
lemma Act_prefix_domF:
(traces P, failures P) ∈ domF ==> (traces (a -> P), failures (a -> P)) ∈ domF
lemma Ext_pre_choice_T2:
∀a. (traces (Pf a), failures (Pf a)) ∈ domF ==> HC_T2 (traces (? :X -> Pf), failures (? :X -> Pf))
lemma Ext_pre_choice_F3:
∀a. (traces (Pf a), failures (Pf a)) ∈ domF ==> HC_F3 (traces (? :X -> Pf), failures (? :X -> Pf))
lemma Ext_pre_choice_T3_F4:
∀a. (traces (Pf a), failures (Pf a)) ∈ domF ==> HC_T3_F4 (traces (? :X -> Pf), failures (? :X -> Pf))
lemma Ext_pre_choice_domF:
∀a. (traces (Pf a), failures (Pf a)) ∈ domF ==> (traces (? :X -> Pf), failures (? :X -> Pf)) ∈ domF
lemma Ext_choice_T2:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> HC_T2 (traces (P [+] Q), failures (P [+] Q))
lemma Ext_choice_F3:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> HC_F3 (traces (P [+] Q), failures (P [+] Q))
lemma Ext_choice_T3_F4:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> HC_T3_F4 (traces (P [+] Q), failures (P [+] Q))
lemma Ext_choice_domF:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> (traces (P [+] Q), failures (P [+] Q)) ∈ domF
lemma Int_choice_T2:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> HC_T2 (traces (P |~| Q), failures (P |~| Q))
lemma Int_choice_F3:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> HC_F3 (traces (P |~| Q), failures (P |~| Q))
lemma Int_choice_T3_F4:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> HC_T3_F4 (traces (P |~| Q), failures (P |~| Q))
lemma Int_choice_domF:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> (traces (P |~| Q), failures (P |~| Q)) ∈ domF
lemma Union_proc_T2:
∀c. (Tf c, Ff c) ∈ domF ==> HC_T2 ({t. t = <> ∨ (∃c∈C. t :t Tf c)}t, {f. ∃c∈C. f :f Ff c}f)
lemma Rep_int_choice_T2:
∀c. (traces (Pf c), failures (Pf c)) ∈ domF ==> HC_T2 (traces (!! :C .. Pf), failures (!! :C .. Pf))
lemma Union_proc_F3:
∀c. (Tf c, Ff c) ∈ domF ==> HC_F3 ({t. t = <> ∨ (∃c∈C. t :t Tf c)}t, {f. ∃c∈C. f :f Ff c}f)
lemma Rep_int_choice_F3:
∀c. (traces (Pf c), failures (Pf c)) ∈ domF ==> HC_F3 (traces (!! :C .. Pf), failures (!! :C .. Pf))
lemma Union_proc_T3_F4:
∀c. (Tf c, Ff c) ∈ domF ==> HC_T3_F4 ({t. t = <> ∨ (∃c∈C. t :t Tf c)}t, {f. ∃c∈C. f :f Ff c}f)
lemma Rep_int_choice_T3_F4:
∀c. (traces (Pf c), failures (Pf c)) ∈ domF ==> HC_T3_F4 (traces (!! :C .. Pf), failures (!! :C .. Pf))
lemma Union_proc_domF:
∀c. (Tf c, Ff c) ∈ domF ==> ({t. t = <> ∨ (∃c∈C. t :t Tf c)}t, {f. ∃c∈C. f :f Ff c}f) ∈ domF
lemma Rep_int_choice_domF:
∀c. (traces (Pf c), failures (Pf c)) ∈ domF ==> (traces (!! :C .. Pf), failures (!! :C .. Pf)) ∈ domF
lemma IF_T2:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> HC_T2 (traces (IF b THEN P ELSE Q), failures (IF b THEN P ELSE Q))
lemma IF_F3:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> HC_F3 (traces (IF b THEN P ELSE Q), failures (IF b THEN P ELSE Q))
lemma IF_T3_F4:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> HC_T3_F4 (traces (IF b THEN P ELSE Q), failures (IF b THEN P ELSE Q))
lemma IF_domF:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> (traces (IF b THEN P ELSE Q), failures (IF b THEN P ELSE Q)) ∈ domF
lemma Parallel_T2:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> HC_T2 (traces (P |[X]| Q), failures (P |[X]| Q))
lemma Parallel_F3_lm1:
X1.0 ∪ (X2.0 ∪ X3.0) - X = X1.0 - X ∪ (X2.0 - X) ∪ (X3.0 - X)
lemma Parallel_F3_lm2:
[| X1.0 = X2.0; Y1.0 = Y2.0 |] ==> X1.0 ∪ Y1.0 = X2.0 ∪ Y2.0
lemma Parallel_F3:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> HC_F3 (traces (P |[X]| Q), failures (P |[X]| Q))
lemma Parallel_T3_F4:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> HC_T3_F4 (traces (P |[X]| Q), failures (P |[X]| Q))
lemma Parallel_domF:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> (traces (P |[X]| Q), failures (P |[X]| Q)) ∈ domF
lemma Hiding_T2:
(traces P, failures P) ∈ domF ==> HC_T2 (traces (P -- X), failures (P -- X))
lemma Hiding_F3:
(traces P, failures P) ∈ domF ==> HC_F3 (traces (P -- X), failures (P -- X))
lemma Hiding_T3_F4:
(traces P, failures P) ∈ domF ==> HC_T3_F4 (traces (P -- X), failures (P -- X))
lemma Hiding_domF:
(traces P, failures P) ∈ domF ==> (traces (P -- X), failures (P -- X)) ∈ domF
lemma Renaming_T2:
(traces P, failures P) ∈ domF ==> HC_T2 (traces (P [[r]]), failures (P [[r]]))
lemma Renaming_F3:
(traces P, failures P) ∈ domF ==> HC_F3 (traces (P [[r]]), failures (P [[r]]))
lemma Renaming_T3_F4:
(traces P, failures P) ∈ domF ==> HC_T3_F4 (traces (P [[r]]), failures (P [[r]]))
lemma Renaming_domF:
(traces P, failures P) ∈ domF ==> (traces (P [[r]]), failures (P [[r]])) ∈ domF
lemma Seq_compo_T2:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> HC_T2 (traces (P ;; Q), failures (P ;; Q))
lemma Seq_compo_F3:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> HC_F3 (traces (P ;; Q), failures (P ;; Q))
lemma Seq_compo_T3_F4:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> HC_T3_F4 (traces (P ;; Q), failures (P ;; Q))
lemma Seq_compo_domF:
[| (traces P, failures P) ∈ domF; (traces Q, failures Q) ∈ domF |] ==> (traces (P ;; Q), failures (P ;; Q)) ∈ domF
lemma Depth_rest_T2:
(traces P, failures P) ∈ domF ==> HC_T2 (traces (P |. n), failures (P |. n))
lemma Depth_rest_F3:
(traces P, failures P) ∈ domF ==> HC_F3 (traces (P |. n), failures (P |. n))
lemma Depth_rest_T3_F4:
(traces P, failures P) ∈ domF ==> HC_T3_F4 (traces (P |. n), failures (P |. n))
lemma Depth_rest_domF:
(traces P, failures P) ∈ domF ==> (traces (P |. n), failures (P |. n)) ∈ domF
lemma proc_domF:
(traces P, failures P) ∈ domF
lemma fstF_proc_domF:
fstF (traces P ,, failures P) = traces P
lemma sndF_proc_domF:
sndF (traces P ,, failures P) = failures P
lemma fstF_semF:
fstF [[P]]F = traces P
lemma sndF_semF:
sndF [[P]]F = failures P
lemma cspF_eqF_semantics:
(P =F Q) = (traces P = traces Q ∧ failures P = failures Q)
lemma cspF_eqF_eqT_semantics:
(P =F Q) = (P =T Q ∧ failures P = failures Q)
lemma cspF_refF_semantics:
(P <=F Q) = (traces Q ≤ traces P ∧ failures Q ≤ failures P)
lemma cspF_refF_refT_semantics:
(P <=F Q) = (P <=T Q ∧ failures Q ≤ failures P)
lemma cspF_eqF_prod_semantics:
(f =F' g) = ((∀x. traces (f x) = traces (g x)) ∧ (∀x. failures (f x) = failures (g x)))
lemma cspF_eqF_prod_eqT_semantics:
(f =F' g) = (f =T' g ∧ (∀x. failures (f x) = failures (g x)))
lemma cspF_refF_prod_semantics:
(f <=F' g) = ((∀x. traces (g x) ≤ traces (f x)) ∧ (∀x. failures (g x) ≤ failures (f x)))
lemma cspF_refF_prod_eqT_semantics:
(f <=F' g) = (f <=T' g ∧ (∀x. failures (g x) ≤ failures (f x)))
lemmas cspF_semantics:
(P =F Q) = (traces P = traces Q ∧ failures P = failures Q)
(P <=F Q) = (traces Q ≤ traces P ∧ failures Q ≤ failures P)
(f =F' g) = ((∀x. traces (f x) = traces (g x)) ∧ (∀x. failures (f x) = failures (g x)))
(f <=F' g) = ((∀x. traces (g x) ≤ traces (f x)) ∧ (∀x. failures (g x) ≤ failures (f x)))
lemmas cspF_semantics:
(P =F Q) = (traces P = traces Q ∧ failures P = failures Q)
(P <=F Q) = (traces Q ≤ traces P ∧ failures Q ≤ failures P)
(f =F' g) = ((∀x. traces (f x) = traces (g x)) ∧ (∀x. failures (f x) = failures (g x)))
(f <=F' g) = ((∀x. traces (g x) ≤ traces (f x)) ∧ (∀x. failures (g x) ≤ failures (f x)))
lemmas cspF_cspT_semantics:
(P =F Q) = (P =T Q ∧ failures P = failures Q)
(P <=F Q) = (P <=T Q ∧ failures Q ≤ failures P)
(f =F' g) = (f =T' g ∧ (∀x. failures (f x) = failures (g x)))
(f <=F' g) = (f <=T' g ∧ (∀x. failures (g x) ≤ failures (f x)))
lemmas cspF_cspT_semantics:
(P =F Q) = (P =T Q ∧ failures P = failures Q)
(P <=F Q) = (P <=T Q ∧ failures Q ≤ failures P)
(f =F' g) = (f =T' g ∧ (∀x. failures (f x) = failures (g x)))
(f <=F' g) = (f <=T' g ∧ (∀x. failures (g x) ≤ failures (f x)))
lemma in_failures_Timeout1:
(f :f failures (P [> Q)) = (f :f failures Q ∨ (∃s X. f = (s, X) ∧ s ≠ <> ∧ (s, X) :f failures P) ∨ (∃X. f = (<>, X) ∧ X ⊆ Evset ∧ <Tick> :t traces P))
lemma in_failures_Timeout2:
(f :f failures (P [>def Q)) = (f :f failures Q ∨ (∃s X. f = (s, X) ∧ s ≠ <> ∧ (s, X) :f failures P) ∨ (∃X. f = (<>, X) ∧ X ⊆ Evset ∧ <Tick> :t traces P))
lemmas in_failures_Timeout:
(f :f failures (P [> Q)) = (f :f failures Q ∨ (∃s X. f = (s, X) ∧ s ≠ <> ∧ (s, X) :f failures P) ∨ (∃X. f = (<>, X) ∧ X ⊆ Evset ∧ <Tick> :t traces P))
(f :f failures (P [>def Q)) = (f :f failures Q ∨ (∃s X. f = (s, X) ∧ s ≠ <> ∧ (s, X) :f failures P) ∨ (∃X. f = (<>, X) ∧ X ⊆ Evset ∧ <Tick> :t traces P))
lemmas in_failures_Timeout:
(f :f failures (P [> Q)) = (f :f failures Q ∨ (∃s X. f = (s, X) ∧ s ≠ <> ∧ (s, X) :f failures P) ∨ (∃X. f = (<>, X) ∧ X ⊆ Evset ∧ <Tick> :t traces P))
(f :f failures (P [>def Q)) = (f :f failures Q ∨ (∃s X. f = (s, X) ∧ s ≠ <> ∧ (s, X) :f failures P) ∨ (∃X. f = (<>, X) ∧ X ⊆ Evset ∧ <Tick> :t traces P))
lemma semF_Depth_rest:
[[P |. n]]F = [[P]]F .|. n
lemma proc_T2:
(s, X) :f failures P ==> s :t traces P
lemma proc_T3:
[| s ^^ <Tick> :t traces P; noTick s |] ==> (s ^^ <Tick>, X) :f failures P
lemma proc_T3_Tick:
<Tick> :t traces P ==> (<Tick>, X) :f failures P
lemma proc_F4:
[| s ^^ <Tick> :t traces P; noTick s |] ==> (s, Evset) :f failures P
lemma proc_F3:
[| (s, X) :f failures P; noTick s; ∀a. a ∈ Y --> s ^^ <a> ~:t traces P |] ==> (s, X ∪ Y) :f failures P
lemma proc_F3I:
[| (s, X) :f failures P; noTick s; ∀a. a ∈ Y --> s ^^ <a> ~:t traces P; Z = X ∪ Y |] ==> (s, Z) :f failures P
lemma proc_F2_F4:
[| s ^^ <Tick> :t traces P; noTick s; X ⊆ Evset |] ==> (s, X) :f failures P
lemma proc_T2_T3:
[| (s ^^ <Tick>, X) :f failures P; noTick s |] ==> (s ^^ <Tick>, Y) :f failures P
lemma non_empty_UnionT_UnionF_T2:
Ps ≠ {} ==> HC_T2 (UnionT {traces P |P. P ∈ Ps}, UnionF {failures P |P. P ∈ Ps})
lemma non_empty_UnionT_UnionF_F3:
Ps ≠ {} ==> HC_F3 (UnionT {traces P |P. P ∈ Ps}, UnionF {failures P |P. P ∈ Ps})
lemma non_empty_UnionT_UnionF_T3_F4:
Ps ≠ {} ==> HC_T3_F4 (UnionT {traces P |P. P ∈ Ps}, UnionF {failures P |P. P ∈ Ps})
lemma non_empty_UnionT_UnionF_domF:
Ps ≠ {} ==> (UnionT {traces P |P. P ∈ Ps}, UnionF {failures P |P. P ∈ Ps}) ∈ domF
lemma UnionT_UnionF_T2:
HC_T2 ({t. t = <> ∨ (∃P∈Ps. t :t traces P)}t, {f. ∃P∈Ps. f :f failures P}f)
lemma UnionT_UnionF_F3:
HC_F3 ({t. t = <> ∨ (∃P∈Ps. t :t traces P)}t, {f. ∃P∈Ps. f :f failures P}f)
lemma UnionT_UnionF_T3_F4:
HC_T3_F4 ({t. t = <> ∨ (∃P∈Ps. t :t traces P)}t, {f. ∃P∈Ps. f :f failures P}f)
lemma UnionT_UnionF_domF:
({t. t = <> ∨ (∃P∈Ps. t :t traces P)}t, {f. ∃P∈Ps. f :f failures P}f) ∈ domF