Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F_contraction (*-------------------------------------------*
| CSP-Prover on Isabelle2004 |
| December 2004 |
| July 2005 (modified) |
| September 2005 (modified) |
| |
| CSP-Prover on Isabelle2005 |
| October 2005 (modified) |
| November 2005 (modified) |
| April 2006 (modified) |
| |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory CSP_F_contraction = CSP_F_failuresfun + CSP_T_contraction:
(*****************************************************************
1. contraction failuresfun
2. contraction failuresFun
3. contraction [[ ]]Ffun
4. contraction [[ ]]FFun
*****************************************************************)
(*=============================================================*
| tracesfun fstF |
*=============================================================*)
lemma non_expanding_tracesfun_fstF:
"Pf : nohidefun
==> non_expanding (%SFf. tracesfun Pf (fstF o SFf))"
apply (subgoal_tac "(%SFf. tracesfun Pf (fstF o SFf)) = (tracesfun Pf) o (op o fstF)")
apply (simp)
apply (rule compo_non_expand)
apply (simp add: non_expanding_tracesfun)
apply (simp add: non_expanding_op_fstF)
apply (simp add: expand_fun_eq)
done
lemma contraction_alpha_tracesfun_fstF:
"Pf : gProcfun
==> contraction_alpha (%SFf. tracesfun Pf (fstF o SFf)) (1/2)"
apply (subgoal_tac "(%SFf. tracesfun Pf (fstF o SFf)) = (tracesfun Pf) o (op o fstF)")
apply (simp)
apply (rule compo_contra_alpha_non_expand)
apply (simp add: contraction_alpha_tracesfun)
apply (simp add: non_expanding_op_fstF)
apply (simp add: expand_fun_eq)
done
(*--------------------------------*
| STOP,SKIP,DIV |
*--------------------------------*)
(*** STOP ***)
lemma map_alpha_failuresfun_STOP:
"0 <= alpha ==> map_alpha (failuresfun (%SFf. STOP)) alpha"
by (simp add: failuresfun_simp map_alpha_Constant)
lemma non_expanding_failuresfun_STOP:
"non_expanding (failuresfun (%SFf. STOP))"
by (simp add: non_expanding_def map_alpha_failuresfun_STOP)
lemma contraction_alpha_failuresfun_STOP:
"[| 0 <= alpha ; alpha < 1 |] ==> contraction_alpha (failuresfun (%SFf. STOP)) alpha"
by (simp add: failuresfun_simp contraction_alpha_Constant)
(*** SKIP ***)
lemma map_alpha_failuresfun_SKIP:
"0 <= alpha ==> map_alpha (failuresfun (%SFf. SKIP)) alpha"
by (simp add: failuresfun_simp map_alpha_Constant)
lemma non_expanding_failuresfun_SKIP:
"non_expanding (failuresfun (%SFf. SKIP))"
by (simp add: non_expanding_def map_alpha_failuresfun_SKIP)
lemma contraction_alpha_failuresfun_SKIP:
"[| 0 <= alpha ; alpha < 1 |] ==> contraction_alpha (failuresfun (%SFf. SKIP)) alpha"
by (simp add: failuresfun_simp contraction_alpha_Constant)
(*** DIV ***)
lemma map_alpha_failuresfun_DIV:
"0 <= alpha ==> map_alpha (failuresfun (%SFf. DIV)) alpha"
by (simp add: failuresfun_simp map_alpha_Constant)
lemma non_expanding_failuresfun_DIV:
"non_expanding (failuresfun (%SFf. DIV))"
by (simp add: non_expanding_def map_alpha_failuresfun_DIV)
lemma contraction_alpha_failuresfun_DIV:
"[| 0 <= alpha ; alpha < 1 |] ==> contraction_alpha (failuresfun (%SFf. DIV)) alpha"
by (simp add: failuresfun_simp contraction_alpha_Constant)
(*--------------------------------*
| Act_prefix |
*--------------------------------*)
lemma contraction_half_failures_Act_prefix_lm:
"distance (failures (a -> P), failures (a -> Q)) * 2
= distance (failures P, failures Q)"
apply (rule sym)
apply (rule rest_Suc_dist_half[simplified])
apply (rule allI)
apply (simp add: rest_setF_eq_iff)
apply (rule iffI)
(* => *)
apply (intro allI)
apply (simp add: in_failures)
apply (rule iffI)
(* => *)
apply (elim conjE exE disjE)
apply (simp_all)
apply (drule_tac x="sa" in spec)
apply (drule_tac x="X" in spec)
apply (simp)
apply (drule_tac x="sa" in spec)
apply (drule_tac x="X" in spec)
apply (simp)
apply (erule iffE, simp)
apply (insert trace_last_nil_or_unnil)
apply (drule_tac x="sa" in spec)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (simp add: appt_assoc_sym)
apply (drule mp, fast)
apply (simp)
apply (rule_tac x="<Ev a> ^^ sb" in exI)
apply (simp)
(* <= *)
apply (elim conjE exE disjE)
apply (simp_all)
apply (drule_tac x="sa" in spec)
apply (drule_tac x="X" in spec)
apply (simp)
apply (drule_tac x="sa" in spec)
apply (drule_tac x="X" in spec)
apply (simp)
apply (erule iffE, simp)
apply (drule_tac x="sa" in spec)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (simp add: appt_assoc_sym)
apply (drule mp, fast)
apply (simp)
(* <= *)
apply (intro allI)
apply (drule_tac x="<Ev a> ^^ s" in spec)
apply (drule_tac x="X" in spec)
apply (simp add: in_failures)
apply (rule iffI)
(* => *)
apply (elim conjE exE disjE)
apply (simp)
apply (erule iffE, simp)
apply (simp add: appt_assoc_sym)
apply (drule mp, force)
apply (force)
(* <= *)
apply (elim conjE exE disjE)
apply (simp)
apply (erule iffE, simp)
apply (simp add: appt_assoc_sym)
apply (drule mp, force)
apply (force)
done
(*** contraction_half ***)
lemma contraction_half_failuresfun_Act_prefix:
"non_expanding (failuresfun Pf)
==> contraction_alpha (failuresfun (%f. a -> Pf f)) (1 / 2)"
apply (simp add: contraction_alpha_def non_expanding_def map_alpha_def)
apply (intro allI)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (simp add: failuresfun_def)
apply (simp add: contraction_half_failures_Act_prefix_lm)
done
(*** contraction ***)
lemma contraction_failuresfun_Act_prefix:
"non_expanding (failuresfun Pf)
==> contraction (failuresfun (%f. a -> Pf f))"
apply (simp add: contraction_def)
apply (rule_tac x="1/2" in exI)
by (simp add: contraction_half_failuresfun_Act_prefix)
(*** non_expanding ***)
lemma non_expanding_failuresfun_Act_prefix:
"non_expanding (failuresfun Pf)
==> non_expanding (failuresfun (%f. a -> Pf f))"
apply (rule contraction_non_expanding)
by (simp add: contraction_failuresfun_Act_prefix)
(*--------------------------------*
| Ext_pre_choice |
*--------------------------------*)
(*** rest_setF (subset) ***)
lemma Ext_pre_choice_Act_prefix_rest_setF_sub:
"[| ALL a : X.
failures (a -> Pf a) .|. n <= failures (a -> Qf a) .|. n |]
==> failures (? a:X -> Pf a) .|. n <=
failures (? a:X -> Qf a) .|. n"
apply (simp add: subsetF_iff)
apply (intro allI impI)
apply (simp add: in_rest_setF)
apply (simp add: in_failures)
apply (elim conjE exE disjE, simp_all)
apply (drule_tac x="a" in bspec, simp)
apply (drule_tac x="<Ev a> ^^ sa" in spec)
apply (drule_tac x="Xa" in spec)
apply (simp)
apply (drule_tac x="a" in bspec, simp)
apply (drule_tac x="s' ^^ <Tick>" in spec)
apply (drule_tac x="Xa" in spec)
apply (auto)
done
(*** rest_setF (equal) ***)
lemma Ext_pre_choice_Act_prefix_rest_setF:
"[| ALL a : X.
failures (a -> Pf a) .|. n = failures (a -> Qf a) .|. n |]
==> failures (? a:X -> Pf a) .|. n =
failures (? a:X -> Qf a) .|. n"
apply (rule order_antisym)
by (simp_all add: Ext_pre_choice_Act_prefix_rest_setF_sub)
(*** distF lemma ***)
lemma Ext_pre_choice_Act_prefix_distF_nonempty:
"[| X ~= {} ; PQs = {(failures (a -> Pf a), failures (a -> Qf a))|a. a : X} |]
==> (EX PQ. PQ:PQs &
distance(failures (? a:X -> Pf a), failures (? a:X -> Qf a))
<= distance(fst PQ, snd PQ))"
apply (rule rest_to_dist_pair)
apply (force)
apply (intro allI impI)
apply (rule Ext_pre_choice_Act_prefix_rest_setF)
apply (rule ballI)
apply (simp)
apply (drule_tac x="failures (a -> Pf a)" in spec)
apply (drule_tac x="failures (a -> Qf a)" in spec)
by (auto)
(*** contraction lemma ***)
lemma contraction_half_failuresfun_Ext_pre_choice_lm:
"[| X ~= {} ; ALL a. distance (failures (Pf a), failures (Qf a))
<= distance (x1, x2) |]
==> distance (failures (? a:X -> Pf a), failures (? a:X -> Qf a)) * 2
<= distance (x1, x2)"
apply (insert Ext_pre_choice_Act_prefix_distF_nonempty
[of X "{(failures (a -> Pf a), failures (a -> Qf a)) |a. a : X}" Pf Qf])
apply (simp)
apply (elim conjE exE)
apply (simp)
apply (subgoal_tac
"distance (failures (aa -> Pf aa), failures (aa -> Qf aa)) * 2
= distance (failures (Pf aa), failures (Qf aa))")
apply (drule_tac x="aa" in spec)
apply (force)
by (simp add: contraction_half_failures_Act_prefix_lm)
(*** contraction_half ***)
lemma contraction_half_failuresfun_Ext_pre_choice:
"ALL a. non_expanding (failuresfun (Pff a))
==> contraction_alpha (failuresfun (%f. ? a:X -> (Pff a f))) (1 / 2)"
apply (simp add: contraction_alpha_def non_expanding_def map_alpha_def)
apply (case_tac "X = {}")
apply (simp add: failuresfun_simp)
apply (simp add: failuresfun_def)
by (simp add: contraction_half_failuresfun_Ext_pre_choice_lm)
(*** Ext_pre_choice_evalT_contraction ***)
lemma contraction_failuresfun_Ext_pre_choice:
"ALL a. non_expanding (failuresfun (Pff a))
==> contraction (failuresfun (%f. ? a:X -> (Pff a f)))"
apply (simp add: contraction_def)
apply (rule_tac x="1/2" in exI)
by (simp add: contraction_half_failuresfun_Ext_pre_choice)
(*** Ext_pre_choice_evalT_non_expanding ***)
lemma non_expanding_failuresfun_Ext_pre_choice:
"ALL a. non_expanding (failuresfun (Pff a))
==> non_expanding (failuresfun (%f. ? a:X -> (Pff a f)))"
apply (rule contraction_non_expanding)
by (simp add: contraction_failuresfun_Ext_pre_choice)
(*--------------------------------*
| Ext_choice |
*--------------------------------*)
(*** rest_domT (subset) ***)
lemma Ext_choice_rest_setF_sub:
"[| traces P1 .|. n <= traces P2 .|. n ;
traces Q1 .|. n <= traces Q2 .|. n ;
failures P1 .|. n <= failures P2 .|. n ;
failures Q1 .|. n <= failures Q2 .|. n |]
==> failures (P1 [+] Q1) .|. n <= failures (P2 [+] Q2) .|. n"
apply (simp add: subdomT_iff subsetF_iff)
apply (intro allI impI)
apply (simp add: in_rest_domT)
apply (simp add: in_rest_setF)
apply (simp add: in_failures)
apply (elim conjE exE disjE, simp_all)
apply (rotate_tac 2)
apply (drule_tac x="s' ^^ <Tick>" in spec)
apply (drule_tac x="X" in spec)
apply (drule mp, simp, fast)
apply (simp)
apply (rotate_tac 3)
apply (drule_tac x="s' ^^ <Tick>" in spec)
apply (drule_tac x="X" in spec)
apply (drule mp, simp, fast)
apply (simp)
done
(*** rest_setF (equal) ***)
lemma Ext_choice_rest_setF:
"[| traces P1 .|. n = traces P2 .|. n ;
traces Q1 .|. n = traces Q2 .|. n ;
failures P1 .|. n = failures P2 .|. n ;
failures Q1 .|. n = failures Q2 .|. n |]
==> failures (P1 [+] Q1) .|. n = failures (P2 [+] Q2) .|. n"
apply (rule order_antisym)
by (simp_all add: Ext_choice_rest_setF_sub)
(*** distF lemma ***)
lemma Ext_choice_distF:
"[| PQTs = {(traces P1, traces P2), (traces Q1, traces Q2)} ;
PQFs = {(failures P1, failures P2), (failures Q1, failures Q2)} |]
==> (EX PQ. PQ:PQTs &
distance(failures (P1 [+] Q1), failures (P2 [+] Q2))
<= distance((fst PQ), (snd PQ))) |
(EX PQ. PQ:PQFs &
distance(failures (P1 [+] Q1), failures (P2 [+] Q2))
<= distance((fst PQ), (snd PQ)))"
apply (rule rest_to_dist_pair_two)
apply (simp_all)
by (auto intro: Ext_choice_rest_setF)
(*** map_alpha F lemma ***)
lemma map_alpha_failuresfun_Ext_choice_lm:
"[| distance (traces P1, traces P2) <= alpha * distance (x1, x2) ;
distance (traces Q1, traces Q2) <= alpha * distance (x1, x2) ;
distance (failures P1, failures P2) <= alpha * distance (x1, x2) ;
distance (failures Q1, failures Q2) <= alpha * distance (x1, x2) |]
==> distance (failures (P1 [+] Q1), failures (P2 [+] Q2))
<= alpha * distance (x1, x2)"
apply (insert Ext_choice_distF
[of "{(traces P1, traces P2), (traces Q1, traces Q2)}" P1 P2 Q1 Q2
"{(failures P1, failures P2), (failures Q1, failures Q2)}"])
by (auto)
(*** map_alpha ***)
lemma map_alpha_failuresfun_Ext_choice:
"[| Pf : Procfun ; Qf : Procfun ;
map_alpha (%SFf. tracesfun Pf (fstF o SFf)) alpha ;
map_alpha (%SFf. tracesfun Qf (fstF o SFf)) alpha ;
map_alpha (failuresfun Pf) alpha ; map_alpha (failuresfun Qf) alpha |]
==> map_alpha (failuresfun (%f. (Pf f [+] Qf f))) alpha"
apply (simp add: map_alpha_def)
apply (intro allI)
apply (erule conjE)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
apply (simp add: failuresfun_def)
apply (simp add: tracesfun_def)
apply (simp add: traces_Pf_Proc_T_F)
by (simp add: map_alpha_failuresfun_Ext_choice_lm)
(*** non_expanding ***)
lemma non_expanding_failuresfun_Ext_choice:
"[| Pf : Procfun ; Qf : Procfun ;
non_expanding (%SFf. tracesfun Pf (fstF o SFf)) ;
non_expanding (%SFf. tracesfun Qf (fstF o SFf)) ;
non_expanding (failuresfun Pf) ; non_expanding (failuresfun Qf) |]
==> non_expanding (failuresfun (%f. (Pf f [+] Qf f)))"
by (simp add: non_expanding_def map_alpha_failuresfun_Ext_choice)
(*** contraction ***)
lemma contraction_alpha_failuresfun_Ext_choice:
"[| Pf : Procfun ; Qf : Procfun ;
contraction_alpha (%SFf. tracesfun Pf (fstF o SFf)) alpha ;
contraction_alpha (%SFf. tracesfun Qf (fstF o SFf)) alpha ;
contraction_alpha (failuresfun Pf) alpha ;
contraction_alpha (failuresfun Qf) alpha|]
==> contraction_alpha (failuresfun (%f. (Pf f [+] Qf f))) alpha"
by (simp add: contraction_alpha_def map_alpha_failuresfun_Ext_choice)
(*--------------------------------*
| Int_choice |
*--------------------------------*)
(*** rest_domT (subset) ***)
lemma Int_choice_rest_setF_sub:
"[| failures P1 .|. n <= failures P2 .|. n ;
failures Q1 .|. n <= failures Q2 .|. n |]
==> failures (P1 |~| Q1) .|. n <= failures (P2 |~| Q2) .|. n"
apply (simp add: subsetF_iff)
apply (intro allI impI)
apply (simp add: in_rest_setF)
apply (simp add: in_failures)
apply (elim disjE conjE exE)
by (force)+
(*** rest_setF (equal) ***)
lemma Int_choice_rest_setF:
"[| failures P1 .|. n = failures P2 .|. n ;
failures Q1 .|. n = failures Q2 .|. n |]
==> failures (P1 |~| Q1) .|. n = failures (P2 |~| Q2) .|. n"
apply (rule order_antisym)
by (simp_all add: Int_choice_rest_setF_sub)
(*** distF lemma ***)
lemma Int_choice_distF:
"PQs = {(failures P1, failures P2), (failures Q1, failures Q2)}
==> (EX PQ. PQ:PQs &
distance(failures (P1 |~| Q1), failures (P2 |~| Q2))
<= distance((fst PQ), (snd PQ)))"
apply (rule rest_to_dist_pair)
by (auto intro: Int_choice_rest_setF)
(*** map_alpha F lemma ***)
lemma map_alpha_failuresfun_Int_choice_lm:
"[| distance (failures P1, failures P2) <= alpha * distance (x1, x2) ;
distance (failures Q1, failures Q2) <= alpha * distance (x1, x2) |]
==> distance (failures (P1 |~| Q1), failures (P2 |~| Q2))
<= alpha * distance (x1, x2)"
apply (insert Int_choice_distF
[of "{(failures P1, failures P2), (failures Q1, failures Q2)}" P1 P2 Q1 Q2])
by (auto)
(*** map_alpha ***)
lemma map_alpha_failuresfun_Int_choice:
"[| map_alpha (failuresfun Pf) alpha ; map_alpha (failuresfun Qf) alpha |]
==> map_alpha (failuresfun (%f. (Pf f |~| Qf f))) alpha"
apply (simp add: map_alpha_def)
apply (intro allI)
apply (erule conjE)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
apply (simp add: failuresfun_def)
by (simp add: map_alpha_failuresfun_Int_choice_lm)
(*** non_expanding ***)
lemma non_expanding_failuresfun_Int_choice:
"[| non_expanding (failuresfun Pf) ; non_expanding (failuresfun Qf) |]
==> non_expanding (failuresfun (%f. (Pf f |~| Qf f)))"
by (simp add: non_expanding_def map_alpha_failuresfun_Int_choice)
(*** contraction ***)
lemma contraction_alpha_failuresfun_Int_choice:
"[| contraction_alpha (failuresfun Pf) alpha ;
contraction_alpha (failuresfun Qf) alpha|]
==> contraction_alpha (failuresfun (%f. (Pf f |~| Qf f))) alpha"
by (simp add: contraction_alpha_def map_alpha_failuresfun_Int_choice)
(*--------------------------------*
| Rep_int_choice |
*--------------------------------*)
(*** rest_setF (subset) ***)
lemma Rep_int_choice_rest_setF_sub:
"[| ALL c : C.
failures (Pf c) .|. n <= failures (Qf c) .|. n |]
==> failures (!! :C .. Pf) .|. n <=
failures (!! :C .. Qf) .|. n"
apply (simp add: subsetF_iff)
apply (intro allI impI)
apply (simp add: in_rest_setF)
apply (simp add: in_failures)
apply (elim conjE bexE)
apply (rule_tac x="c" in bexI)
by (auto)
(*** rest_setF (equal) ***)
lemma Rep_int_choice_rest_setF:
"[| ALL c : C.
failures (Pf c) .|. n = failures (Qf c) .|. n |]
==> failures (!! :C .. Pf) .|. n =
failures (!! :C .. Qf) .|. n"
apply (rule order_antisym)
by (simp_all add: Rep_int_choice_rest_setF_sub)
(*** distF lemma ***)
lemma Rep_int_choice_distF_nonempty:
"[| C ~= {} ; PQs = {(failures (Pf c), failures (Qf c))|c. c : C} |]
==> (EX PQ. PQ:PQs &
distance(failures (!! :C .. Pf), failures (!! :C .. Qf))
<= distance(fst PQ, snd PQ))"
apply (rule rest_to_dist_pair)
apply (fast)
apply (intro allI impI)
apply (rule Rep_int_choice_rest_setF)
by (auto)
(*** map_alpha F lemma ***)
lemma map_alpha_failuresfun_Rep_int_choice_lm:
"[| C ~= {} ; ALL c. distance (failures (Pf c), failures (Qf c))
<= alpha * distance (x1, x2) |]
==> distance(failures (!! :C .. Pf), failures (!! :C .. Qf))
<= alpha * distance(x1, x2)"
apply (insert Rep_int_choice_distF_nonempty
[of C "{(failures (Pf c), failures (Qf c))|c. c : C}" Pf Qf])
apply (simp)
apply (elim conjE exE, simp)
apply (drule_tac x="c" in spec)
by (force)
(*** map_alpha ***)
lemma map_alpha_failuresfun_Rep_int_choice:
"ALL c. map_alpha (failuresfun (Pff c)) alpha
==> map_alpha (failuresfun (%f. !! c:C .. (Pff c f))) alpha"
apply (simp add: map_alpha_def)
apply (case_tac "C = {}")
apply (simp add: failuresfun_simp)
apply (simp add: real_mult_order_eq)
apply (simp add: failuresfun_def)
apply (simp add: map_alpha_failuresfun_Rep_int_choice_lm)
done
(*** non_expanding ***)
lemma non_expanding_failuresfun_Rep_int_choice:
"ALL c. non_expanding (failuresfun (Pff c))
==> non_expanding (failuresfun (%f. !! c:C .. (Pff c f)))"
by (simp add: non_expanding_def map_alpha_failuresfun_Rep_int_choice)
(*** Rep_int_choice_evalT_contraction_alpha ***)
lemma contraction_alpha_failuresfun_Rep_int_choice:
"ALL c. contraction_alpha (failuresfun (Pff c)) alpha
==> contraction_alpha (failuresfun (%f. !! c:C .. (Pff c f))) alpha"
by (simp add: contraction_alpha_def map_alpha_failuresfun_Rep_int_choice)
(*--------------------------------*
| IF |
*--------------------------------*)
(*** rest_setF (subset) ***)
lemma IF_rest_setF_sub:
"[| failures P1 .|. n <= failures P2 .|. n ;
failures Q1 .|. n <= failures Q2 .|. n |]
==> failures (IF b THEN P1 ELSE Q1) .|. n <=
failures (IF b THEN P2 ELSE Q2) .|. n"
apply (simp add: subsetF_iff)
apply (intro allI impI)
apply (simp add: in_rest_setF)
apply (simp add: in_failures)
done
(*** rest_setF (equal) ***)
lemma IF_rest_setF:
"[| failures P1 .|. n = failures P2 .|. n ;
failures Q1 .|. n = failures Q2 .|. n |]
==> failures (IF b THEN P1 ELSE Q1) .|. n =
failures (IF b THEN P2 ELSE Q2) .|. n"
apply (rule order_antisym)
by (simp_all add: IF_rest_setF_sub)
(*** distF lemma ***)
lemma IF_distF:
"PQs = {(failures P1, failures P2), (failures Q1, failures Q2)}
==> (EX PQ. PQ:PQs &
distance(failures (IF b THEN P1 ELSE Q1),
failures (IF b THEN P2 ELSE Q2))
<= distance((fst PQ), (snd PQ)))"
apply (rule rest_to_dist_pair)
by (auto intro: IF_rest_setF)
(*** map_alpha F lemma ***)
lemma map_alpha_failuresfun_IF_lm:
"[| distance (failures P1, failures P2) <= alpha * distance (x1, x2) ;
distance (failures Q1, failures Q2) <= alpha * distance (x1, x2) |]
==> distance(failures (IF b THEN P1 ELSE Q1),
failures (IF b THEN P2 ELSE Q2))
<= alpha * distance (x1, x2)"
apply (insert IF_distF
[of "{(failures P1, failures P2), (failures Q1, failures Q2)}" P1 P2 Q1 Q2 b])
by (auto)
(*** map_alpha ***)
lemma map_alpha_failuresfun_IF:
"[| map_alpha (failuresfun Pf) alpha ; map_alpha (failuresfun Qf) alpha |]
==> map_alpha (failuresfun (%f. IF b THEN (Pf f) ELSE (Qf f))) alpha"
apply (simp add: map_alpha_def)
apply (intro allI)
apply (erule conjE)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
apply (simp add: failuresfun_def)
by (simp add: map_alpha_failuresfun_IF_lm)
(*** non_expanding ***)
lemma non_expanding_failuresfun_IF:
"[| non_expanding (failuresfun Pf) ; non_expanding (failuresfun Qf) |]
==> non_expanding (failuresfun (%f. IF b THEN (Pf f) ELSE (Qf f)))"
by (simp add: non_expanding_def map_alpha_failuresfun_IF)
(*** contraction_alpha ***)
lemma contraction_alpha_failuresfun_IF:
"[| contraction_alpha (failuresfun Pf) alpha ; contraction_alpha (failuresfun Qf) alpha|]
==> contraction_alpha (failuresfun (%f. IF b THEN (Pf f) ELSE (Qf f))) alpha"
by (simp add: contraction_alpha_def map_alpha_failuresfun_IF)
(*--------------------------------*
| Parallel |
*--------------------------------*)
(*** rest_setF (subset) ***)
lemma Parallel_rest_setF_sub:
"[| failures P1 .|. n <= failures P2 .|. n ;
failures Q1 .|. n <= failures Q2 .|. n |]
==> failures (P1 |[X]| Q1) .|. n <= failures (P2 |[X]| Q2) .|. n"
apply (simp add: subsetF_iff)
apply (intro allI impI)
apply (simp add: in_rest_setF)
apply (simp add: in_failures)
apply (elim conjE exE)
apply (rule_tac x="Y" in exI)
apply (rule_tac x="Z" in exI)
apply (simp)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="t" in exI)
apply (simp)
apply (drule_tac x="sa" in spec)
apply (drule_tac x="t" in spec)
apply (drule_tac x="Y" in spec)
apply (drule_tac x="Z" in spec)
apply (erule disjE, simp) (* lengtht s < n *)
apply (erule par_tr_lengthtE)
apply (simp)
apply (elim conjE exE, simp) (* lengtht s = n *)
apply (simp add: par_tr_last)
apply (elim conjE exE, simp)
apply (erule par_tr_lengthtE)
apply (case_tac "Suc (lengtht s'a) < n", simp)
apply (case_tac "Suc (lengtht t') < n", simp)
apply (case_tac "Suc (lengtht t') = n", simp)
apply (drule mp, force)
apply (simp)
apply (force) (* contradict *)
apply (case_tac "Suc (lengtht t') < n", simp)
apply (drule mp)
apply (rule_tac x="s'a" in exI, simp)
apply (simp)
apply (case_tac "Suc (lengtht t') = n", simp)
apply (drule mp)
apply (rule_tac x="s'a" in exI, simp)
apply (drule mp)
apply (rule_tac x="t'" in exI, simp)
apply (simp)
apply (force) (* contradict *)
done
(*** rest_setF (equal) ***)
lemma Parallel_rest_setF:
"[| failures P1 .|. n = failures P2 .|. n ;
failures Q1 .|. n = failures Q2 .|. n |]
==> failures (P1 |[X]| Q1) .|. n = failures (P2 |[X]| Q2) .|. n"
apply (rule order_antisym)
by (simp_all add: Parallel_rest_setF_sub)
(*** distF lemma ***)
lemma Parallel_distF:
"PQs = {(failures P1, failures P2), (failures Q1, failures Q2)}
==> (EX PQ. PQ:PQs &
distance(failures (P1 |[X]| Q1), failures (P2 |[X]| Q2))
<= distance((fst PQ), (snd PQ)))"
apply (rule rest_to_dist_pair)
by (auto intro: Parallel_rest_setF)
(*** map_alpha F lemma ***)
lemma map_alpha_failuresfun_Parallel_lm:
"[| distance (failures P1, failures P2) <= alpha * distance (x1, x2) ;
distance (failures Q1, failures Q2) <= alpha * distance (x1, x2) |]
==> distance (failures (P1 |[X]| Q1), failures (P2 |[X]| Q2))
<= alpha * distance (x1, x2)"
apply (insert Parallel_distF
[of "{(failures P1, failures P2), (failures Q1, failures Q2)}" P1 P2 Q1 Q2 X])
by (auto)
(*** map_alpha ***)
lemma map_alpha_failuresfun_Parallel:
"[| map_alpha (failuresfun Pf) alpha ; map_alpha (failuresfun Qf) alpha |]
==> map_alpha (failuresfun (%f. (Pf f |[X]| Qf f))) alpha"
apply (simp add: map_alpha_def)
apply (intro allI)
apply (erule conjE)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
apply (simp add: failuresfun_def)
by (simp add: map_alpha_failuresfun_Parallel_lm)
(*** non_expanding ***)
lemma non_expanding_failuresfun_Parallel:
"[| non_expanding (failuresfun Pf) ; non_expanding (failuresfun Qf) |]
==> non_expanding (failuresfun (%f. (Pf f |[X]| Qf f)))"
by (simp add: non_expanding_def map_alpha_failuresfun_Parallel)
(*** contraction_alpha ***)
lemma contraction_alpha_failuresfun_Parallel:
"[| contraction_alpha (failuresfun Pf) alpha ;
contraction_alpha (failuresfun Qf) alpha |]
==> contraction_alpha (failuresfun (%f. (Pf f |[X]| Qf f))) alpha"
by (simp add: contraction_alpha_def map_alpha_failuresfun_Parallel)
(*--------------------------------*
| Hiding |
*--------------------------------*)
(* cms rules for Hiding is not necessary
because processes are guarded. *)
(*--------------------------------*
| Renaming |
*--------------------------------*)
(*** rest_setF (subset) ***)
lemma Renaming_rest_setF_sub:
"failures P .|. n <= failures Q .|. n
==> failures (P [[r]]) .|. n <= failures (Q [[r]]) .|. n"
apply (simp add: subsetF_iff)
apply (intro allI impI)
apply (simp add: in_rest_setF)
apply (simp add: in_failures)
apply (elim conjE exE)
apply (rule_tac x="sa" in exI)
apply (drule_tac x="sa" in spec)
apply (drule_tac x="[[r]]inv X" in spec)
apply (simp)
apply (erule disjE)
apply (simp add: ren_tr_lengtht)
apply (elim conjE exE)
apply (simp add: ren_tr_lengtht)
apply (simp add: ren_tr_appt_decompo_right)
apply (elim conjE exE, simp)
by (fast)
(*** rest_setF (equal) ***)
lemma Renaming_rest_setF:
"failures P .|. n = failures Q .|. n
==> failures (P [[r]]) .|. n = failures (Q [[r]]) .|. n"
apply (rule order_antisym)
by (simp_all add: Renaming_rest_setF_sub)
(*** distF lemma ***)
lemma Renaming_distF:
"distance(failures (P [[r]]), failures (Q [[r]])) <=
distance(failures P, failures Q)"
apply (rule rest_distance_subset)
by (auto intro: Renaming_rest_setF)
(*** map_alphaT lemma ***)
lemma map_alpha_failuresfun_Renaming_lm:
"distance(failures P, failures Q) <= alpha * distance (x1, x2)
==> distance(failures (P [[r]]), failures (Q [[r]]))
<= alpha * distance(x1, x2)"
apply (insert Renaming_distF[of P r Q])
by (simp)
(*** map_alpha ***)
lemma map_alpha_failuresfun_Renaming:
"map_alpha (failuresfun Pf) alpha
==> map_alpha (failuresfun (%f. (Pf f) [[r]])) alpha"
apply (simp add: map_alpha_def)
apply (intro allI)
apply (erule conjE)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (simp add: failuresfun_def)
by (simp add: map_alpha_failuresfun_Renaming_lm)
(*** non_expanding ***)
lemma non_expanding_failuresfun_Renaming:
"non_expanding (failuresfun Pf)
==> non_expanding (failuresfun (%f. (Pf f) [[r]]))"
by (simp add: non_expanding_def map_alpha_failuresfun_Renaming)
(*** contraction_alpha ***)
lemma contraction_alpha_failuresfun_Renaming:
"contraction_alpha (failuresfun Pf) alpha
==> contraction_alpha (failuresfun (%f. (Pf f) [[r]])) alpha"
by (simp add: contraction_alpha_def map_alpha_failuresfun_Renaming)
(*--------------------------------*
| Seq_compo |
*--------------------------------*)
(*** rest_setF (subset) ***)
lemma Seq_compo_rest_setF_sub:
"[| traces P1 .|. n <= traces P2 .|. n ;
failures P1 .|. n <= failures P2 .|. n ;
failures Q1 .|. n <= failures Q2 .|. n |]
==> failures (P1 ;; Q1) .|. n <= failures (P2 ;; Q2) .|. n"
apply (simp add: subsetF_iff)
apply (simp add: subdomT_iff)
apply (intro allI impI)
apply (simp add: in_rest_setF)
apply (simp add: in_rest_domT)
apply (simp add: in_failures)
apply (elim conjE exE disjE)
apply (simp_all)
(* case 1 *)
apply (rule disjI2)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="t" in exI)
apply (simp)
(* case 2 *)
apply (rule disjI2)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="t" in exI)
apply (simp)
apply (drule_tac x=" sa ^^ <Tick>" in spec)
apply (simp)
apply (insert trace_last_nil_or_unnil)
apply (rotate_tac -1)
apply (drule_tac x="t" in spec)
apply (erule disjE, simp)
apply (rotate_tac 2)
apply (drule sym)
apply (simp)
apply (elim conjE exE, simp)
apply (simp add: appt_assoc_sym)
apply (rotate_tac 1)
apply (drule_tac x="sb ^^ <Tick>" in spec)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE)
apply (case_tac "Suc (lengtht sb) < n", simp)
apply (case_tac "Suc (lengtht sb) = n", simp)
apply (drule mp, force)
apply (simp)
apply (force)
done
(*** rest_setF (equal) ***)
lemma Seq_compo_rest_setF:
"[| traces P1 .|. n = traces P2 .|. n ;
failures P1 .|. n = failures P2 .|. n ;
failures Q1 .|. n = failures Q2 .|. n |]
==> failures (P1 ;; Q1) .|. n = failures (P2 ;; Q2) .|. n"
apply (rule order_antisym)
by (simp_all add: Seq_compo_rest_setF_sub)
(*** distF lemma ***)
lemma Seq_compo_distF:
"[| PQTs = {(traces P1, traces P2)} ;
PQFs = {(failures P1, failures P2), (failures Q1, failures Q2)} |]
==> (EX PQ. PQ:PQTs &
distance(failures (P1 ;; Q1), failures (P2 ;; Q2))
<= distance((fst PQ), (snd PQ))) |
(EX PQ. PQ:PQFs &
distance(failures (P1 ;; Q1), failures (P2 ;; Q2))
<= distance((fst PQ), (snd PQ)))"
apply (rule rest_to_dist_pair_two)
by (auto intro: Seq_compo_rest_setF)
(*** map_alpha F lemma ***)
lemma map_alpha_transfun_Seq_compo_lm:
"[| distance (traces P1, traces P2) <= alpha * distance (x1, x2) ;
distance (failures P1, failures P2) <= alpha * distance (x1, x2) ;
distance (failures Q1, failures Q2) <= alpha * distance (x1, x2) |]
==> distance (failures (P1 ;; Q1), failures (P2 ;; Q2))
<= alpha * distance (x1, x2)"
apply (insert Seq_compo_distF
[of "{(traces P1, traces P2)}" P1 P2
"{(failures P1, failures P2), (failures Q1, failures Q2)}" Q1 Q2])
by (auto)
(*** map_alpha ***)
lemma map_alpha_transfun_Seq_compo:
"[| Pf : Procfun ; Qf : Procfun ;
map_alpha (%SFf. tracesfun Pf (fstF o SFf)) alpha ;
map_alpha (failuresfun Pf) alpha ; map_alpha (failuresfun Qf) alpha |]
==> map_alpha (failuresfun (%f. (Pf f ;; Qf f))) alpha"
apply (simp add: map_alpha_def)
apply (intro allI)
apply (erule conjE)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
apply (simp add: failuresfun_def)
apply (simp add: tracesfun_def)
apply (simp add: traces_Pf_Proc_T_F)
by (simp add: map_alpha_transfun_Seq_compo_lm)
(*** non_expanding ***)
lemma non_expanding_failuresfun_Seq_compo:
"[| Pf : Procfun ; Qf : Procfun ;
non_expanding (%SFf. tracesfun Pf (fstF o SFf)) ;
non_expanding (failuresfun Pf) ; non_expanding (failuresfun Qf) |]
==> non_expanding (failuresfun (%f. (Pf f ;; Qf f)))"
by (simp add: non_expanding_def map_alpha_transfun_Seq_compo)
(*** contraction_alpha ***)
lemma contraction_alpha_failuresfun_Seq_compo:
"[| Pf : Procfun ; Qf : Procfun ;
contraction_alpha (%SFf. tracesfun Pf (fstF o SFf)) alpha ;
contraction_alpha (failuresfun Pf) alpha ;
contraction_alpha (failuresfun Qf) alpha|]
==> contraction_alpha (failuresfun (%f. (Pf f ;; Qf f))) alpha"
by (simp add: contraction_alpha_def map_alpha_transfun_Seq_compo)
(*--------------------------------*
| Seq_compo (gSKIP) |
*--------------------------------*)
(*** rest_setF (subset) ***)
lemma gSKIP_Seq_compo_rest_setF_sub:
"[| traces P1 .|. (Suc n) <= traces P2 .|. (Suc n) ;
failures P1 .|. (Suc n) <= failures P2 .|. (Suc n) ;
failures Q1 .|. n <= failures Q2 .|. n ;
<Tick> ~:t traces P1 ;
<Tick> ~:t traces P2 |]
==> failures (P1 ;; Q1) .|. (Suc n) <= failures (P2 ;; Q2) .|. (Suc n)"
apply (simp add: subsetF_iff)
apply (simp add: subdomT_iff)
apply (intro allI impI)
apply (simp add: in_rest_setF)
apply (simp add: in_rest_domT)
apply (simp add: in_failures)
apply (elim conjE exE disjE)
apply (simp_all)
(* case 1 *)
apply (insert trace_last_nil_or_unnil)
apply (rotate_tac -1)
apply (drule_tac x="sa" in spec)
apply (erule disjE)
apply (simp add: gSKIP_to_Tick_notin_traces) (* sa = []t *)
apply (rule disjI2) (* sa ~= []t *)
apply (elim conjE exE, simp)
apply (rule_tac x="(sb ^^ <a>)" in exI)
apply (rule_tac x="t" in exI)
apply (simp)
(* case 2 *)
apply (rotate_tac -1)
apply (drule_tac x="t" in spec)
apply (erule disjE)
apply (simp) (* t = []t *)
apply (rotate_tac 5)
apply (drule sym)
apply (simp) (* contradict noTick *)
apply (rule disjI2) (* t ~= []t *)
apply (elim conjE exE, simp)
apply (simp add: appt_assoc_sym)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="sb ^^ <Tick>" in exI)
apply (simp add: appt_assoc)
apply (insert trace_last_nil_or_unnil)
apply (rotate_tac -1)
apply (drule_tac x="sa" in spec)
apply (erule disjE)
apply (simp add: gSKIP_to_Tick_notin_traces) (* sa = []t *)
apply (elim conjE exE, simp)
(* i.e. lengtht sb < n *)
apply (rotate_tac 2)
apply (drule_tac x="sb ^^ <Tick>" in spec)
apply (drule_tac x="X" in spec)
apply (drule mp)
apply (simp)
apply (case_tac "Suc (lengtht sb) < n", simp)
apply (case_tac "Suc (lengtht sb) = n", fast)
apply (force)
apply (simp)
done
(*** rest_setF (equal) ***)
lemma gSKIP_Seq_compo_rest_setF:
"[| traces P1 .|. (Suc n) = traces P2 .|. (Suc n) ;
failures P1 .|. (Suc n) = failures P2 .|. (Suc n) ;
failures Q1 .|. n = failures Q2 .|. n ;
<Tick> ~:t traces P1 ;
<Tick> ~:t traces P2 |]
==> failures (P1 ;; Q1) .|. (Suc n) = failures (P2 ;; Q2) .|. (Suc n)"
apply (rule order_antisym)
by (simp_all add: gSKIP_Seq_compo_rest_setF_sub)
(*** map_alpha F lemma ***)
lemma gSKIP_map_alpha_transfun_Seq_compo_lm:
"[| distance (traces P1, traces P2) * 2 <= (1/2)^n ;
distance (failures P1, failures P2) * 2 <= (1/2)^n ;
distance (failures Q1, failures Q2) <= (1/2)^n ;
<Tick> ~:t traces P1 ;
<Tick> ~:t traces P2 |]
==> distance (failures (P1 ;; Q1), failures (P2 ;; Q2)) * 2
<= (1/2)^n"
apply (insert gSKIP_Seq_compo_rest_setF[of P1 n P2 Q1 Q2])
apply (simp add: distance_rs_le_1)
done
(*** map_alpha ***)
lemma gSKIP_contraction_half_transfun_Seq_compo:
"[| contraction_alpha (%SFf. tracesfun Pf (fstF o SFf)) (1/2) ;
contraction_alpha (failuresfun Pf) (1/2) ; non_expanding (failuresfun Qf) ;
Pf : gSKIPfun ; Pf : Procfun |]
==> contraction_alpha (failuresfun (%f. (Pf f ;; Qf f))) (1/2)"
apply (simp add: contraction_alpha_def non_expanding_def map_alpha_def)
apply (intro allI)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
apply (case_tac "x = y", simp)
apply (simp add: distance_iff)
apply (simp add: failuresfun_def)
apply (simp add: tracesfun_def)
apply (simp add: traces_Pf_Proc_T_F)
apply (insert ALL_gSKIP_to_Tick_notin_traces)
apply (frule_tac x="Pf" in spec)
apply (drule_tac x="Pf" in spec)
apply (drule_tac x="(%p. Proc_F(x p))" in spec)
apply (drule_tac x="(%p. Proc_F(y p))" in spec)
apply (simp add: gSKIP_map_alpha_transfun_Seq_compo_lm)
done
(*--------------------------------*
| Depth_rest |
*--------------------------------*)
(*** rest_setF (equal) ***)
lemma Depth_rest_rest_setF:
"failures P .|. n = failures Q .|. n
==> failures (P |. m) .|. n = failures (Q |. m) .|. n"
apply (simp add: failures.simps)
apply (simp add: min_rs)
apply (rule rest_equal_preserve)
apply (simp)
apply (simp add: min_def)
done
(*** distF lemma ***)
lemma Depth_rest_distF:
"distance(failures (P |. m), failures (Q |. m)) <=
distance(failures P, failures Q)"
apply (rule rest_distance_subset)
by (auto intro: Depth_rest_rest_setF)
(*** map_alphaT lemma ***)
lemma map_alpha_failuresfun_Depth_rest_lm:
"distance(failures P, failures Q) <= alpha * distance (x1, x2)
==> distance(failures (P |. m), failures (Q |. m))
<= alpha * distance(x1, x2)"
apply (insert Depth_rest_distF[of P m Q])
by (simp)
(*** map_alpha ***)
lemma map_alpha_failuresfun_Depth_rest:
"map_alpha (failuresfun Pf) alpha
==> map_alpha (failuresfun (%f. (Pf f) |. n)) alpha"
apply (simp add: map_alpha_def)
apply (intro allI)
apply (erule conjE)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (simp add: failuresfun_def)
by (simp add: map_alpha_failuresfun_Depth_rest_lm)
(*** non_expanding ***)
lemma non_expanding_failuresfun_Depth_rest:
"non_expanding (failuresfun Pf)
==> non_expanding (failuresfun (%f. (Pf f) |. n))"
by (simp add: non_expanding_def map_alpha_failuresfun_Depth_rest)
(*** contraction_alpha ***)
lemma contraction_alpha_failuresfun_Depth_rest:
"contraction_alpha (failuresfun Pf) alpha
==> contraction_alpha (failuresfun (%f. (Pf f) |. n)) alpha"
by (simp add: contraction_alpha_def map_alpha_failuresfun_Depth_rest)
(*--------------------------------*
| variable |
*--------------------------------*)
(*** non_expanding ***)
lemma non_expanding_failuresfun_variable:
"non_expanding (failuresfun (%f. f p))"
apply (subgoal_tac "non_expanding [[%f. f p]]Ffun")
apply (simp add: semF_decompo_fun)
apply (simp add: non_expanding_domF_decompo
tracesfun_failuresfun_in_domF)
apply (erule conjE)
apply (simp)
apply (simp add: semFfun_variable)
apply (simp add: non_expanding_prod_variable)
done
(*--------------------------------*
| Procfun |
*--------------------------------*)
(*****************************************************************
| non_expanding |
*****************************************************************)
lemma non_expanding_failuresfun_lm:
"Pf : nohidefun ==> non_expanding (failuresfun Pf)"
apply (rule nohidefun.induct[of Pf])
apply (simp)
apply (simp add: non_expanding_failuresfun_variable)
apply (simp add: non_expanding_failuresfun_STOP)
apply (simp add: non_expanding_failuresfun_SKIP)
apply (simp add: non_expanding_failuresfun_DIV)
apply (simp add: non_expanding_failuresfun_Act_prefix)
apply (simp add: non_expanding_failuresfun_Ext_pre_choice)
apply (simp add: non_expanding_failuresfun_Ext_choice non_expanding_tracesfun_fstF)
apply (simp add: non_expanding_failuresfun_Int_choice)
apply (simp add: non_expanding_failuresfun_Rep_int_choice)
apply (simp add: non_expanding_failuresfun_IF)
apply (simp add: non_expanding_failuresfun_Parallel)
(* hiding --> const *)
apply (simp add: failuresfun_def)
apply (simp add: non_expanding_Constant)
apply (simp add: non_expanding_failuresfun_Renaming)
apply (simp add: non_expanding_failuresfun_Seq_compo non_expanding_tracesfun_fstF)
apply (simp add: non_expanding_failuresfun_Depth_rest)
done
lemma non_expanding_failuresfun:
"Pf : nohidefun ==> non_expanding (failuresfun Pf)"
by (simp add: non_expanding_failuresfun_lm)
(*=============================================================*
| [[P]]Ffun |
*=============================================================*)
lemma non_expanding_semFfun:
"Pf : nohidefun ==> non_expanding [[Pf]]Ffun"
apply (simp add: semF_decompo_fun)
apply (simp add: non_expanding_domF_decompo fun_in_domF)
apply (simp add: non_expanding_tracesfun_fstF)
apply (simp add: non_expanding_failuresfun)
done
(*=============================================================*
| failuresFun |
*=============================================================*)
lemma non_expanding_failuresFun:
"PF : nohideFun ==> non_expanding (failuresFun PF)"
apply (simp add: prod_non_expand)
apply (rule allI)
apply (simp add: proj_failuresFun_failuresfun)
apply (simp add: nohideFun_def)
apply (drule_tac x="i" in spec)
apply (simp add: non_expanding_failuresfun)
done
(*=============================================================*
| [[P]]FFun |
*=============================================================*)
lemma non_expanding_semFFun:
"PF : nohideFun ==> non_expanding [[PF]]FFun"
apply (simp add: prod_non_expand)
apply (rule allI)
apply (simp add: proj_semFFun_semFfun)
apply (simp add: nohideFun_def)
apply (drule_tac x="i" in spec)
apply (simp add: non_expanding_semFfun)
done
(*****************************************************************
| contraction |
*****************************************************************)
lemma contraction_alpha_failuresfun:
"Pf : gProcfun ==> contraction_alpha (failuresfun Pf) (1/2)"
apply (rule gProcfun.induct[of Pf])
apply (simp)
apply (simp add: contraction_alpha_failuresfun_STOP)
apply (simp add: contraction_alpha_failuresfun_SKIP)
apply (simp add: contraction_alpha_failuresfun_DIV)
apply (simp add: contraction_half_failuresfun_Act_prefix
non_expanding_failuresfun)
apply (simp add: contraction_half_failuresfun_Ext_pre_choice
non_expanding_failuresfun)
apply (simp add: contraction_alpha_failuresfun_Ext_choice
contraction_alpha_tracesfun_fstF)
apply (simp add: contraction_alpha_failuresfun_Int_choice)
apply (simp add: contraction_alpha_failuresfun_Rep_int_choice)
apply (simp add: contraction_alpha_failuresfun_IF)
apply (simp add: contraction_alpha_failuresfun_Parallel)
(* hiding --> const *)
apply (simp add: failuresfun_def)
apply (simp add: contraction_alpha_Constant)
apply (simp add: contraction_alpha_failuresfun_Renaming)
apply (simp)
apply (elim conjE disjE)
apply (simp add: gSKIP_contraction_half_transfun_Seq_compo
non_expanding_failuresfun
contraction_alpha_tracesfun_fstF)
apply (simp add: contraction_alpha_failuresfun_Seq_compo
contraction_alpha_tracesfun_fstF)
apply (simp add: contraction_alpha_failuresfun_Depth_rest)
done
(*=============================================================*
| [[P]]Ffun |
*=============================================================*)
lemma contraction_alpha_semFfun:
"Pf : gProcfun ==> contraction_alpha [[Pf]]Ffun (1/2)"
apply (simp add: semF_decompo_fun)
apply (simp add: contraction_alpha_domF_decompo fun_in_domF)
apply (simp add: contraction_alpha_tracesfun_fstF)
apply (simp add: contraction_alpha_failuresfun)
done
(*=============================================================*
| failuresfun P |
*=============================================================*)
lemma contraction_alpha_failuresFun:
"PF : gProcFun
==> contraction_alpha (failuresFun PF) (1/2)"
apply (simp add: prod_contra_alpha)
apply (rule allI)
apply (simp add: proj_failuresFun_failuresfun)
apply (simp add: gProcFun_def)
apply (drule_tac x="i" in spec)
apply (simp add: contraction_alpha_failuresfun)
done
lemma contraction_failuresfun:
"PF : gProcFun
==> contraction (failuresFun PF)"
apply (simp add: contraction_def)
apply (rule_tac x="1/2" in exI)
apply (simp add: contraction_alpha_failuresFun)
done
(*=============================================================*
| [[P]]FFun |
*=============================================================*)
lemma contraction_alpha_semFFun:
"PF : gProcFun
==> contraction_alpha [[PF]]FFun (1/2)"
apply (simp add: prod_contra_alpha)
apply (rule allI)
apply (simp add: proj_semFFun_semFfun)
apply (simp add: gProcFun_def)
apply (drule_tac x="i" in spec)
apply (simp add: contraction_alpha_semFfun)
done
lemma contraction_semFFun:
"PF : gProcFun
==> contraction [[PF]]FFun"
apply (simp add: contraction_def)
apply (rule_tac x="1/2" in exI)
apply (simp add: contraction_alpha_semFFun)
done
end
lemma non_expanding_tracesfun_fstF:
Pf ∈ nohidefun ==> non_expanding (%SFf. tracesfun Pf (fstF o SFf))
lemma contraction_alpha_tracesfun_fstF:
Pf ∈ gProcfun ==> contraction_alpha (%SFf. tracesfun Pf (fstF o SFf)) (1 / 2)
lemma map_alpha_failuresfun_STOP:
0 ≤ alpha ==> map_alpha (failuresfun (%SFf. STOP)) alpha
lemma non_expanding_failuresfun_STOP:
non_expanding (failuresfun (%SFf. STOP))
lemma contraction_alpha_failuresfun_STOP:
[| 0 ≤ alpha; alpha < 1 |] ==> contraction_alpha (failuresfun (%SFf. STOP)) alpha
lemma map_alpha_failuresfun_SKIP:
0 ≤ alpha ==> map_alpha (failuresfun (%SFf. SKIP)) alpha
lemma non_expanding_failuresfun_SKIP:
non_expanding (failuresfun (%SFf. SKIP))
lemma contraction_alpha_failuresfun_SKIP:
[| 0 ≤ alpha; alpha < 1 |] ==> contraction_alpha (failuresfun (%SFf. SKIP)) alpha
lemma map_alpha_failuresfun_DIV:
0 ≤ alpha ==> map_alpha (failuresfun (%SFf. DIV)) alpha
lemma non_expanding_failuresfun_DIV:
non_expanding (failuresfun (%SFf. DIV))
lemma contraction_alpha_failuresfun_DIV:
[| 0 ≤ alpha; alpha < 1 |] ==> contraction_alpha (failuresfun (%SFf. DIV)) alpha
lemma contraction_half_failures_Act_prefix_lm:
distance (failures (a -> P), failures (a -> Q)) * 2 = distance (failures P, failures Q)
lemma contraction_half_failuresfun_Act_prefix:
non_expanding (failuresfun Pf) ==> contraction_alpha (failuresfun (%f. a -> Pf f)) (1 / 2)
lemma contraction_failuresfun_Act_prefix:
non_expanding (failuresfun Pf) ==> contraction (failuresfun (%f. a -> Pf f))
lemma non_expanding_failuresfun_Act_prefix:
non_expanding (failuresfun Pf) ==> non_expanding (failuresfun (%f. a -> Pf f))
lemma Ext_pre_choice_Act_prefix_rest_setF_sub:
∀a∈X. failures (a -> Pf a) .|. n ≤ failures (a -> Qf a) .|. n ==> failures (? :X -> Pf) .|. n ≤ failures (? :X -> Qf) .|. n
lemma Ext_pre_choice_Act_prefix_rest_setF:
∀a∈X. failures (a -> Pf a) .|. n = failures (a -> Qf a) .|. n ==> failures (? :X -> Pf) .|. n = failures (? :X -> Qf) .|. n
lemma Ext_pre_choice_Act_prefix_distF_nonempty:
[| X ≠ {}; PQs = {(failures (a -> Pf a), failures (a -> Qf a)) |a. a ∈ X} |] ==> ∃PQ. PQ ∈ PQs ∧ distance (failures (? :X -> Pf), failures (? :X -> Qf)) ≤ distance (fst PQ, snd PQ)
lemma contraction_half_failuresfun_Ext_pre_choice_lm:
[| X ≠ {}; ∀a. distance (failures (Pf a), failures (Qf a)) ≤ distance (x1.0, x2.0) |] ==> distance (failures (? :X -> Pf), failures (? :X -> Qf)) * 2 ≤ distance (x1.0, x2.0)
lemma contraction_half_failuresfun_Ext_pre_choice:
∀a. non_expanding (failuresfun (Pff a)) ==> contraction_alpha (failuresfun (%f. ? a:X -> Pff a f)) (1 / 2)
lemma contraction_failuresfun_Ext_pre_choice:
∀a. non_expanding (failuresfun (Pff a)) ==> contraction (failuresfun (%f. ? a:X -> Pff a f))
lemma non_expanding_failuresfun_Ext_pre_choice:
∀a. non_expanding (failuresfun (Pff a)) ==> non_expanding (failuresfun (%f. ? a:X -> Pff a f))
lemma Ext_choice_rest_setF_sub:
[| traces P1.0 .|. n ≤ traces P2.0 .|. n; traces Q1.0 .|. n ≤ traces Q2.0 .|. n; failures P1.0 .|. n ≤ failures P2.0 .|. n; failures Q1.0 .|. n ≤ failures Q2.0 .|. n |] ==> failures (P1.0 [+] Q1.0) .|. n ≤ failures (P2.0 [+] Q2.0) .|. n
lemma Ext_choice_rest_setF:
[| traces P1.0 .|. n = traces P2.0 .|. n; traces Q1.0 .|. n = traces Q2.0 .|. n; failures P1.0 .|. n = failures P2.0 .|. n; failures Q1.0 .|. n = failures Q2.0 .|. n |] ==> failures (P1.0 [+] Q1.0) .|. n = failures (P2.0 [+] Q2.0) .|. n
lemma Ext_choice_distF:
[| PQTs = {(traces P1.0, traces P2.0), (traces Q1.0, traces Q2.0)}; PQFs = {(failures P1.0, failures P2.0), (failures Q1.0, failures Q2.0)} |] ==> (∃PQ. PQ ∈ PQTs ∧ distance (failures (P1.0 [+] Q1.0), failures (P2.0 [+] Q2.0)) ≤ distance (fst PQ, snd PQ)) ∨ (∃PQ. PQ ∈ PQFs ∧ distance (failures (P1.0 [+] Q1.0), failures (P2.0 [+] Q2.0)) ≤ distance (fst PQ, snd PQ))
lemma map_alpha_failuresfun_Ext_choice_lm:
[| distance (traces P1.0, traces P2.0) ≤ alpha * distance (x1.0, x2.0); distance (traces Q1.0, traces Q2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures P1.0, failures P2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures Q1.0, failures Q2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (P1.0 [+] Q1.0), failures (P2.0 [+] Q2.0)) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failuresfun_Ext_choice:
[| Pf ∈ Procfun; Qf ∈ Procfun; map_alpha (%SFf. tracesfun Pf (fstF o SFf)) alpha; map_alpha (%SFf. tracesfun Qf (fstF o SFf)) alpha; map_alpha (failuresfun Pf) alpha; map_alpha (failuresfun Qf) alpha |] ==> map_alpha (failuresfun (%f. Pf f [+] Qf f)) alpha
lemma non_expanding_failuresfun_Ext_choice:
[| Pf ∈ Procfun; Qf ∈ Procfun; non_expanding (%SFf. tracesfun Pf (fstF o SFf)); non_expanding (%SFf. tracesfun Qf (fstF o SFf)); non_expanding (failuresfun Pf); non_expanding (failuresfun Qf) |] ==> non_expanding (failuresfun (%f. Pf f [+] Qf f))
lemma contraction_alpha_failuresfun_Ext_choice:
[| Pf ∈ Procfun; Qf ∈ Procfun; contraction_alpha (%SFf. tracesfun Pf (fstF o SFf)) alpha; contraction_alpha (%SFf. tracesfun Qf (fstF o SFf)) alpha; contraction_alpha (failuresfun Pf) alpha; contraction_alpha (failuresfun Qf) alpha |] ==> contraction_alpha (failuresfun (%f. Pf f [+] Qf f)) alpha
lemma Int_choice_rest_setF_sub:
[| failures P1.0 .|. n ≤ failures P2.0 .|. n; failures Q1.0 .|. n ≤ failures Q2.0 .|. n |] ==> failures (P1.0 |~| Q1.0) .|. n ≤ failures (P2.0 |~| Q2.0) .|. n
lemma Int_choice_rest_setF:
[| failures P1.0 .|. n = failures P2.0 .|. n; failures Q1.0 .|. n = failures Q2.0 .|. n |] ==> failures (P1.0 |~| Q1.0) .|. n = failures (P2.0 |~| Q2.0) .|. n
lemma Int_choice_distF:
PQs = {(failures P1.0, failures P2.0), (failures Q1.0, failures Q2.0)} ==> ∃PQ. PQ ∈ PQs ∧ distance (failures (P1.0 |~| Q1.0), failures (P2.0 |~| Q2.0)) ≤ distance (fst PQ, snd PQ)
lemma map_alpha_failuresfun_Int_choice_lm:
[| distance (failures P1.0, failures P2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures Q1.0, failures Q2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (P1.0 |~| Q1.0), failures (P2.0 |~| Q2.0)) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failuresfun_Int_choice:
[| map_alpha (failuresfun Pf) alpha; map_alpha (failuresfun Qf) alpha |] ==> map_alpha (failuresfun (%f. Pf f |~| Qf f)) alpha
lemma non_expanding_failuresfun_Int_choice:
[| non_expanding (failuresfun Pf); non_expanding (failuresfun Qf) |] ==> non_expanding (failuresfun (%f. Pf f |~| Qf f))
lemma contraction_alpha_failuresfun_Int_choice:
[| contraction_alpha (failuresfun Pf) alpha; contraction_alpha (failuresfun Qf) alpha |] ==> contraction_alpha (failuresfun (%f. Pf f |~| Qf f)) alpha
lemma Rep_int_choice_rest_setF_sub:
∀c∈C. failures (Pf c) .|. n ≤ failures (Qf c) .|. n ==> failures (!! :C .. Pf) .|. n ≤ failures (!! :C .. Qf) .|. n
lemma Rep_int_choice_rest_setF:
∀c∈C. failures (Pf c) .|. n = failures (Qf c) .|. n ==> failures (!! :C .. Pf) .|. n = failures (!! :C .. Qf) .|. n
lemma Rep_int_choice_distF_nonempty:
[| C ≠ {}; PQs = {(failures (Pf c), failures (Qf c)) |c. c ∈ C} |] ==> ∃PQ. PQ ∈ PQs ∧ distance (failures (!! :C .. Pf), failures (!! :C .. Qf)) ≤ distance (fst PQ, snd PQ)
lemma map_alpha_failuresfun_Rep_int_choice_lm:
[| C ≠ {}; ∀c. distance (failures (Pf c), failures (Qf c)) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (!! :C .. Pf), failures (!! :C .. Qf)) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failuresfun_Rep_int_choice:
∀c. map_alpha (failuresfun (Pff c)) alpha ==> map_alpha (failuresfun (%f. !! c:C .. Pff c f)) alpha
lemma non_expanding_failuresfun_Rep_int_choice:
∀c. non_expanding (failuresfun (Pff c)) ==> non_expanding (failuresfun (%f. !! c:C .. Pff c f))
lemma contraction_alpha_failuresfun_Rep_int_choice:
∀c. contraction_alpha (failuresfun (Pff c)) alpha ==> contraction_alpha (failuresfun (%f. !! c:C .. Pff c f)) alpha
lemma IF_rest_setF_sub:
[| failures P1.0 .|. n ≤ failures P2.0 .|. n; failures Q1.0 .|. n ≤ failures Q2.0 .|. n |] ==> failures (IF b THEN P1.0 ELSE Q1.0) .|. n ≤ failures (IF b THEN P2.0 ELSE Q2.0) .|. n
lemma IF_rest_setF:
[| failures P1.0 .|. n = failures P2.0 .|. n; failures Q1.0 .|. n = failures Q2.0 .|. n |] ==> failures (IF b THEN P1.0 ELSE Q1.0) .|. n = failures (IF b THEN P2.0 ELSE Q2.0) .|. n
lemma IF_distF:
PQs = {(failures P1.0, failures P2.0), (failures Q1.0, failures Q2.0)} ==> ∃PQ. PQ ∈ PQs ∧ distance (failures (IF b THEN P1.0 ELSE Q1.0), failures (IF b THEN P2.0 ELSE Q2.0)) ≤ distance (fst PQ, snd PQ)
lemma map_alpha_failuresfun_IF_lm:
[| distance (failures P1.0, failures P2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures Q1.0, failures Q2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (IF b THEN P1.0 ELSE Q1.0), failures (IF b THEN P2.0 ELSE Q2.0)) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failuresfun_IF:
[| map_alpha (failuresfun Pf) alpha; map_alpha (failuresfun Qf) alpha |] ==> map_alpha (failuresfun (%f. IF b THEN Pf f ELSE Qf f)) alpha
lemma non_expanding_failuresfun_IF:
[| non_expanding (failuresfun Pf); non_expanding (failuresfun Qf) |] ==> non_expanding (failuresfun (%f. IF b THEN Pf f ELSE Qf f))
lemma contraction_alpha_failuresfun_IF:
[| contraction_alpha (failuresfun Pf) alpha; contraction_alpha (failuresfun Qf) alpha |] ==> contraction_alpha (failuresfun (%f. IF b THEN Pf f ELSE Qf f)) alpha
lemma Parallel_rest_setF_sub:
[| failures P1.0 .|. n ≤ failures P2.0 .|. n; failures Q1.0 .|. n ≤ failures Q2.0 .|. n |] ==> failures (P1.0 |[X]| Q1.0) .|. n ≤ failures (P2.0 |[X]| Q2.0) .|. n
lemma Parallel_rest_setF:
[| failures P1.0 .|. n = failures P2.0 .|. n; failures Q1.0 .|. n = failures Q2.0 .|. n |] ==> failures (P1.0 |[X]| Q1.0) .|. n = failures (P2.0 |[X]| Q2.0) .|. n
lemma Parallel_distF:
PQs = {(failures P1.0, failures P2.0), (failures Q1.0, failures Q2.0)} ==> ∃PQ. PQ ∈ PQs ∧ distance (failures (P1.0 |[X]| Q1.0), failures (P2.0 |[X]| Q2.0)) ≤ distance (fst PQ, snd PQ)
lemma map_alpha_failuresfun_Parallel_lm:
[| distance (failures P1.0, failures P2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures Q1.0, failures Q2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (P1.0 |[X]| Q1.0), failures (P2.0 |[X]| Q2.0)) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failuresfun_Parallel:
[| map_alpha (failuresfun Pf) alpha; map_alpha (failuresfun Qf) alpha |] ==> map_alpha (failuresfun (%f. Pf f |[X]| Qf f)) alpha
lemma non_expanding_failuresfun_Parallel:
[| non_expanding (failuresfun Pf); non_expanding (failuresfun Qf) |] ==> non_expanding (failuresfun (%f. Pf f |[X]| Qf f))
lemma contraction_alpha_failuresfun_Parallel:
[| contraction_alpha (failuresfun Pf) alpha; contraction_alpha (failuresfun Qf) alpha |] ==> contraction_alpha (failuresfun (%f. Pf f |[X]| Qf f)) alpha
lemma Renaming_rest_setF_sub:
failures P .|. n ≤ failures Q .|. n ==> failures (P [[r]]) .|. n ≤ failures (Q [[r]]) .|. n
lemma Renaming_rest_setF:
failures P .|. n = failures Q .|. n ==> failures (P [[r]]) .|. n = failures (Q [[r]]) .|. n
lemma Renaming_distF:
distance (failures (P [[r]]), failures (Q [[r]])) ≤ distance (failures P, failures Q)
lemma map_alpha_failuresfun_Renaming_lm:
distance (failures P, failures Q) ≤ alpha * distance (x1.0, x2.0) ==> distance (failures (P [[r]]), failures (Q [[r]])) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failuresfun_Renaming:
map_alpha (failuresfun Pf) alpha ==> map_alpha (failuresfun (%f. Pf f [[r]])) alpha
lemma non_expanding_failuresfun_Renaming:
non_expanding (failuresfun Pf) ==> non_expanding (failuresfun (%f. Pf f [[r]]))
lemma contraction_alpha_failuresfun_Renaming:
contraction_alpha (failuresfun Pf) alpha ==> contraction_alpha (failuresfun (%f. Pf f [[r]])) alpha
lemma Seq_compo_rest_setF_sub:
[| traces P1.0 .|. n ≤ traces P2.0 .|. n; failures P1.0 .|. n ≤ failures P2.0 .|. n; failures Q1.0 .|. n ≤ failures Q2.0 .|. n |] ==> failures (P1.0 ;; Q1.0) .|. n ≤ failures (P2.0 ;; Q2.0) .|. n
lemma Seq_compo_rest_setF:
[| traces P1.0 .|. n = traces P2.0 .|. n; failures P1.0 .|. n = failures P2.0 .|. n; failures Q1.0 .|. n = failures Q2.0 .|. n |] ==> failures (P1.0 ;; Q1.0) .|. n = failures (P2.0 ;; Q2.0) .|. n
lemma Seq_compo_distF:
[| PQTs = {(traces P1.0, traces P2.0)}; PQFs = {(failures P1.0, failures P2.0), (failures Q1.0, failures Q2.0)} |] ==> (∃PQ. PQ ∈ PQTs ∧ distance (failures (P1.0 ;; Q1.0), failures (P2.0 ;; Q2.0)) ≤ distance (fst PQ, snd PQ)) ∨ (∃PQ. PQ ∈ PQFs ∧ distance (failures (P1.0 ;; Q1.0), failures (P2.0 ;; Q2.0)) ≤ distance (fst PQ, snd PQ))
lemma map_alpha_transfun_Seq_compo_lm:
[| distance (traces P1.0, traces P2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures P1.0, failures P2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures Q1.0, failures Q2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (P1.0 ;; Q1.0), failures (P2.0 ;; Q2.0)) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_transfun_Seq_compo:
[| Pf ∈ Procfun; Qf ∈ Procfun; map_alpha (%SFf. tracesfun Pf (fstF o SFf)) alpha; map_alpha (failuresfun Pf) alpha; map_alpha (failuresfun Qf) alpha |] ==> map_alpha (failuresfun (%f. Pf f ;; Qf f)) alpha
lemma non_expanding_failuresfun_Seq_compo:
[| Pf ∈ Procfun; Qf ∈ Procfun; non_expanding (%SFf. tracesfun Pf (fstF o SFf)); non_expanding (failuresfun Pf); non_expanding (failuresfun Qf) |] ==> non_expanding (failuresfun (%f. Pf f ;; Qf f))
lemma contraction_alpha_failuresfun_Seq_compo:
[| Pf ∈ Procfun; Qf ∈ Procfun; contraction_alpha (%SFf. tracesfun Pf (fstF o SFf)) alpha; contraction_alpha (failuresfun Pf) alpha; contraction_alpha (failuresfun Qf) alpha |] ==> contraction_alpha (failuresfun (%f. Pf f ;; Qf f)) alpha
lemma gSKIP_Seq_compo_rest_setF_sub:
[| traces P1.0 .|. Suc n ≤ traces P2.0 .|. Suc n; failures P1.0 .|. Suc n ≤ failures P2.0 .|. Suc n; failures Q1.0 .|. n ≤ failures Q2.0 .|. n; <Tick> ~:t traces P1.0; <Tick> ~:t traces P2.0 |] ==> failures (P1.0 ;; Q1.0) .|. Suc n ≤ failures (P2.0 ;; Q2.0) .|. Suc n
lemma gSKIP_Seq_compo_rest_setF:
[| traces P1.0 .|. Suc n = traces P2.0 .|. Suc n; failures P1.0 .|. Suc n = failures P2.0 .|. Suc n; failures Q1.0 .|. n = failures Q2.0 .|. n; <Tick> ~:t traces P1.0; <Tick> ~:t traces P2.0 |] ==> failures (P1.0 ;; Q1.0) .|. Suc n = failures (P2.0 ;; Q2.0) .|. Suc n
lemma gSKIP_map_alpha_transfun_Seq_compo_lm:
[| distance (traces P1.0, traces P2.0) * 2 ≤ (1 / 2) ^ n; distance (failures P1.0, failures P2.0) * 2 ≤ (1 / 2) ^ n; distance (failures Q1.0, failures Q2.0) ≤ (1 / 2) ^ n; <Tick> ~:t traces P1.0; <Tick> ~:t traces P2.0 |] ==> distance (failures (P1.0 ;; Q1.0), failures (P2.0 ;; Q2.0)) * 2 ≤ (1 / 2) ^ n
lemma gSKIP_contraction_half_transfun_Seq_compo:
[| contraction_alpha (%SFf. tracesfun Pf (fstF o SFf)) (1 / 2); contraction_alpha (failuresfun Pf) (1 / 2); non_expanding (failuresfun Qf); Pf ∈ gSKIPfun; Pf ∈ Procfun |] ==> contraction_alpha (failuresfun (%f. Pf f ;; Qf f)) (1 / 2)
lemma Depth_rest_rest_setF:
failures P .|. n = failures Q .|. n ==> failures (P |. m) .|. n = failures (Q |. m) .|. n
lemma Depth_rest_distF:
distance (failures (P |. m), failures (Q |. m)) ≤ distance (failures P, failures Q)
lemma map_alpha_failuresfun_Depth_rest_lm:
distance (failures P, failures Q) ≤ alpha * distance (x1.0, x2.0) ==> distance (failures (P |. m), failures (Q |. m)) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failuresfun_Depth_rest:
map_alpha (failuresfun Pf) alpha ==> map_alpha (failuresfun (%f. Pf f |. n)) alpha
lemma non_expanding_failuresfun_Depth_rest:
non_expanding (failuresfun Pf) ==> non_expanding (failuresfun (%f. Pf f |. n))
lemma contraction_alpha_failuresfun_Depth_rest:
contraction_alpha (failuresfun Pf) alpha ==> contraction_alpha (failuresfun (%f. Pf f |. n)) alpha
lemma non_expanding_failuresfun_variable:
non_expanding (failuresfun (%f. f p))
lemma non_expanding_failuresfun_lm:
Pf ∈ nohidefun ==> non_expanding (failuresfun Pf)
lemma non_expanding_failuresfun:
Pf ∈ nohidefun ==> non_expanding (failuresfun Pf)
lemma non_expanding_semFfun:
Pf ∈ nohidefun ==> non_expanding [[Pf]]Ffun
lemma non_expanding_failuresFun:
PF ∈ nohideFun ==> non_expanding (failuresFun PF)
lemma non_expanding_semFFun:
PF ∈ nohideFun ==> non_expanding [[PF]]FFun
lemma contraction_alpha_failuresfun:
Pf ∈ gProcfun ==> contraction_alpha (failuresfun Pf) (1 / 2)
lemma contraction_alpha_semFfun:
Pf ∈ gProcfun ==> contraction_alpha [[Pf]]Ffun (1 / 2)
lemma contraction_alpha_failuresFun:
PF ∈ gProcFun ==> contraction_alpha (failuresFun PF) (1 / 2)
lemma contraction_failuresfun:
PF ∈ gProcFun ==> contraction (failuresFun PF)
lemma contraction_alpha_semFFun:
PF ∈ gProcFun ==> contraction_alpha [[PF]]FFun (1 / 2)
lemma contraction_semFFun:
PF ∈ gProcFun ==> contraction [[PF]]FFun