Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F_contraction(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | December 2004 | | July 2005 (modified) | | September 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | November 2005 (modified) | | April 2006 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_F_contraction = CSP_F_failuresfun + CSP_T_contraction: (***************************************************************** 1. contraction failuresfun 2. contraction failuresFun 3. contraction [[ ]]Ffun 4. contraction [[ ]]FFun *****************************************************************) (*=============================================================* | tracesfun fstF | *=============================================================*) lemma non_expanding_tracesfun_fstF: "Pf : nohidefun ==> non_expanding (%SFf. tracesfun Pf (fstF o SFf))" apply (subgoal_tac "(%SFf. tracesfun Pf (fstF o SFf)) = (tracesfun Pf) o (op o fstF)") apply (simp) apply (rule compo_non_expand) apply (simp add: non_expanding_tracesfun) apply (simp add: non_expanding_op_fstF) apply (simp add: expand_fun_eq) done lemma contraction_alpha_tracesfun_fstF: "Pf : gProcfun ==> contraction_alpha (%SFf. tracesfun Pf (fstF o SFf)) (1/2)" apply (subgoal_tac "(%SFf. tracesfun Pf (fstF o SFf)) = (tracesfun Pf) o (op o fstF)") apply (simp) apply (rule compo_contra_alpha_non_expand) apply (simp add: contraction_alpha_tracesfun) apply (simp add: non_expanding_op_fstF) apply (simp add: expand_fun_eq) done (*--------------------------------* | STOP,SKIP,DIV | *--------------------------------*) (*** STOP ***) lemma map_alpha_failuresfun_STOP: "0 <= alpha ==> map_alpha (failuresfun (%SFf. STOP)) alpha" by (simp add: failuresfun_simp map_alpha_Constant) lemma non_expanding_failuresfun_STOP: "non_expanding (failuresfun (%SFf. STOP))" by (simp add: non_expanding_def map_alpha_failuresfun_STOP) lemma contraction_alpha_failuresfun_STOP: "[| 0 <= alpha ; alpha < 1 |] ==> contraction_alpha (failuresfun (%SFf. STOP)) alpha" by (simp add: failuresfun_simp contraction_alpha_Constant) (*** SKIP ***) lemma map_alpha_failuresfun_SKIP: "0 <= alpha ==> map_alpha (failuresfun (%SFf. SKIP)) alpha" by (simp add: failuresfun_simp map_alpha_Constant) lemma non_expanding_failuresfun_SKIP: "non_expanding (failuresfun (%SFf. SKIP))" by (simp add: non_expanding_def map_alpha_failuresfun_SKIP) lemma contraction_alpha_failuresfun_SKIP: "[| 0 <= alpha ; alpha < 1 |] ==> contraction_alpha (failuresfun (%SFf. SKIP)) alpha" by (simp add: failuresfun_simp contraction_alpha_Constant) (*** DIV ***) lemma map_alpha_failuresfun_DIV: "0 <= alpha ==> map_alpha (failuresfun (%SFf. DIV)) alpha" by (simp add: failuresfun_simp map_alpha_Constant) lemma non_expanding_failuresfun_DIV: "non_expanding (failuresfun (%SFf. DIV))" by (simp add: non_expanding_def map_alpha_failuresfun_DIV) lemma contraction_alpha_failuresfun_DIV: "[| 0 <= alpha ; alpha < 1 |] ==> contraction_alpha (failuresfun (%SFf. DIV)) alpha" by (simp add: failuresfun_simp contraction_alpha_Constant) (*--------------------------------* | Act_prefix | *--------------------------------*) lemma contraction_half_failures_Act_prefix_lm: "distance (failures (a -> P), failures (a -> Q)) * 2 = distance (failures P, failures Q)" apply (rule sym) apply (rule rest_Suc_dist_half[simplified]) apply (rule allI) apply (simp add: rest_setF_eq_iff) apply (rule iffI) (* => *) apply (intro allI) apply (simp add: in_failures) apply (rule iffI) (* => *) apply (elim conjE exE disjE) apply (simp_all) apply (drule_tac x="sa" in spec) apply (drule_tac x="X" in spec) apply (simp) apply (drule_tac x="sa" in spec) apply (drule_tac x="X" in spec) apply (simp) apply (erule iffE, simp) apply (insert trace_last_nil_or_unnil) apply (drule_tac x="sa" in spec) apply (erule disjE, simp) apply (elim conjE exE) apply (simp add: appt_assoc_sym) apply (drule mp, fast) apply (simp) apply (rule_tac x="<Ev a> ^^ sb" in exI) apply (simp) (* <= *) apply (elim conjE exE disjE) apply (simp_all) apply (drule_tac x="sa" in spec) apply (drule_tac x="X" in spec) apply (simp) apply (drule_tac x="sa" in spec) apply (drule_tac x="X" in spec) apply (simp) apply (erule iffE, simp) apply (drule_tac x="sa" in spec) apply (erule disjE, simp) apply (elim conjE exE) apply (simp add: appt_assoc_sym) apply (drule mp, fast) apply (simp) (* <= *) apply (intro allI) apply (drule_tac x="<Ev a> ^^ s" in spec) apply (drule_tac x="X" in spec) apply (simp add: in_failures) apply (rule iffI) (* => *) apply (elim conjE exE disjE) apply (simp) apply (erule iffE, simp) apply (simp add: appt_assoc_sym) apply (drule mp, force) apply (force) (* <= *) apply (elim conjE exE disjE) apply (simp) apply (erule iffE, simp) apply (simp add: appt_assoc_sym) apply (drule mp, force) apply (force) done (*** contraction_half ***) lemma contraction_half_failuresfun_Act_prefix: "non_expanding (failuresfun Pf) ==> contraction_alpha (failuresfun (%f. a -> Pf f)) (1 / 2)" apply (simp add: contraction_alpha_def non_expanding_def map_alpha_def) apply (intro allI) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (simp add: failuresfun_def) apply (simp add: contraction_half_failures_Act_prefix_lm) done (*** contraction ***) lemma contraction_failuresfun_Act_prefix: "non_expanding (failuresfun Pf) ==> contraction (failuresfun (%f. a -> Pf f))" apply (simp add: contraction_def) apply (rule_tac x="1/2" in exI) by (simp add: contraction_half_failuresfun_Act_prefix) (*** non_expanding ***) lemma non_expanding_failuresfun_Act_prefix: "non_expanding (failuresfun Pf) ==> non_expanding (failuresfun (%f. a -> Pf f))" apply (rule contraction_non_expanding) by (simp add: contraction_failuresfun_Act_prefix) (*--------------------------------* | Ext_pre_choice | *--------------------------------*) (*** rest_setF (subset) ***) lemma Ext_pre_choice_Act_prefix_rest_setF_sub: "[| ALL a : X. failures (a -> Pf a) .|. n <= failures (a -> Qf a) .|. n |] ==> failures (? a:X -> Pf a) .|. n <= failures (? a:X -> Qf a) .|. n" apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_rest_setF) apply (simp add: in_failures) apply (elim conjE exE disjE, simp_all) apply (drule_tac x="a" in bspec, simp) apply (drule_tac x="<Ev a> ^^ sa" in spec) apply (drule_tac x="Xa" in spec) apply (simp) apply (drule_tac x="a" in bspec, simp) apply (drule_tac x="s' ^^ <Tick>" in spec) apply (drule_tac x="Xa" in spec) apply (auto) done (*** rest_setF (equal) ***) lemma Ext_pre_choice_Act_prefix_rest_setF: "[| ALL a : X. failures (a -> Pf a) .|. n = failures (a -> Qf a) .|. n |] ==> failures (? a:X -> Pf a) .|. n = failures (? a:X -> Qf a) .|. n" apply (rule order_antisym) by (simp_all add: Ext_pre_choice_Act_prefix_rest_setF_sub) (*** distF lemma ***) lemma Ext_pre_choice_Act_prefix_distF_nonempty: "[| X ~= {} ; PQs = {(failures (a -> Pf a), failures (a -> Qf a))|a. a : X} |] ==> (EX PQ. PQ:PQs & distance(failures (? a:X -> Pf a), failures (? a:X -> Qf a)) <= distance(fst PQ, snd PQ))" apply (rule rest_to_dist_pair) apply (force) apply (intro allI impI) apply (rule Ext_pre_choice_Act_prefix_rest_setF) apply (rule ballI) apply (simp) apply (drule_tac x="failures (a -> Pf a)" in spec) apply (drule_tac x="failures (a -> Qf a)" in spec) by (auto) (*** contraction lemma ***) lemma contraction_half_failuresfun_Ext_pre_choice_lm: "[| X ~= {} ; ALL a. distance (failures (Pf a), failures (Qf a)) <= distance (x1, x2) |] ==> distance (failures (? a:X -> Pf a), failures (? a:X -> Qf a)) * 2 <= distance (x1, x2)" apply (insert Ext_pre_choice_Act_prefix_distF_nonempty [of X "{(failures (a -> Pf a), failures (a -> Qf a)) |a. a : X}" Pf Qf]) apply (simp) apply (elim conjE exE) apply (simp) apply (subgoal_tac "distance (failures (aa -> Pf aa), failures (aa -> Qf aa)) * 2 = distance (failures (Pf aa), failures (Qf aa))") apply (drule_tac x="aa" in spec) apply (force) by (simp add: contraction_half_failures_Act_prefix_lm) (*** contraction_half ***) lemma contraction_half_failuresfun_Ext_pre_choice: "ALL a. non_expanding (failuresfun (Pff a)) ==> contraction_alpha (failuresfun (%f. ? a:X -> (Pff a f))) (1 / 2)" apply (simp add: contraction_alpha_def non_expanding_def map_alpha_def) apply (case_tac "X = {}") apply (simp add: failuresfun_simp) apply (simp add: failuresfun_def) by (simp add: contraction_half_failuresfun_Ext_pre_choice_lm) (*** Ext_pre_choice_evalT_contraction ***) lemma contraction_failuresfun_Ext_pre_choice: "ALL a. non_expanding (failuresfun (Pff a)) ==> contraction (failuresfun (%f. ? a:X -> (Pff a f)))" apply (simp add: contraction_def) apply (rule_tac x="1/2" in exI) by (simp add: contraction_half_failuresfun_Ext_pre_choice) (*** Ext_pre_choice_evalT_non_expanding ***) lemma non_expanding_failuresfun_Ext_pre_choice: "ALL a. non_expanding (failuresfun (Pff a)) ==> non_expanding (failuresfun (%f. ? a:X -> (Pff a f)))" apply (rule contraction_non_expanding) by (simp add: contraction_failuresfun_Ext_pre_choice) (*--------------------------------* | Ext_choice | *--------------------------------*) (*** rest_domT (subset) ***) lemma Ext_choice_rest_setF_sub: "[| traces P1 .|. n <= traces P2 .|. n ; traces Q1 .|. n <= traces Q2 .|. n ; failures P1 .|. n <= failures P2 .|. n ; failures Q1 .|. n <= failures Q2 .|. n |] ==> failures (P1 [+] Q1) .|. n <= failures (P2 [+] Q2) .|. n" apply (simp add: subdomT_iff subsetF_iff) apply (intro allI impI) apply (simp add: in_rest_domT) apply (simp add: in_rest_setF) apply (simp add: in_failures) apply (elim conjE exE disjE, simp_all) apply (rotate_tac 2) apply (drule_tac x="s' ^^ <Tick>" in spec) apply (drule_tac x="X" in spec) apply (drule mp, simp, fast) apply (simp) apply (rotate_tac 3) apply (drule_tac x="s' ^^ <Tick>" in spec) apply (drule_tac x="X" in spec) apply (drule mp, simp, fast) apply (simp) done (*** rest_setF (equal) ***) lemma Ext_choice_rest_setF: "[| traces P1 .|. n = traces P2 .|. n ; traces Q1 .|. n = traces Q2 .|. n ; failures P1 .|. n = failures P2 .|. n ; failures Q1 .|. n = failures Q2 .|. n |] ==> failures (P1 [+] Q1) .|. n = failures (P2 [+] Q2) .|. n" apply (rule order_antisym) by (simp_all add: Ext_choice_rest_setF_sub) (*** distF lemma ***) lemma Ext_choice_distF: "[| PQTs = {(traces P1, traces P2), (traces Q1, traces Q2)} ; PQFs = {(failures P1, failures P2), (failures Q1, failures Q2)} |] ==> (EX PQ. PQ:PQTs & distance(failures (P1 [+] Q1), failures (P2 [+] Q2)) <= distance((fst PQ), (snd PQ))) | (EX PQ. PQ:PQFs & distance(failures (P1 [+] Q1), failures (P2 [+] Q2)) <= distance((fst PQ), (snd PQ)))" apply (rule rest_to_dist_pair_two) apply (simp_all) by (auto intro: Ext_choice_rest_setF) (*** map_alpha F lemma ***) lemma map_alpha_failuresfun_Ext_choice_lm: "[| distance (traces P1, traces P2) <= alpha * distance (x1, x2) ; distance (traces Q1, traces Q2) <= alpha * distance (x1, x2) ; distance (failures P1, failures P2) <= alpha * distance (x1, x2) ; distance (failures Q1, failures Q2) <= alpha * distance (x1, x2) |] ==> distance (failures (P1 [+] Q1), failures (P2 [+] Q2)) <= alpha * distance (x1, x2)" apply (insert Ext_choice_distF [of "{(traces P1, traces P2), (traces Q1, traces Q2)}" P1 P2 Q1 Q2 "{(failures P1, failures P2), (failures Q1, failures Q2)}"]) by (auto) (*** map_alpha ***) lemma map_alpha_failuresfun_Ext_choice: "[| Pf : Procfun ; Qf : Procfun ; map_alpha (%SFf. tracesfun Pf (fstF o SFf)) alpha ; map_alpha (%SFf. tracesfun Qf (fstF o SFf)) alpha ; map_alpha (failuresfun Pf) alpha ; map_alpha (failuresfun Qf) alpha |] ==> map_alpha (failuresfun (%f. (Pf f [+] Qf f))) alpha" apply (simp add: map_alpha_def) apply (intro allI) apply (erule conjE) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) apply (simp add: failuresfun_def) apply (simp add: tracesfun_def) apply (simp add: traces_Pf_Proc_T_F) by (simp add: map_alpha_failuresfun_Ext_choice_lm) (*** non_expanding ***) lemma non_expanding_failuresfun_Ext_choice: "[| Pf : Procfun ; Qf : Procfun ; non_expanding (%SFf. tracesfun Pf (fstF o SFf)) ; non_expanding (%SFf. tracesfun Qf (fstF o SFf)) ; non_expanding (failuresfun Pf) ; non_expanding (failuresfun Qf) |] ==> non_expanding (failuresfun (%f. (Pf f [+] Qf f)))" by (simp add: non_expanding_def map_alpha_failuresfun_Ext_choice) (*** contraction ***) lemma contraction_alpha_failuresfun_Ext_choice: "[| Pf : Procfun ; Qf : Procfun ; contraction_alpha (%SFf. tracesfun Pf (fstF o SFf)) alpha ; contraction_alpha (%SFf. tracesfun Qf (fstF o SFf)) alpha ; contraction_alpha (failuresfun Pf) alpha ; contraction_alpha (failuresfun Qf) alpha|] ==> contraction_alpha (failuresfun (%f. (Pf f [+] Qf f))) alpha" by (simp add: contraction_alpha_def map_alpha_failuresfun_Ext_choice) (*--------------------------------* | Int_choice | *--------------------------------*) (*** rest_domT (subset) ***) lemma Int_choice_rest_setF_sub: "[| failures P1 .|. n <= failures P2 .|. n ; failures Q1 .|. n <= failures Q2 .|. n |] ==> failures (P1 |~| Q1) .|. n <= failures (P2 |~| Q2) .|. n" apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_rest_setF) apply (simp add: in_failures) apply (elim disjE conjE exE) by (force)+ (*** rest_setF (equal) ***) lemma Int_choice_rest_setF: "[| failures P1 .|. n = failures P2 .|. n ; failures Q1 .|. n = failures Q2 .|. n |] ==> failures (P1 |~| Q1) .|. n = failures (P2 |~| Q2) .|. n" apply (rule order_antisym) by (simp_all add: Int_choice_rest_setF_sub) (*** distF lemma ***) lemma Int_choice_distF: "PQs = {(failures P1, failures P2), (failures Q1, failures Q2)} ==> (EX PQ. PQ:PQs & distance(failures (P1 |~| Q1), failures (P2 |~| Q2)) <= distance((fst PQ), (snd PQ)))" apply (rule rest_to_dist_pair) by (auto intro: Int_choice_rest_setF) (*** map_alpha F lemma ***) lemma map_alpha_failuresfun_Int_choice_lm: "[| distance (failures P1, failures P2) <= alpha * distance (x1, x2) ; distance (failures Q1, failures Q2) <= alpha * distance (x1, x2) |] ==> distance (failures (P1 |~| Q1), failures (P2 |~| Q2)) <= alpha * distance (x1, x2)" apply (insert Int_choice_distF [of "{(failures P1, failures P2), (failures Q1, failures Q2)}" P1 P2 Q1 Q2]) by (auto) (*** map_alpha ***) lemma map_alpha_failuresfun_Int_choice: "[| map_alpha (failuresfun Pf) alpha ; map_alpha (failuresfun Qf) alpha |] ==> map_alpha (failuresfun (%f. (Pf f |~| Qf f))) alpha" apply (simp add: map_alpha_def) apply (intro allI) apply (erule conjE) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) apply (simp add: failuresfun_def) by (simp add: map_alpha_failuresfun_Int_choice_lm) (*** non_expanding ***) lemma non_expanding_failuresfun_Int_choice: "[| non_expanding (failuresfun Pf) ; non_expanding (failuresfun Qf) |] ==> non_expanding (failuresfun (%f. (Pf f |~| Qf f)))" by (simp add: non_expanding_def map_alpha_failuresfun_Int_choice) (*** contraction ***) lemma contraction_alpha_failuresfun_Int_choice: "[| contraction_alpha (failuresfun Pf) alpha ; contraction_alpha (failuresfun Qf) alpha|] ==> contraction_alpha (failuresfun (%f. (Pf f |~| Qf f))) alpha" by (simp add: contraction_alpha_def map_alpha_failuresfun_Int_choice) (*--------------------------------* | Rep_int_choice | *--------------------------------*) (*** rest_setF (subset) ***) lemma Rep_int_choice_rest_setF_sub: "[| ALL c : C. failures (Pf c) .|. n <= failures (Qf c) .|. n |] ==> failures (!! :C .. Pf) .|. n <= failures (!! :C .. Qf) .|. n" apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_rest_setF) apply (simp add: in_failures) apply (elim conjE bexE) apply (rule_tac x="c" in bexI) by (auto) (*** rest_setF (equal) ***) lemma Rep_int_choice_rest_setF: "[| ALL c : C. failures (Pf c) .|. n = failures (Qf c) .|. n |] ==> failures (!! :C .. Pf) .|. n = failures (!! :C .. Qf) .|. n" apply (rule order_antisym) by (simp_all add: Rep_int_choice_rest_setF_sub) (*** distF lemma ***) lemma Rep_int_choice_distF_nonempty: "[| C ~= {} ; PQs = {(failures (Pf c), failures (Qf c))|c. c : C} |] ==> (EX PQ. PQ:PQs & distance(failures (!! :C .. Pf), failures (!! :C .. Qf)) <= distance(fst PQ, snd PQ))" apply (rule rest_to_dist_pair) apply (fast) apply (intro allI impI) apply (rule Rep_int_choice_rest_setF) by (auto) (*** map_alpha F lemma ***) lemma map_alpha_failuresfun_Rep_int_choice_lm: "[| C ~= {} ; ALL c. distance (failures (Pf c), failures (Qf c)) <= alpha * distance (x1, x2) |] ==> distance(failures (!! :C .. Pf), failures (!! :C .. Qf)) <= alpha * distance(x1, x2)" apply (insert Rep_int_choice_distF_nonempty [of C "{(failures (Pf c), failures (Qf c))|c. c : C}" Pf Qf]) apply (simp) apply (elim conjE exE, simp) apply (drule_tac x="c" in spec) by (force) (*** map_alpha ***) lemma map_alpha_failuresfun_Rep_int_choice: "ALL c. map_alpha (failuresfun (Pff c)) alpha ==> map_alpha (failuresfun (%f. !! c:C .. (Pff c f))) alpha" apply (simp add: map_alpha_def) apply (case_tac "C = {}") apply (simp add: failuresfun_simp) apply (simp add: real_mult_order_eq) apply (simp add: failuresfun_def) apply (simp add: map_alpha_failuresfun_Rep_int_choice_lm) done (*** non_expanding ***) lemma non_expanding_failuresfun_Rep_int_choice: "ALL c. non_expanding (failuresfun (Pff c)) ==> non_expanding (failuresfun (%f. !! c:C .. (Pff c f)))" by (simp add: non_expanding_def map_alpha_failuresfun_Rep_int_choice) (*** Rep_int_choice_evalT_contraction_alpha ***) lemma contraction_alpha_failuresfun_Rep_int_choice: "ALL c. contraction_alpha (failuresfun (Pff c)) alpha ==> contraction_alpha (failuresfun (%f. !! c:C .. (Pff c f))) alpha" by (simp add: contraction_alpha_def map_alpha_failuresfun_Rep_int_choice) (*--------------------------------* | IF | *--------------------------------*) (*** rest_setF (subset) ***) lemma IF_rest_setF_sub: "[| failures P1 .|. n <= failures P2 .|. n ; failures Q1 .|. n <= failures Q2 .|. n |] ==> failures (IF b THEN P1 ELSE Q1) .|. n <= failures (IF b THEN P2 ELSE Q2) .|. n" apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_rest_setF) apply (simp add: in_failures) done (*** rest_setF (equal) ***) lemma IF_rest_setF: "[| failures P1 .|. n = failures P2 .|. n ; failures Q1 .|. n = failures Q2 .|. n |] ==> failures (IF b THEN P1 ELSE Q1) .|. n = failures (IF b THEN P2 ELSE Q2) .|. n" apply (rule order_antisym) by (simp_all add: IF_rest_setF_sub) (*** distF lemma ***) lemma IF_distF: "PQs = {(failures P1, failures P2), (failures Q1, failures Q2)} ==> (EX PQ. PQ:PQs & distance(failures (IF b THEN P1 ELSE Q1), failures (IF b THEN P2 ELSE Q2)) <= distance((fst PQ), (snd PQ)))" apply (rule rest_to_dist_pair) by (auto intro: IF_rest_setF) (*** map_alpha F lemma ***) lemma map_alpha_failuresfun_IF_lm: "[| distance (failures P1, failures P2) <= alpha * distance (x1, x2) ; distance (failures Q1, failures Q2) <= alpha * distance (x1, x2) |] ==> distance(failures (IF b THEN P1 ELSE Q1), failures (IF b THEN P2 ELSE Q2)) <= alpha * distance (x1, x2)" apply (insert IF_distF [of "{(failures P1, failures P2), (failures Q1, failures Q2)}" P1 P2 Q1 Q2 b]) by (auto) (*** map_alpha ***) lemma map_alpha_failuresfun_IF: "[| map_alpha (failuresfun Pf) alpha ; map_alpha (failuresfun Qf) alpha |] ==> map_alpha (failuresfun (%f. IF b THEN (Pf f) ELSE (Qf f))) alpha" apply (simp add: map_alpha_def) apply (intro allI) apply (erule conjE) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) apply (simp add: failuresfun_def) by (simp add: map_alpha_failuresfun_IF_lm) (*** non_expanding ***) lemma non_expanding_failuresfun_IF: "[| non_expanding (failuresfun Pf) ; non_expanding (failuresfun Qf) |] ==> non_expanding (failuresfun (%f. IF b THEN (Pf f) ELSE (Qf f)))" by (simp add: non_expanding_def map_alpha_failuresfun_IF) (*** contraction_alpha ***) lemma contraction_alpha_failuresfun_IF: "[| contraction_alpha (failuresfun Pf) alpha ; contraction_alpha (failuresfun Qf) alpha|] ==> contraction_alpha (failuresfun (%f. IF b THEN (Pf f) ELSE (Qf f))) alpha" by (simp add: contraction_alpha_def map_alpha_failuresfun_IF) (*--------------------------------* | Parallel | *--------------------------------*) (*** rest_setF (subset) ***) lemma Parallel_rest_setF_sub: "[| failures P1 .|. n <= failures P2 .|. n ; failures Q1 .|. n <= failures Q2 .|. n |] ==> failures (P1 |[X]| Q1) .|. n <= failures (P2 |[X]| Q2) .|. n" apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_rest_setF) apply (simp add: in_failures) apply (elim conjE exE) apply (rule_tac x="Y" in exI) apply (rule_tac x="Z" in exI) apply (simp) apply (rule_tac x="sa" in exI) apply (rule_tac x="t" in exI) apply (simp) apply (drule_tac x="sa" in spec) apply (drule_tac x="t" in spec) apply (drule_tac x="Y" in spec) apply (drule_tac x="Z" in spec) apply (erule disjE, simp) (* lengtht s < n *) apply (erule par_tr_lengthtE) apply (simp) apply (elim conjE exE, simp) (* lengtht s = n *) apply (simp add: par_tr_last) apply (elim conjE exE, simp) apply (erule par_tr_lengthtE) apply (case_tac "Suc (lengtht s'a) < n", simp) apply (case_tac "Suc (lengtht t') < n", simp) apply (case_tac "Suc (lengtht t') = n", simp) apply (drule mp, force) apply (simp) apply (force) (* contradict *) apply (case_tac "Suc (lengtht t') < n", simp) apply (drule mp) apply (rule_tac x="s'a" in exI, simp) apply (simp) apply (case_tac "Suc (lengtht t') = n", simp) apply (drule mp) apply (rule_tac x="s'a" in exI, simp) apply (drule mp) apply (rule_tac x="t'" in exI, simp) apply (simp) apply (force) (* contradict *) done (*** rest_setF (equal) ***) lemma Parallel_rest_setF: "[| failures P1 .|. n = failures P2 .|. n ; failures Q1 .|. n = failures Q2 .|. n |] ==> failures (P1 |[X]| Q1) .|. n = failures (P2 |[X]| Q2) .|. n" apply (rule order_antisym) by (simp_all add: Parallel_rest_setF_sub) (*** distF lemma ***) lemma Parallel_distF: "PQs = {(failures P1, failures P2), (failures Q1, failures Q2)} ==> (EX PQ. PQ:PQs & distance(failures (P1 |[X]| Q1), failures (P2 |[X]| Q2)) <= distance((fst PQ), (snd PQ)))" apply (rule rest_to_dist_pair) by (auto intro: Parallel_rest_setF) (*** map_alpha F lemma ***) lemma map_alpha_failuresfun_Parallel_lm: "[| distance (failures P1, failures P2) <= alpha * distance (x1, x2) ; distance (failures Q1, failures Q2) <= alpha * distance (x1, x2) |] ==> distance (failures (P1 |[X]| Q1), failures (P2 |[X]| Q2)) <= alpha * distance (x1, x2)" apply (insert Parallel_distF [of "{(failures P1, failures P2), (failures Q1, failures Q2)}" P1 P2 Q1 Q2 X]) by (auto) (*** map_alpha ***) lemma map_alpha_failuresfun_Parallel: "[| map_alpha (failuresfun Pf) alpha ; map_alpha (failuresfun Qf) alpha |] ==> map_alpha (failuresfun (%f. (Pf f |[X]| Qf f))) alpha" apply (simp add: map_alpha_def) apply (intro allI) apply (erule conjE) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) apply (simp add: failuresfun_def) by (simp add: map_alpha_failuresfun_Parallel_lm) (*** non_expanding ***) lemma non_expanding_failuresfun_Parallel: "[| non_expanding (failuresfun Pf) ; non_expanding (failuresfun Qf) |] ==> non_expanding (failuresfun (%f. (Pf f |[X]| Qf f)))" by (simp add: non_expanding_def map_alpha_failuresfun_Parallel) (*** contraction_alpha ***) lemma contraction_alpha_failuresfun_Parallel: "[| contraction_alpha (failuresfun Pf) alpha ; contraction_alpha (failuresfun Qf) alpha |] ==> contraction_alpha (failuresfun (%f. (Pf f |[X]| Qf f))) alpha" by (simp add: contraction_alpha_def map_alpha_failuresfun_Parallel) (*--------------------------------* | Hiding | *--------------------------------*) (* cms rules for Hiding is not necessary because processes are guarded. *) (*--------------------------------* | Renaming | *--------------------------------*) (*** rest_setF (subset) ***) lemma Renaming_rest_setF_sub: "failures P .|. n <= failures Q .|. n ==> failures (P [[r]]) .|. n <= failures (Q [[r]]) .|. n" apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_rest_setF) apply (simp add: in_failures) apply (elim conjE exE) apply (rule_tac x="sa" in exI) apply (drule_tac x="sa" in spec) apply (drule_tac x="[[r]]inv X" in spec) apply (simp) apply (erule disjE) apply (simp add: ren_tr_lengtht) apply (elim conjE exE) apply (simp add: ren_tr_lengtht) apply (simp add: ren_tr_appt_decompo_right) apply (elim conjE exE, simp) by (fast) (*** rest_setF (equal) ***) lemma Renaming_rest_setF: "failures P .|. n = failures Q .|. n ==> failures (P [[r]]) .|. n = failures (Q [[r]]) .|. n" apply (rule order_antisym) by (simp_all add: Renaming_rest_setF_sub) (*** distF lemma ***) lemma Renaming_distF: "distance(failures (P [[r]]), failures (Q [[r]])) <= distance(failures P, failures Q)" apply (rule rest_distance_subset) by (auto intro: Renaming_rest_setF) (*** map_alphaT lemma ***) lemma map_alpha_failuresfun_Renaming_lm: "distance(failures P, failures Q) <= alpha * distance (x1, x2) ==> distance(failures (P [[r]]), failures (Q [[r]])) <= alpha * distance(x1, x2)" apply (insert Renaming_distF[of P r Q]) by (simp) (*** map_alpha ***) lemma map_alpha_failuresfun_Renaming: "map_alpha (failuresfun Pf) alpha ==> map_alpha (failuresfun (%f. (Pf f) [[r]])) alpha" apply (simp add: map_alpha_def) apply (intro allI) apply (erule conjE) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (simp add: failuresfun_def) by (simp add: map_alpha_failuresfun_Renaming_lm) (*** non_expanding ***) lemma non_expanding_failuresfun_Renaming: "non_expanding (failuresfun Pf) ==> non_expanding (failuresfun (%f. (Pf f) [[r]]))" by (simp add: non_expanding_def map_alpha_failuresfun_Renaming) (*** contraction_alpha ***) lemma contraction_alpha_failuresfun_Renaming: "contraction_alpha (failuresfun Pf) alpha ==> contraction_alpha (failuresfun (%f. (Pf f) [[r]])) alpha" by (simp add: contraction_alpha_def map_alpha_failuresfun_Renaming) (*--------------------------------* | Seq_compo | *--------------------------------*) (*** rest_setF (subset) ***) lemma Seq_compo_rest_setF_sub: "[| traces P1 .|. n <= traces P2 .|. n ; failures P1 .|. n <= failures P2 .|. n ; failures Q1 .|. n <= failures Q2 .|. n |] ==> failures (P1 ;; Q1) .|. n <= failures (P2 ;; Q2) .|. n" apply (simp add: subsetF_iff) apply (simp add: subdomT_iff) apply (intro allI impI) apply (simp add: in_rest_setF) apply (simp add: in_rest_domT) apply (simp add: in_failures) apply (elim conjE exE disjE) apply (simp_all) (* case 1 *) apply (rule disjI2) apply (rule_tac x="sa" in exI) apply (rule_tac x="t" in exI) apply (simp) (* case 2 *) apply (rule disjI2) apply (rule_tac x="sa" in exI) apply (rule_tac x="t" in exI) apply (simp) apply (drule_tac x=" sa ^^ <Tick>" in spec) apply (simp) apply (insert trace_last_nil_or_unnil) apply (rotate_tac -1) apply (drule_tac x="t" in spec) apply (erule disjE, simp) apply (rotate_tac 2) apply (drule sym) apply (simp) apply (elim conjE exE, simp) apply (simp add: appt_assoc_sym) apply (rotate_tac 1) apply (drule_tac x="sb ^^ <Tick>" in spec) apply (drule_tac x="X" in spec, simp) apply (elim conjE) apply (case_tac "Suc (lengtht sb) < n", simp) apply (case_tac "Suc (lengtht sb) = n", simp) apply (drule mp, force) apply (simp) apply (force) done (*** rest_setF (equal) ***) lemma Seq_compo_rest_setF: "[| traces P1 .|. n = traces P2 .|. n ; failures P1 .|. n = failures P2 .|. n ; failures Q1 .|. n = failures Q2 .|. n |] ==> failures (P1 ;; Q1) .|. n = failures (P2 ;; Q2) .|. n" apply (rule order_antisym) by (simp_all add: Seq_compo_rest_setF_sub) (*** distF lemma ***) lemma Seq_compo_distF: "[| PQTs = {(traces P1, traces P2)} ; PQFs = {(failures P1, failures P2), (failures Q1, failures Q2)} |] ==> (EX PQ. PQ:PQTs & distance(failures (P1 ;; Q1), failures (P2 ;; Q2)) <= distance((fst PQ), (snd PQ))) | (EX PQ. PQ:PQFs & distance(failures (P1 ;; Q1), failures (P2 ;; Q2)) <= distance((fst PQ), (snd PQ)))" apply (rule rest_to_dist_pair_two) by (auto intro: Seq_compo_rest_setF) (*** map_alpha F lemma ***) lemma map_alpha_transfun_Seq_compo_lm: "[| distance (traces P1, traces P2) <= alpha * distance (x1, x2) ; distance (failures P1, failures P2) <= alpha * distance (x1, x2) ; distance (failures Q1, failures Q2) <= alpha * distance (x1, x2) |] ==> distance (failures (P1 ;; Q1), failures (P2 ;; Q2)) <= alpha * distance (x1, x2)" apply (insert Seq_compo_distF [of "{(traces P1, traces P2)}" P1 P2 "{(failures P1, failures P2), (failures Q1, failures Q2)}" Q1 Q2]) by (auto) (*** map_alpha ***) lemma map_alpha_transfun_Seq_compo: "[| Pf : Procfun ; Qf : Procfun ; map_alpha (%SFf. tracesfun Pf (fstF o SFf)) alpha ; map_alpha (failuresfun Pf) alpha ; map_alpha (failuresfun Qf) alpha |] ==> map_alpha (failuresfun (%f. (Pf f ;; Qf f))) alpha" apply (simp add: map_alpha_def) apply (intro allI) apply (erule conjE) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) apply (simp add: failuresfun_def) apply (simp add: tracesfun_def) apply (simp add: traces_Pf_Proc_T_F) by (simp add: map_alpha_transfun_Seq_compo_lm) (*** non_expanding ***) lemma non_expanding_failuresfun_Seq_compo: "[| Pf : Procfun ; Qf : Procfun ; non_expanding (%SFf. tracesfun Pf (fstF o SFf)) ; non_expanding (failuresfun Pf) ; non_expanding (failuresfun Qf) |] ==> non_expanding (failuresfun (%f. (Pf f ;; Qf f)))" by (simp add: non_expanding_def map_alpha_transfun_Seq_compo) (*** contraction_alpha ***) lemma contraction_alpha_failuresfun_Seq_compo: "[| Pf : Procfun ; Qf : Procfun ; contraction_alpha (%SFf. tracesfun Pf (fstF o SFf)) alpha ; contraction_alpha (failuresfun Pf) alpha ; contraction_alpha (failuresfun Qf) alpha|] ==> contraction_alpha (failuresfun (%f. (Pf f ;; Qf f))) alpha" by (simp add: contraction_alpha_def map_alpha_transfun_Seq_compo) (*--------------------------------* | Seq_compo (gSKIP) | *--------------------------------*) (*** rest_setF (subset) ***) lemma gSKIP_Seq_compo_rest_setF_sub: "[| traces P1 .|. (Suc n) <= traces P2 .|. (Suc n) ; failures P1 .|. (Suc n) <= failures P2 .|. (Suc n) ; failures Q1 .|. n <= failures Q2 .|. n ; <Tick> ~:t traces P1 ; <Tick> ~:t traces P2 |] ==> failures (P1 ;; Q1) .|. (Suc n) <= failures (P2 ;; Q2) .|. (Suc n)" apply (simp add: subsetF_iff) apply (simp add: subdomT_iff) apply (intro allI impI) apply (simp add: in_rest_setF) apply (simp add: in_rest_domT) apply (simp add: in_failures) apply (elim conjE exE disjE) apply (simp_all) (* case 1 *) apply (insert trace_last_nil_or_unnil) apply (rotate_tac -1) apply (drule_tac x="sa" in spec) apply (erule disjE) apply (simp add: gSKIP_to_Tick_notin_traces) (* sa = []t *) apply (rule disjI2) (* sa ~= []t *) apply (elim conjE exE, simp) apply (rule_tac x="(sb ^^ <a>)" in exI) apply (rule_tac x="t" in exI) apply (simp) (* case 2 *) apply (rotate_tac -1) apply (drule_tac x="t" in spec) apply (erule disjE) apply (simp) (* t = []t *) apply (rotate_tac 5) apply (drule sym) apply (simp) (* contradict noTick *) apply (rule disjI2) (* t ~= []t *) apply (elim conjE exE, simp) apply (simp add: appt_assoc_sym) apply (rule_tac x="sa" in exI) apply (rule_tac x="sb ^^ <Tick>" in exI) apply (simp add: appt_assoc) apply (insert trace_last_nil_or_unnil) apply (rotate_tac -1) apply (drule_tac x="sa" in spec) apply (erule disjE) apply (simp add: gSKIP_to_Tick_notin_traces) (* sa = []t *) apply (elim conjE exE, simp) (* i.e. lengtht sb < n *) apply (rotate_tac 2) apply (drule_tac x="sb ^^ <Tick>" in spec) apply (drule_tac x="X" in spec) apply (drule mp) apply (simp) apply (case_tac "Suc (lengtht sb) < n", simp) apply (case_tac "Suc (lengtht sb) = n", fast) apply (force) apply (simp) done (*** rest_setF (equal) ***) lemma gSKIP_Seq_compo_rest_setF: "[| traces P1 .|. (Suc n) = traces P2 .|. (Suc n) ; failures P1 .|. (Suc n) = failures P2 .|. (Suc n) ; failures Q1 .|. n = failures Q2 .|. n ; <Tick> ~:t traces P1 ; <Tick> ~:t traces P2 |] ==> failures (P1 ;; Q1) .|. (Suc n) = failures (P2 ;; Q2) .|. (Suc n)" apply (rule order_antisym) by (simp_all add: gSKIP_Seq_compo_rest_setF_sub) (*** map_alpha F lemma ***) lemma gSKIP_map_alpha_transfun_Seq_compo_lm: "[| distance (traces P1, traces P2) * 2 <= (1/2)^n ; distance (failures P1, failures P2) * 2 <= (1/2)^n ; distance (failures Q1, failures Q2) <= (1/2)^n ; <Tick> ~:t traces P1 ; <Tick> ~:t traces P2 |] ==> distance (failures (P1 ;; Q1), failures (P2 ;; Q2)) * 2 <= (1/2)^n" apply (insert gSKIP_Seq_compo_rest_setF[of P1 n P2 Q1 Q2]) apply (simp add: distance_rs_le_1) done (*** map_alpha ***) lemma gSKIP_contraction_half_transfun_Seq_compo: "[| contraction_alpha (%SFf. tracesfun Pf (fstF o SFf)) (1/2) ; contraction_alpha (failuresfun Pf) (1/2) ; non_expanding (failuresfun Qf) ; Pf : gSKIPfun ; Pf : Procfun |] ==> contraction_alpha (failuresfun (%f. (Pf f ;; Qf f))) (1/2)" apply (simp add: contraction_alpha_def non_expanding_def map_alpha_def) apply (intro allI) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) apply (case_tac "x = y", simp) apply (simp add: distance_iff) apply (simp add: failuresfun_def) apply (simp add: tracesfun_def) apply (simp add: traces_Pf_Proc_T_F) apply (insert ALL_gSKIP_to_Tick_notin_traces) apply (frule_tac x="Pf" in spec) apply (drule_tac x="Pf" in spec) apply (drule_tac x="(%p. Proc_F(x p))" in spec) apply (drule_tac x="(%p. Proc_F(y p))" in spec) apply (simp add: gSKIP_map_alpha_transfun_Seq_compo_lm) done (*--------------------------------* | Depth_rest | *--------------------------------*) (*** rest_setF (equal) ***) lemma Depth_rest_rest_setF: "failures P .|. n = failures Q .|. n ==> failures (P |. m) .|. n = failures (Q |. m) .|. n" apply (simp add: failures.simps) apply (simp add: min_rs) apply (rule rest_equal_preserve) apply (simp) apply (simp add: min_def) done (*** distF lemma ***) lemma Depth_rest_distF: "distance(failures (P |. m), failures (Q |. m)) <= distance(failures P, failures Q)" apply (rule rest_distance_subset) by (auto intro: Depth_rest_rest_setF) (*** map_alphaT lemma ***) lemma map_alpha_failuresfun_Depth_rest_lm: "distance(failures P, failures Q) <= alpha * distance (x1, x2) ==> distance(failures (P |. m), failures (Q |. m)) <= alpha * distance(x1, x2)" apply (insert Depth_rest_distF[of P m Q]) by (simp) (*** map_alpha ***) lemma map_alpha_failuresfun_Depth_rest: "map_alpha (failuresfun Pf) alpha ==> map_alpha (failuresfun (%f. (Pf f) |. n)) alpha" apply (simp add: map_alpha_def) apply (intro allI) apply (erule conjE) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (simp add: failuresfun_def) by (simp add: map_alpha_failuresfun_Depth_rest_lm) (*** non_expanding ***) lemma non_expanding_failuresfun_Depth_rest: "non_expanding (failuresfun Pf) ==> non_expanding (failuresfun (%f. (Pf f) |. n))" by (simp add: non_expanding_def map_alpha_failuresfun_Depth_rest) (*** contraction_alpha ***) lemma contraction_alpha_failuresfun_Depth_rest: "contraction_alpha (failuresfun Pf) alpha ==> contraction_alpha (failuresfun (%f. (Pf f) |. n)) alpha" by (simp add: contraction_alpha_def map_alpha_failuresfun_Depth_rest) (*--------------------------------* | variable | *--------------------------------*) (*** non_expanding ***) lemma non_expanding_failuresfun_variable: "non_expanding (failuresfun (%f. f p))" apply (subgoal_tac "non_expanding [[%f. f p]]Ffun") apply (simp add: semF_decompo_fun) apply (simp add: non_expanding_domF_decompo tracesfun_failuresfun_in_domF) apply (erule conjE) apply (simp) apply (simp add: semFfun_variable) apply (simp add: non_expanding_prod_variable) done (*--------------------------------* | Procfun | *--------------------------------*) (***************************************************************** | non_expanding | *****************************************************************) lemma non_expanding_failuresfun_lm: "Pf : nohidefun ==> non_expanding (failuresfun Pf)" apply (rule nohidefun.induct[of Pf]) apply (simp) apply (simp add: non_expanding_failuresfun_variable) apply (simp add: non_expanding_failuresfun_STOP) apply (simp add: non_expanding_failuresfun_SKIP) apply (simp add: non_expanding_failuresfun_DIV) apply (simp add: non_expanding_failuresfun_Act_prefix) apply (simp add: non_expanding_failuresfun_Ext_pre_choice) apply (simp add: non_expanding_failuresfun_Ext_choice non_expanding_tracesfun_fstF) apply (simp add: non_expanding_failuresfun_Int_choice) apply (simp add: non_expanding_failuresfun_Rep_int_choice) apply (simp add: non_expanding_failuresfun_IF) apply (simp add: non_expanding_failuresfun_Parallel) (* hiding --> const *) apply (simp add: failuresfun_def) apply (simp add: non_expanding_Constant) apply (simp add: non_expanding_failuresfun_Renaming) apply (simp add: non_expanding_failuresfun_Seq_compo non_expanding_tracesfun_fstF) apply (simp add: non_expanding_failuresfun_Depth_rest) done lemma non_expanding_failuresfun: "Pf : nohidefun ==> non_expanding (failuresfun Pf)" by (simp add: non_expanding_failuresfun_lm) (*=============================================================* | [[P]]Ffun | *=============================================================*) lemma non_expanding_semFfun: "Pf : nohidefun ==> non_expanding [[Pf]]Ffun" apply (simp add: semF_decompo_fun) apply (simp add: non_expanding_domF_decompo fun_in_domF) apply (simp add: non_expanding_tracesfun_fstF) apply (simp add: non_expanding_failuresfun) done (*=============================================================* | failuresFun | *=============================================================*) lemma non_expanding_failuresFun: "PF : nohideFun ==> non_expanding (failuresFun PF)" apply (simp add: prod_non_expand) apply (rule allI) apply (simp add: proj_failuresFun_failuresfun) apply (simp add: nohideFun_def) apply (drule_tac x="i" in spec) apply (simp add: non_expanding_failuresfun) done (*=============================================================* | [[P]]FFun | *=============================================================*) lemma non_expanding_semFFun: "PF : nohideFun ==> non_expanding [[PF]]FFun" apply (simp add: prod_non_expand) apply (rule allI) apply (simp add: proj_semFFun_semFfun) apply (simp add: nohideFun_def) apply (drule_tac x="i" in spec) apply (simp add: non_expanding_semFfun) done (***************************************************************** | contraction | *****************************************************************) lemma contraction_alpha_failuresfun: "Pf : gProcfun ==> contraction_alpha (failuresfun Pf) (1/2)" apply (rule gProcfun.induct[of Pf]) apply (simp) apply (simp add: contraction_alpha_failuresfun_STOP) apply (simp add: contraction_alpha_failuresfun_SKIP) apply (simp add: contraction_alpha_failuresfun_DIV) apply (simp add: contraction_half_failuresfun_Act_prefix non_expanding_failuresfun) apply (simp add: contraction_half_failuresfun_Ext_pre_choice non_expanding_failuresfun) apply (simp add: contraction_alpha_failuresfun_Ext_choice contraction_alpha_tracesfun_fstF) apply (simp add: contraction_alpha_failuresfun_Int_choice) apply (simp add: contraction_alpha_failuresfun_Rep_int_choice) apply (simp add: contraction_alpha_failuresfun_IF) apply (simp add: contraction_alpha_failuresfun_Parallel) (* hiding --> const *) apply (simp add: failuresfun_def) apply (simp add: contraction_alpha_Constant) apply (simp add: contraction_alpha_failuresfun_Renaming) apply (simp) apply (elim conjE disjE) apply (simp add: gSKIP_contraction_half_transfun_Seq_compo non_expanding_failuresfun contraction_alpha_tracesfun_fstF) apply (simp add: contraction_alpha_failuresfun_Seq_compo contraction_alpha_tracesfun_fstF) apply (simp add: contraction_alpha_failuresfun_Depth_rest) done (*=============================================================* | [[P]]Ffun | *=============================================================*) lemma contraction_alpha_semFfun: "Pf : gProcfun ==> contraction_alpha [[Pf]]Ffun (1/2)" apply (simp add: semF_decompo_fun) apply (simp add: contraction_alpha_domF_decompo fun_in_domF) apply (simp add: contraction_alpha_tracesfun_fstF) apply (simp add: contraction_alpha_failuresfun) done (*=============================================================* | failuresfun P | *=============================================================*) lemma contraction_alpha_failuresFun: "PF : gProcFun ==> contraction_alpha (failuresFun PF) (1/2)" apply (simp add: prod_contra_alpha) apply (rule allI) apply (simp add: proj_failuresFun_failuresfun) apply (simp add: gProcFun_def) apply (drule_tac x="i" in spec) apply (simp add: contraction_alpha_failuresfun) done lemma contraction_failuresfun: "PF : gProcFun ==> contraction (failuresFun PF)" apply (simp add: contraction_def) apply (rule_tac x="1/2" in exI) apply (simp add: contraction_alpha_failuresFun) done (*=============================================================* | [[P]]FFun | *=============================================================*) lemma contraction_alpha_semFFun: "PF : gProcFun ==> contraction_alpha [[PF]]FFun (1/2)" apply (simp add: prod_contra_alpha) apply (rule allI) apply (simp add: proj_semFFun_semFfun) apply (simp add: gProcFun_def) apply (drule_tac x="i" in spec) apply (simp add: contraction_alpha_semFfun) done lemma contraction_semFFun: "PF : gProcFun ==> contraction [[PF]]FFun" apply (simp add: contraction_def) apply (rule_tac x="1/2" in exI) apply (simp add: contraction_alpha_semFFun) done end
lemma non_expanding_tracesfun_fstF:
Pf ∈ nohidefun ==> non_expanding (%SFf. tracesfun Pf (fstF o SFf))
lemma contraction_alpha_tracesfun_fstF:
Pf ∈ gProcfun ==> contraction_alpha (%SFf. tracesfun Pf (fstF o SFf)) (1 / 2)
lemma map_alpha_failuresfun_STOP:
0 ≤ alpha ==> map_alpha (failuresfun (%SFf. STOP)) alpha
lemma non_expanding_failuresfun_STOP:
non_expanding (failuresfun (%SFf. STOP))
lemma contraction_alpha_failuresfun_STOP:
[| 0 ≤ alpha; alpha < 1 |] ==> contraction_alpha (failuresfun (%SFf. STOP)) alpha
lemma map_alpha_failuresfun_SKIP:
0 ≤ alpha ==> map_alpha (failuresfun (%SFf. SKIP)) alpha
lemma non_expanding_failuresfun_SKIP:
non_expanding (failuresfun (%SFf. SKIP))
lemma contraction_alpha_failuresfun_SKIP:
[| 0 ≤ alpha; alpha < 1 |] ==> contraction_alpha (failuresfun (%SFf. SKIP)) alpha
lemma map_alpha_failuresfun_DIV:
0 ≤ alpha ==> map_alpha (failuresfun (%SFf. DIV)) alpha
lemma non_expanding_failuresfun_DIV:
non_expanding (failuresfun (%SFf. DIV))
lemma contraction_alpha_failuresfun_DIV:
[| 0 ≤ alpha; alpha < 1 |] ==> contraction_alpha (failuresfun (%SFf. DIV)) alpha
lemma contraction_half_failures_Act_prefix_lm:
distance (failures (a -> P), failures (a -> Q)) * 2 = distance (failures P, failures Q)
lemma contraction_half_failuresfun_Act_prefix:
non_expanding (failuresfun Pf) ==> contraction_alpha (failuresfun (%f. a -> Pf f)) (1 / 2)
lemma contraction_failuresfun_Act_prefix:
non_expanding (failuresfun Pf) ==> contraction (failuresfun (%f. a -> Pf f))
lemma non_expanding_failuresfun_Act_prefix:
non_expanding (failuresfun Pf) ==> non_expanding (failuresfun (%f. a -> Pf f))
lemma Ext_pre_choice_Act_prefix_rest_setF_sub:
∀a∈X. failures (a -> Pf a) .|. n ≤ failures (a -> Qf a) .|. n ==> failures (? :X -> Pf) .|. n ≤ failures (? :X -> Qf) .|. n
lemma Ext_pre_choice_Act_prefix_rest_setF:
∀a∈X. failures (a -> Pf a) .|. n = failures (a -> Qf a) .|. n ==> failures (? :X -> Pf) .|. n = failures (? :X -> Qf) .|. n
lemma Ext_pre_choice_Act_prefix_distF_nonempty:
[| X ≠ {}; PQs = {(failures (a -> Pf a), failures (a -> Qf a)) |a. a ∈ X} |] ==> ∃PQ. PQ ∈ PQs ∧ distance (failures (? :X -> Pf), failures (? :X -> Qf)) ≤ distance (fst PQ, snd PQ)
lemma contraction_half_failuresfun_Ext_pre_choice_lm:
[| X ≠ {}; ∀a. distance (failures (Pf a), failures (Qf a)) ≤ distance (x1.0, x2.0) |] ==> distance (failures (? :X -> Pf), failures (? :X -> Qf)) * 2 ≤ distance (x1.0, x2.0)
lemma contraction_half_failuresfun_Ext_pre_choice:
∀a. non_expanding (failuresfun (Pff a)) ==> contraction_alpha (failuresfun (%f. ? a:X -> Pff a f)) (1 / 2)
lemma contraction_failuresfun_Ext_pre_choice:
∀a. non_expanding (failuresfun (Pff a)) ==> contraction (failuresfun (%f. ? a:X -> Pff a f))
lemma non_expanding_failuresfun_Ext_pre_choice:
∀a. non_expanding (failuresfun (Pff a)) ==> non_expanding (failuresfun (%f. ? a:X -> Pff a f))
lemma Ext_choice_rest_setF_sub:
[| traces P1.0 .|. n ≤ traces P2.0 .|. n; traces Q1.0 .|. n ≤ traces Q2.0 .|. n; failures P1.0 .|. n ≤ failures P2.0 .|. n; failures Q1.0 .|. n ≤ failures Q2.0 .|. n |] ==> failures (P1.0 [+] Q1.0) .|. n ≤ failures (P2.0 [+] Q2.0) .|. n
lemma Ext_choice_rest_setF:
[| traces P1.0 .|. n = traces P2.0 .|. n; traces Q1.0 .|. n = traces Q2.0 .|. n; failures P1.0 .|. n = failures P2.0 .|. n; failures Q1.0 .|. n = failures Q2.0 .|. n |] ==> failures (P1.0 [+] Q1.0) .|. n = failures (P2.0 [+] Q2.0) .|. n
lemma Ext_choice_distF:
[| PQTs = {(traces P1.0, traces P2.0), (traces Q1.0, traces Q2.0)}; PQFs = {(failures P1.0, failures P2.0), (failures Q1.0, failures Q2.0)} |] ==> (∃PQ. PQ ∈ PQTs ∧ distance (failures (P1.0 [+] Q1.0), failures (P2.0 [+] Q2.0)) ≤ distance (fst PQ, snd PQ)) ∨ (∃PQ. PQ ∈ PQFs ∧ distance (failures (P1.0 [+] Q1.0), failures (P2.0 [+] Q2.0)) ≤ distance (fst PQ, snd PQ))
lemma map_alpha_failuresfun_Ext_choice_lm:
[| distance (traces P1.0, traces P2.0) ≤ alpha * distance (x1.0, x2.0); distance (traces Q1.0, traces Q2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures P1.0, failures P2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures Q1.0, failures Q2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (P1.0 [+] Q1.0), failures (P2.0 [+] Q2.0)) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failuresfun_Ext_choice:
[| Pf ∈ Procfun; Qf ∈ Procfun; map_alpha (%SFf. tracesfun Pf (fstF o SFf)) alpha; map_alpha (%SFf. tracesfun Qf (fstF o SFf)) alpha; map_alpha (failuresfun Pf) alpha; map_alpha (failuresfun Qf) alpha |] ==> map_alpha (failuresfun (%f. Pf f [+] Qf f)) alpha
lemma non_expanding_failuresfun_Ext_choice:
[| Pf ∈ Procfun; Qf ∈ Procfun; non_expanding (%SFf. tracesfun Pf (fstF o SFf)); non_expanding (%SFf. tracesfun Qf (fstF o SFf)); non_expanding (failuresfun Pf); non_expanding (failuresfun Qf) |] ==> non_expanding (failuresfun (%f. Pf f [+] Qf f))
lemma contraction_alpha_failuresfun_Ext_choice:
[| Pf ∈ Procfun; Qf ∈ Procfun; contraction_alpha (%SFf. tracesfun Pf (fstF o SFf)) alpha; contraction_alpha (%SFf. tracesfun Qf (fstF o SFf)) alpha; contraction_alpha (failuresfun Pf) alpha; contraction_alpha (failuresfun Qf) alpha |] ==> contraction_alpha (failuresfun (%f. Pf f [+] Qf f)) alpha
lemma Int_choice_rest_setF_sub:
[| failures P1.0 .|. n ≤ failures P2.0 .|. n; failures Q1.0 .|. n ≤ failures Q2.0 .|. n |] ==> failures (P1.0 |~| Q1.0) .|. n ≤ failures (P2.0 |~| Q2.0) .|. n
lemma Int_choice_rest_setF:
[| failures P1.0 .|. n = failures P2.0 .|. n; failures Q1.0 .|. n = failures Q2.0 .|. n |] ==> failures (P1.0 |~| Q1.0) .|. n = failures (P2.0 |~| Q2.0) .|. n
lemma Int_choice_distF:
PQs = {(failures P1.0, failures P2.0), (failures Q1.0, failures Q2.0)} ==> ∃PQ. PQ ∈ PQs ∧ distance (failures (P1.0 |~| Q1.0), failures (P2.0 |~| Q2.0)) ≤ distance (fst PQ, snd PQ)
lemma map_alpha_failuresfun_Int_choice_lm:
[| distance (failures P1.0, failures P2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures Q1.0, failures Q2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (P1.0 |~| Q1.0), failures (P2.0 |~| Q2.0)) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failuresfun_Int_choice:
[| map_alpha (failuresfun Pf) alpha; map_alpha (failuresfun Qf) alpha |] ==> map_alpha (failuresfun (%f. Pf f |~| Qf f)) alpha
lemma non_expanding_failuresfun_Int_choice:
[| non_expanding (failuresfun Pf); non_expanding (failuresfun Qf) |] ==> non_expanding (failuresfun (%f. Pf f |~| Qf f))
lemma contraction_alpha_failuresfun_Int_choice:
[| contraction_alpha (failuresfun Pf) alpha; contraction_alpha (failuresfun Qf) alpha |] ==> contraction_alpha (failuresfun (%f. Pf f |~| Qf f)) alpha
lemma Rep_int_choice_rest_setF_sub:
∀c∈C. failures (Pf c) .|. n ≤ failures (Qf c) .|. n ==> failures (!! :C .. Pf) .|. n ≤ failures (!! :C .. Qf) .|. n
lemma Rep_int_choice_rest_setF:
∀c∈C. failures (Pf c) .|. n = failures (Qf c) .|. n ==> failures (!! :C .. Pf) .|. n = failures (!! :C .. Qf) .|. n
lemma Rep_int_choice_distF_nonempty:
[| C ≠ {}; PQs = {(failures (Pf c), failures (Qf c)) |c. c ∈ C} |] ==> ∃PQ. PQ ∈ PQs ∧ distance (failures (!! :C .. Pf), failures (!! :C .. Qf)) ≤ distance (fst PQ, snd PQ)
lemma map_alpha_failuresfun_Rep_int_choice_lm:
[| C ≠ {}; ∀c. distance (failures (Pf c), failures (Qf c)) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (!! :C .. Pf), failures (!! :C .. Qf)) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failuresfun_Rep_int_choice:
∀c. map_alpha (failuresfun (Pff c)) alpha ==> map_alpha (failuresfun (%f. !! c:C .. Pff c f)) alpha
lemma non_expanding_failuresfun_Rep_int_choice:
∀c. non_expanding (failuresfun (Pff c)) ==> non_expanding (failuresfun (%f. !! c:C .. Pff c f))
lemma contraction_alpha_failuresfun_Rep_int_choice:
∀c. contraction_alpha (failuresfun (Pff c)) alpha ==> contraction_alpha (failuresfun (%f. !! c:C .. Pff c f)) alpha
lemma IF_rest_setF_sub:
[| failures P1.0 .|. n ≤ failures P2.0 .|. n; failures Q1.0 .|. n ≤ failures Q2.0 .|. n |] ==> failures (IF b THEN P1.0 ELSE Q1.0) .|. n ≤ failures (IF b THEN P2.0 ELSE Q2.0) .|. n
lemma IF_rest_setF:
[| failures P1.0 .|. n = failures P2.0 .|. n; failures Q1.0 .|. n = failures Q2.0 .|. n |] ==> failures (IF b THEN P1.0 ELSE Q1.0) .|. n = failures (IF b THEN P2.0 ELSE Q2.0) .|. n
lemma IF_distF:
PQs = {(failures P1.0, failures P2.0), (failures Q1.0, failures Q2.0)} ==> ∃PQ. PQ ∈ PQs ∧ distance (failures (IF b THEN P1.0 ELSE Q1.0), failures (IF b THEN P2.0 ELSE Q2.0)) ≤ distance (fst PQ, snd PQ)
lemma map_alpha_failuresfun_IF_lm:
[| distance (failures P1.0, failures P2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures Q1.0, failures Q2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (IF b THEN P1.0 ELSE Q1.0), failures (IF b THEN P2.0 ELSE Q2.0)) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failuresfun_IF:
[| map_alpha (failuresfun Pf) alpha; map_alpha (failuresfun Qf) alpha |] ==> map_alpha (failuresfun (%f. IF b THEN Pf f ELSE Qf f)) alpha
lemma non_expanding_failuresfun_IF:
[| non_expanding (failuresfun Pf); non_expanding (failuresfun Qf) |] ==> non_expanding (failuresfun (%f. IF b THEN Pf f ELSE Qf f))
lemma contraction_alpha_failuresfun_IF:
[| contraction_alpha (failuresfun Pf) alpha; contraction_alpha (failuresfun Qf) alpha |] ==> contraction_alpha (failuresfun (%f. IF b THEN Pf f ELSE Qf f)) alpha
lemma Parallel_rest_setF_sub:
[| failures P1.0 .|. n ≤ failures P2.0 .|. n; failures Q1.0 .|. n ≤ failures Q2.0 .|. n |] ==> failures (P1.0 |[X]| Q1.0) .|. n ≤ failures (P2.0 |[X]| Q2.0) .|. n
lemma Parallel_rest_setF:
[| failures P1.0 .|. n = failures P2.0 .|. n; failures Q1.0 .|. n = failures Q2.0 .|. n |] ==> failures (P1.0 |[X]| Q1.0) .|. n = failures (P2.0 |[X]| Q2.0) .|. n
lemma Parallel_distF:
PQs = {(failures P1.0, failures P2.0), (failures Q1.0, failures Q2.0)} ==> ∃PQ. PQ ∈ PQs ∧ distance (failures (P1.0 |[X]| Q1.0), failures (P2.0 |[X]| Q2.0)) ≤ distance (fst PQ, snd PQ)
lemma map_alpha_failuresfun_Parallel_lm:
[| distance (failures P1.0, failures P2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures Q1.0, failures Q2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (P1.0 |[X]| Q1.0), failures (P2.0 |[X]| Q2.0)) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failuresfun_Parallel:
[| map_alpha (failuresfun Pf) alpha; map_alpha (failuresfun Qf) alpha |] ==> map_alpha (failuresfun (%f. Pf f |[X]| Qf f)) alpha
lemma non_expanding_failuresfun_Parallel:
[| non_expanding (failuresfun Pf); non_expanding (failuresfun Qf) |] ==> non_expanding (failuresfun (%f. Pf f |[X]| Qf f))
lemma contraction_alpha_failuresfun_Parallel:
[| contraction_alpha (failuresfun Pf) alpha; contraction_alpha (failuresfun Qf) alpha |] ==> contraction_alpha (failuresfun (%f. Pf f |[X]| Qf f)) alpha
lemma Renaming_rest_setF_sub:
failures P .|. n ≤ failures Q .|. n ==> failures (P [[r]]) .|. n ≤ failures (Q [[r]]) .|. n
lemma Renaming_rest_setF:
failures P .|. n = failures Q .|. n ==> failures (P [[r]]) .|. n = failures (Q [[r]]) .|. n
lemma Renaming_distF:
distance (failures (P [[r]]), failures (Q [[r]])) ≤ distance (failures P, failures Q)
lemma map_alpha_failuresfun_Renaming_lm:
distance (failures P, failures Q) ≤ alpha * distance (x1.0, x2.0) ==> distance (failures (P [[r]]), failures (Q [[r]])) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failuresfun_Renaming:
map_alpha (failuresfun Pf) alpha ==> map_alpha (failuresfun (%f. Pf f [[r]])) alpha
lemma non_expanding_failuresfun_Renaming:
non_expanding (failuresfun Pf) ==> non_expanding (failuresfun (%f. Pf f [[r]]))
lemma contraction_alpha_failuresfun_Renaming:
contraction_alpha (failuresfun Pf) alpha ==> contraction_alpha (failuresfun (%f. Pf f [[r]])) alpha
lemma Seq_compo_rest_setF_sub:
[| traces P1.0 .|. n ≤ traces P2.0 .|. n; failures P1.0 .|. n ≤ failures P2.0 .|. n; failures Q1.0 .|. n ≤ failures Q2.0 .|. n |] ==> failures (P1.0 ;; Q1.0) .|. n ≤ failures (P2.0 ;; Q2.0) .|. n
lemma Seq_compo_rest_setF:
[| traces P1.0 .|. n = traces P2.0 .|. n; failures P1.0 .|. n = failures P2.0 .|. n; failures Q1.0 .|. n = failures Q2.0 .|. n |] ==> failures (P1.0 ;; Q1.0) .|. n = failures (P2.0 ;; Q2.0) .|. n
lemma Seq_compo_distF:
[| PQTs = {(traces P1.0, traces P2.0)}; PQFs = {(failures P1.0, failures P2.0), (failures Q1.0, failures Q2.0)} |] ==> (∃PQ. PQ ∈ PQTs ∧ distance (failures (P1.0 ;; Q1.0), failures (P2.0 ;; Q2.0)) ≤ distance (fst PQ, snd PQ)) ∨ (∃PQ. PQ ∈ PQFs ∧ distance (failures (P1.0 ;; Q1.0), failures (P2.0 ;; Q2.0)) ≤ distance (fst PQ, snd PQ))
lemma map_alpha_transfun_Seq_compo_lm:
[| distance (traces P1.0, traces P2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures P1.0, failures P2.0) ≤ alpha * distance (x1.0, x2.0); distance (failures Q1.0, failures Q2.0) ≤ alpha * distance (x1.0, x2.0) |] ==> distance (failures (P1.0 ;; Q1.0), failures (P2.0 ;; Q2.0)) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_transfun_Seq_compo:
[| Pf ∈ Procfun; Qf ∈ Procfun; map_alpha (%SFf. tracesfun Pf (fstF o SFf)) alpha; map_alpha (failuresfun Pf) alpha; map_alpha (failuresfun Qf) alpha |] ==> map_alpha (failuresfun (%f. Pf f ;; Qf f)) alpha
lemma non_expanding_failuresfun_Seq_compo:
[| Pf ∈ Procfun; Qf ∈ Procfun; non_expanding (%SFf. tracesfun Pf (fstF o SFf)); non_expanding (failuresfun Pf); non_expanding (failuresfun Qf) |] ==> non_expanding (failuresfun (%f. Pf f ;; Qf f))
lemma contraction_alpha_failuresfun_Seq_compo:
[| Pf ∈ Procfun; Qf ∈ Procfun; contraction_alpha (%SFf. tracesfun Pf (fstF o SFf)) alpha; contraction_alpha (failuresfun Pf) alpha; contraction_alpha (failuresfun Qf) alpha |] ==> contraction_alpha (failuresfun (%f. Pf f ;; Qf f)) alpha
lemma gSKIP_Seq_compo_rest_setF_sub:
[| traces P1.0 .|. Suc n ≤ traces P2.0 .|. Suc n; failures P1.0 .|. Suc n ≤ failures P2.0 .|. Suc n; failures Q1.0 .|. n ≤ failures Q2.0 .|. n; <Tick> ~:t traces P1.0; <Tick> ~:t traces P2.0 |] ==> failures (P1.0 ;; Q1.0) .|. Suc n ≤ failures (P2.0 ;; Q2.0) .|. Suc n
lemma gSKIP_Seq_compo_rest_setF:
[| traces P1.0 .|. Suc n = traces P2.0 .|. Suc n; failures P1.0 .|. Suc n = failures P2.0 .|. Suc n; failures Q1.0 .|. n = failures Q2.0 .|. n; <Tick> ~:t traces P1.0; <Tick> ~:t traces P2.0 |] ==> failures (P1.0 ;; Q1.0) .|. Suc n = failures (P2.0 ;; Q2.0) .|. Suc n
lemma gSKIP_map_alpha_transfun_Seq_compo_lm:
[| distance (traces P1.0, traces P2.0) * 2 ≤ (1 / 2) ^ n; distance (failures P1.0, failures P2.0) * 2 ≤ (1 / 2) ^ n; distance (failures Q1.0, failures Q2.0) ≤ (1 / 2) ^ n; <Tick> ~:t traces P1.0; <Tick> ~:t traces P2.0 |] ==> distance (failures (P1.0 ;; Q1.0), failures (P2.0 ;; Q2.0)) * 2 ≤ (1 / 2) ^ n
lemma gSKIP_contraction_half_transfun_Seq_compo:
[| contraction_alpha (%SFf. tracesfun Pf (fstF o SFf)) (1 / 2); contraction_alpha (failuresfun Pf) (1 / 2); non_expanding (failuresfun Qf); Pf ∈ gSKIPfun; Pf ∈ Procfun |] ==> contraction_alpha (failuresfun (%f. Pf f ;; Qf f)) (1 / 2)
lemma Depth_rest_rest_setF:
failures P .|. n = failures Q .|. n ==> failures (P |. m) .|. n = failures (Q |. m) .|. n
lemma Depth_rest_distF:
distance (failures (P |. m), failures (Q |. m)) ≤ distance (failures P, failures Q)
lemma map_alpha_failuresfun_Depth_rest_lm:
distance (failures P, failures Q) ≤ alpha * distance (x1.0, x2.0) ==> distance (failures (P |. m), failures (Q |. m)) ≤ alpha * distance (x1.0, x2.0)
lemma map_alpha_failuresfun_Depth_rest:
map_alpha (failuresfun Pf) alpha ==> map_alpha (failuresfun (%f. Pf f |. n)) alpha
lemma non_expanding_failuresfun_Depth_rest:
non_expanding (failuresfun Pf) ==> non_expanding (failuresfun (%f. Pf f |. n))
lemma contraction_alpha_failuresfun_Depth_rest:
contraction_alpha (failuresfun Pf) alpha ==> contraction_alpha (failuresfun (%f. Pf f |. n)) alpha
lemma non_expanding_failuresfun_variable:
non_expanding (failuresfun (%f. f p))
lemma non_expanding_failuresfun_lm:
Pf ∈ nohidefun ==> non_expanding (failuresfun Pf)
lemma non_expanding_failuresfun:
Pf ∈ nohidefun ==> non_expanding (failuresfun Pf)
lemma non_expanding_semFfun:
Pf ∈ nohidefun ==> non_expanding [[Pf]]Ffun
lemma non_expanding_failuresFun:
PF ∈ nohideFun ==> non_expanding (failuresFun PF)
lemma non_expanding_semFFun:
PF ∈ nohideFun ==> non_expanding [[PF]]FFun
lemma contraction_alpha_failuresfun:
Pf ∈ gProcfun ==> contraction_alpha (failuresfun Pf) (1 / 2)
lemma contraction_alpha_semFfun:
Pf ∈ gProcfun ==> contraction_alpha [[Pf]]Ffun (1 / 2)
lemma contraction_alpha_failuresFun:
PF ∈ gProcFun ==> contraction_alpha (failuresFun PF) (1 / 2)
lemma contraction_failuresfun:
PF ∈ gProcFun ==> contraction (failuresFun PF)
lemma contraction_alpha_semFFun:
PF ∈ gProcFun ==> contraction_alpha [[PF]]FFun (1 / 2)
lemma contraction_semFFun:
PF ∈ gProcFun ==> contraction [[PF]]FFun