Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T/CSP_F
theory CSP_F(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | December 2004 | | February 2005 (modified) | | June 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | November 2005 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_F = CSP_F_tactic + CSP_T: (*-------------------------------------------------------* | | | The folloing def have already added in CSP_T | | | | Procfun_def | | ProcX_def | | gSKIPX_def | | gProcX_def | | nohideX_def | | | *-------------------------------------------------------*) (*----------------------------------------------------------------------* | | | To unfold (resp. fold) syntactic-sugar for Ext_ and Int_pre_choices | | choices, use "unfold csp_prefix_ss_def" | | | *----------------------------------------------------------------------*) (*------------------------------------* | | | laws automatically applied | | | *------------------------------------*) (* intro! intro? are automatically applied by "rule". *) (* intro! is automatically applied by "rules" and "auto". *) (* CSP_F_law_basic *) declare cspF_commut [simp] (* CSP_F_law_ref *) declare cspF_Int_choice_right [intro!] declare cspF_Rep_int_choice_right [intro!] (* CSP_F_law_SKIP *) declare cspF_SKIP_DIV_resolve [simp] lemmas cspF_SKIP_DIV_resolve_sym [simp] = cspF_SKIP_DIV_resolve[THEN cspF_sym] (* CSP_F_law_decompo *) declare cspF_rm_head [intro!] declare cspF_decompo [simp] (* CSP_F_law_dist *) declare cspF_all_dist [simp] lemmas cspF_all_dist_sym [simp] = cspF_all_dist[THEN cspF_sym] declare cspF_unwind [simp] lemmas cspF_unwind_sym [simp] = cspF_unwind[THEN cspF_sym] (* CSP_F_law_step *) declare cspF_step [simp] lemmas cspF_step_sym [simp] = cspF_step[THEN cspF_sym] (* CSP_F_law_etc *) declare cspF_choice_IF [simp] end
lemmas cspF_SKIP_DIV_resolve_sym:
? x:(Y1 - X1) -> (SKIP |[X1]| Qf1 x) =F SKIP |[X1]| ? :Y1 -> Qf1
? x:(Y1 - X1) -> (Pf1 x |[X1]| SKIP) =F ? :Y1 -> Pf1 |[X1]| SKIP
? x:(Y1 - X1) -> (DIV |[X1]| Qf1 x) [+] DIV =F DIV |[X1]| ? :Y1 -> Qf1
? x:(Y1 - X1) -> (Qf1 x |[X1]| DIV) [+] DIV =F ? :Y1 -> Qf1 |[X1]| DIV
SKIP =F SKIP [+] DIV
SKIP =F DIV [+] SKIP
DIV =F SKIP |[X1]| DIV
DIV =F DIV |[X1]| SKIP
SKIP =F SKIP |[X1]| SKIP
DIV =F DIV |[X1]| DIV
? x:(Y1 - X1) -> (Pf1 x |[X1]| SKIP) [+] SKIP =F (? :Y1 -> Pf1 [+] SKIP) |[X1]| SKIP
? x:(Y1 - X1) -> (SKIP |[X1]| Pf1 x) [+] SKIP =F SKIP |[X1]| (? :Y1 -> Pf1 [+] SKIP)
? x:(Y1 - X1) -> (Pf1 x |[X1]| SKIP) [+] DIV =F (? :Y1 -> Pf1 [+] DIV) |[X1]| SKIP
? x:(Y1 - X1) -> (SKIP |[X1]| Pf1 x) [+] DIV =F SKIP |[X1]| (? :Y1 -> Pf1 [+] DIV)
P1 |[X1]| DIV =F (P1 [+] SKIP) |[X1]| DIV
DIV |[X1]| P1 =F DIV |[X1]| (P1 [+] SKIP)
P1 |[X1]| DIV =F (P1 [+] DIV) |[X1]| DIV
DIV |[X1]| P1 =F DIV |[X1]| (P1 [+] DIV)
SKIP =F SKIP -- X1
DIV =F DIV -- X1
? x:(Y1 - X1) -> Pf1 x -- X1 [+] DIV |~| ! x:(Y1 ∩ X1) .. Pf1 x -- X1 =F (? :Y1 -> Pf1 [+] DIV) -- X1
? x:(Y1 - X1) -> Pf1 x -- X1 [+] SKIP |~| ! x:(Y1 ∩ X1) .. Pf1 x -- X1 =F (? :Y1 -> Pf1 [+] SKIP) -- X1
SKIP =F SKIP [[r1]]
DIV =F DIV [[r1]]
P2.0 =F SKIP ;; P2.0
P2.0 =F P2.0 ;; SKIP
DIV =F DIV ;; P1
? x:X1 -> (Pf1 x ;; Q1) [> Q1 =F (? :X1 -> Pf1 [> SKIP) ;; Q1
? x:X1 -> (Pf1 x ;; Q1) [> DIV =F (? :X1 -> Pf1 [> DIV) ;; Q1
SKIP =F SKIP |. Suc n1
DIV =F DIV |. n1
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] SKIP) |~| (? :Y1 -> Pf1 [+] SKIP) |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] SKIP) ELSE (? :Y1 -> Pf1 [+] SKIP) |[X1]| Qf1 x [> (SKIP |[X1]| (? :Z1 -> Qf1 [+] SKIP) |~| (? :Y1 -> Pf1 [+] SKIP) |[X1]| SKIP) =F (? :Y1 -> Pf1 [+] SKIP) |[X1]| (? :Z1 -> Qf1 [+] SKIP)
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] DIV) |~| (? :Y1 -> Pf1 [+] DIV) |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] DIV) ELSE (? :Y1 -> Pf1 [+] DIV) |[X1]| Qf1 x [> (DIV |[X1]| (? :Z1 -> Qf1 [+] DIV) |~| (? :Y1 -> Pf1 [+] DIV) |[X1]| DIV) =F (? :Y1 -> Pf1 [+] DIV) |[X1]| (? :Z1 -> Qf1 [+] DIV)
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] DIV) |~| (? :Y1 -> Pf1 [+] SKIP) |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] DIV) ELSE (? :Y1 -> Pf1 [+] SKIP) |[X1]| Qf1 x [> (SKIP |[X1]| (? :Z1 -> Qf1 [+] DIV) |~| (? :Y1 -> Pf1 [+] SKIP) |[X1]| DIV) =F (? :Y1 -> Pf1 [+] SKIP) |[X1]| (? :Z1 -> Qf1 [+] DIV)
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] SKIP) |~| (? :Y1 -> Pf1 [+] DIV) |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] SKIP) ELSE (? :Y1 -> Pf1 [+] DIV) |[X1]| Qf1 x [> (DIV |[X1]| (? :Z1 -> Qf1 [+] SKIP) |~| (? :Y1 -> Pf1 [+] DIV) |[X1]| SKIP) =F (? :Y1 -> Pf1 [+] DIV) |[X1]| (? :Z1 -> Qf1 [+] SKIP)
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| ? :Z1 -> Qf1 |~| (? :Y1 -> Pf1 [+] SKIP) |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| ? :Z1 -> Qf1 ELSE (? :Y1 -> Pf1 [+] SKIP) |[X1]| Qf1 x [> SKIP |[X1]| ? :Z1 -> Qf1 =F (? :Y1 -> Pf1 [+] SKIP) |[X1]| ? :Z1 -> Qf1
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] SKIP) |~| ? :Y1 -> Pf1 |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] SKIP) ELSE ? :Y1 -> Pf1 |[X1]| Qf1 x [> ? :Y1 -> Pf1 |[X1]| SKIP =F ? :Y1 -> Pf1 |[X1]| (? :Z1 -> Qf1 [+] SKIP)
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| ? :Z1 -> Qf1 |~| (? :Y1 -> Pf1 [+] DIV) |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| ? :Z1 -> Qf1 ELSE (? :Y1 -> Pf1 [+] DIV) |[X1]| Qf1 x [> DIV |[X1]| ? :Z1 -> Qf1 =F (? :Y1 -> Pf1 [+] DIV) |[X1]| ? :Z1 -> Qf1
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] DIV) |~| ? :Y1 -> Pf1 |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] DIV) ELSE ? :Y1 -> Pf1 |[X1]| Qf1 x [> ? :Y1 -> Pf1 |[X1]| DIV =F ? :Y1 -> Pf1 |[X1]| (? :Z1 -> Qf1 [+] DIV)
? x:X1 -> (Pf1 x ;; Q1) [> Q1 =F (? :X1 -> Pf1 [+] SKIP) ;; Q1
? x:X1 -> (Pf1 x ;; Q1) [+] DIV =F (? :X1 -> Pf1 [+] DIV) ;; Q1
lemmas cspF_SKIP_DIV_resolve_sym:
? x:(Y1 - X1) -> (SKIP |[X1]| Qf1 x) =F SKIP |[X1]| ? :Y1 -> Qf1
? x:(Y1 - X1) -> (Pf1 x |[X1]| SKIP) =F ? :Y1 -> Pf1 |[X1]| SKIP
? x:(Y1 - X1) -> (DIV |[X1]| Qf1 x) [+] DIV =F DIV |[X1]| ? :Y1 -> Qf1
? x:(Y1 - X1) -> (Qf1 x |[X1]| DIV) [+] DIV =F ? :Y1 -> Qf1 |[X1]| DIV
SKIP =F SKIP [+] DIV
SKIP =F DIV [+] SKIP
DIV =F SKIP |[X1]| DIV
DIV =F DIV |[X1]| SKIP
SKIP =F SKIP |[X1]| SKIP
DIV =F DIV |[X1]| DIV
? x:(Y1 - X1) -> (Pf1 x |[X1]| SKIP) [+] SKIP =F (? :Y1 -> Pf1 [+] SKIP) |[X1]| SKIP
? x:(Y1 - X1) -> (SKIP |[X1]| Pf1 x) [+] SKIP =F SKIP |[X1]| (? :Y1 -> Pf1 [+] SKIP)
? x:(Y1 - X1) -> (Pf1 x |[X1]| SKIP) [+] DIV =F (? :Y1 -> Pf1 [+] DIV) |[X1]| SKIP
? x:(Y1 - X1) -> (SKIP |[X1]| Pf1 x) [+] DIV =F SKIP |[X1]| (? :Y1 -> Pf1 [+] DIV)
P1 |[X1]| DIV =F (P1 [+] SKIP) |[X1]| DIV
DIV |[X1]| P1 =F DIV |[X1]| (P1 [+] SKIP)
P1 |[X1]| DIV =F (P1 [+] DIV) |[X1]| DIV
DIV |[X1]| P1 =F DIV |[X1]| (P1 [+] DIV)
SKIP =F SKIP -- X1
DIV =F DIV -- X1
? x:(Y1 - X1) -> Pf1 x -- X1 [+] DIV |~| ! x:(Y1 ∩ X1) .. Pf1 x -- X1 =F (? :Y1 -> Pf1 [+] DIV) -- X1
? x:(Y1 - X1) -> Pf1 x -- X1 [+] SKIP |~| ! x:(Y1 ∩ X1) .. Pf1 x -- X1 =F (? :Y1 -> Pf1 [+] SKIP) -- X1
SKIP =F SKIP [[r1]]
DIV =F DIV [[r1]]
P2.0 =F SKIP ;; P2.0
P2.0 =F P2.0 ;; SKIP
DIV =F DIV ;; P1
? x:X1 -> (Pf1 x ;; Q1) [> Q1 =F (? :X1 -> Pf1 [> SKIP) ;; Q1
? x:X1 -> (Pf1 x ;; Q1) [> DIV =F (? :X1 -> Pf1 [> DIV) ;; Q1
SKIP =F SKIP |. Suc n1
DIV =F DIV |. n1
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] SKIP) |~| (? :Y1 -> Pf1 [+] SKIP) |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] SKIP) ELSE (? :Y1 -> Pf1 [+] SKIP) |[X1]| Qf1 x [> (SKIP |[X1]| (? :Z1 -> Qf1 [+] SKIP) |~| (? :Y1 -> Pf1 [+] SKIP) |[X1]| SKIP) =F (? :Y1 -> Pf1 [+] SKIP) |[X1]| (? :Z1 -> Qf1 [+] SKIP)
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] DIV) |~| (? :Y1 -> Pf1 [+] DIV) |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] DIV) ELSE (? :Y1 -> Pf1 [+] DIV) |[X1]| Qf1 x [> (DIV |[X1]| (? :Z1 -> Qf1 [+] DIV) |~| (? :Y1 -> Pf1 [+] DIV) |[X1]| DIV) =F (? :Y1 -> Pf1 [+] DIV) |[X1]| (? :Z1 -> Qf1 [+] DIV)
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] DIV) |~| (? :Y1 -> Pf1 [+] SKIP) |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] DIV) ELSE (? :Y1 -> Pf1 [+] SKIP) |[X1]| Qf1 x [> (SKIP |[X1]| (? :Z1 -> Qf1 [+] DIV) |~| (? :Y1 -> Pf1 [+] SKIP) |[X1]| DIV) =F (? :Y1 -> Pf1 [+] SKIP) |[X1]| (? :Z1 -> Qf1 [+] DIV)
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] SKIP) |~| (? :Y1 -> Pf1 [+] DIV) |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] SKIP) ELSE (? :Y1 -> Pf1 [+] DIV) |[X1]| Qf1 x [> (DIV |[X1]| (? :Z1 -> Qf1 [+] SKIP) |~| (? :Y1 -> Pf1 [+] DIV) |[X1]| SKIP) =F (? :Y1 -> Pf1 [+] DIV) |[X1]| (? :Z1 -> Qf1 [+] SKIP)
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| ? :Z1 -> Qf1 |~| (? :Y1 -> Pf1 [+] SKIP) |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| ? :Z1 -> Qf1 ELSE (? :Y1 -> Pf1 [+] SKIP) |[X1]| Qf1 x [> SKIP |[X1]| ? :Z1 -> Qf1 =F (? :Y1 -> Pf1 [+] SKIP) |[X1]| ? :Z1 -> Qf1
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] SKIP) |~| ? :Y1 -> Pf1 |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] SKIP) ELSE ? :Y1 -> Pf1 |[X1]| Qf1 x [> ? :Y1 -> Pf1 |[X1]| SKIP =F ? :Y1 -> Pf1 |[X1]| (? :Z1 -> Qf1 [+] SKIP)
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| ? :Z1 -> Qf1 |~| (? :Y1 -> Pf1 [+] DIV) |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| ? :Z1 -> Qf1 ELSE (? :Y1 -> Pf1 [+] DIV) |[X1]| Qf1 x [> DIV |[X1]| ? :Z1 -> Qf1 =F (? :Y1 -> Pf1 [+] DIV) |[X1]| ? :Z1 -> Qf1
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] DIV) |~| ? :Y1 -> Pf1 |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| (? :Z1 -> Qf1 [+] DIV) ELSE ? :Y1 -> Pf1 |[X1]| Qf1 x [> ? :Y1 -> Pf1 |[X1]| DIV =F ? :Y1 -> Pf1 |[X1]| (? :Z1 -> Qf1 [+] DIV)
? x:X1 -> (Pf1 x ;; Q1) [> Q1 =F (? :X1 -> Pf1 [+] SKIP) ;; Q1
? x:X1 -> (Pf1 x ;; Q1) [+] DIV =F (? :X1 -> Pf1 [+] DIV) ;; Q1
lemmas cspF_all_dist_sym:
P1.1 [+] Q1 |~| P2.1 [+] Q1 =F (P1.1 |~| P2.1) [+] Q1
P1 [+] Q1.1 |~| P1 [+] Q2.1 =F P1 [+] (Q1.1 |~| Q2.1)
P1.1 |[X1]| Q1 |~| P2.1 |[X1]| Q1 =F (P1.1 |~| P2.1) |[X1]| Q1
P1 |[X1]| Q1.1 |~| P1 |[X1]| Q2.1 =F P1 |[X1]| (Q1.1 |~| Q2.1)
P1.1 -- X1 |~| P2.1 -- X1 =F (P1.1 |~| P2.1) -- X1
P1.1 [[r1]] |~| P2.1 [[r1]] =F (P1.1 |~| P2.1) [[r1]]
P1.1 ;; Q1 |~| P2.1 ;; Q1 =F (P1.1 |~| P2.1) ;; Q1
P1.1 |. n1 |~| P2.1 |. n1 =F (P1.1 |~| P2.1) |. n1
!! :C1 .. Pf1 |~| !! :C1 .. Qf1 =F !! c:C1 .. (Pf1 c |~| Qf1 c)
IF (C1 = {}) THEN DIV [+] Q1 ELSE !! c:C1 .. Pf1 c [+] Q1 =F (!! :C1 .. Pf1) [+] Q1
IF (C1 = {}) THEN P1 [+] DIV ELSE !! c:C1 .. P1 [+] Qf1 c =F P1 [+] (!! :C1 .. Qf1)
IF (C1 = {}) THEN DIV |[X1]| Q1 ELSE !! c:C1 .. Pf1 c |[X1]| Q1 =F (!! :C1 .. Pf1) |[X1]| Q1
IF (C1 = {}) THEN P1 |[X1]| DIV ELSE !! c:C1 .. P1 |[X1]| Qf1 c =F P1 |[X1]| (!! :C1 .. Qf1)
!! c:C1 .. Pf1 c -- X1 =F (!! :C1 .. Pf1) -- X1
!! c:C1 .. Pf1 c [[r1]] =F (!! :C1 .. Pf1) [[r1]]
!! c:C1 .. Pf1 c ;; Q1 =F (!! :C1 .. Pf1) ;; Q1
!! c:C1 .. Pf1 c |. n1 =F (!! :C1 .. Pf1) |. n1
IF (X1 = {}) THEN DIV [+] Q1 ELSE !!<f1> x:X1 .. Pf1 x [+] Q1 =F (!!<f1> :X1 .. Pf1) [+] Q1
IF (X1 = {}) THEN P1 [+] DIV ELSE !!<f1> x:X1 .. P1 [+] Qf1 x =F P1 [+] (!!<f1> :X1 .. Qf1)
IF (Y1 = {}) THEN DIV |[X1]| Q1 ELSE !!<f1> x:Y1 .. Pf1 x |[X1]| Q1 =F (!!<f1> :Y1 .. Pf1) |[X1]| Q1
IF (Y1 = {}) THEN P1 |[X1]| DIV ELSE !!<f1> x:Y1 .. P1 |[X1]| Qf1 x =F P1 |[X1]| (!!<f1> :Y1 .. Qf1)
inj f1 ==> !!<f1> x:Y1 .. Pf1 x -- X1 =F (!!<f1> :Y1 .. Pf1) -- X1
inj f1 ==> !!<f1> x:X1 .. Pf1 x [[r1]] =F (!!<f1> :X1 .. Pf1) [[r1]]
inj f1 ==> !!<f1> x:X1 .. Pf1 x ;; Q1 =F (!!<f1> :X1 .. Pf1) ;; Q1
inj f1 ==> !!<f1> x:X1 .. Pf1 x |. n1 =F (!!<f1> :X1 .. Pf1) |. n1
IF (X1 = {}) THEN DIV [+] Q1 ELSE ! x:X1 .. Pf1 x [+] Q1 =F (! :X1 .. Pf1) [+] Q1
IF (X1 = {}) THEN P1 [+] DIV ELSE ! x:X1 .. P1 [+] Qf1 x =F P1 [+] (! :X1 .. Qf1)
IF (Y1 = {}) THEN DIV |[X1]| Q1 ELSE ! x:Y1 .. Pf1 x |[X1]| Q1 =F (! :Y1 .. Pf1) |[X1]| Q1
IF (Y1 = {}) THEN P1 |[X1]| DIV ELSE ! x:Y1 .. P1 |[X1]| Qf1 x =F P1 |[X1]| (! :Y1 .. Qf1)
! x:Y1 .. Pf1 x -- X1 =F (! :Y1 .. Pf1) -- X1
! x:X1 .. Pf1 x [[r1]] =F (! :X1 .. Pf1) [[r1]]
! x:X1 .. Pf1 x ;; Q1 =F (! :X1 .. Pf1) ;; Q1
! x:X1 .. Pf1 x |. n1 =F (! :X1 .. Pf1) |. n1
P1.1 [[r1]] [+] P2.1 [[r1]] =F (P1.1 [+] P2.1) [[r1]]
P1.1 |. n1 [+] P2.1 |. n1 =F (P1.1 [+] P2.1) |. n1
lemmas cspF_all_dist_sym:
P1.1 [+] Q1 |~| P2.1 [+] Q1 =F (P1.1 |~| P2.1) [+] Q1
P1 [+] Q1.1 |~| P1 [+] Q2.1 =F P1 [+] (Q1.1 |~| Q2.1)
P1.1 |[X1]| Q1 |~| P2.1 |[X1]| Q1 =F (P1.1 |~| P2.1) |[X1]| Q1
P1 |[X1]| Q1.1 |~| P1 |[X1]| Q2.1 =F P1 |[X1]| (Q1.1 |~| Q2.1)
P1.1 -- X1 |~| P2.1 -- X1 =F (P1.1 |~| P2.1) -- X1
P1.1 [[r1]] |~| P2.1 [[r1]] =F (P1.1 |~| P2.1) [[r1]]
P1.1 ;; Q1 |~| P2.1 ;; Q1 =F (P1.1 |~| P2.1) ;; Q1
P1.1 |. n1 |~| P2.1 |. n1 =F (P1.1 |~| P2.1) |. n1
!! :C1 .. Pf1 |~| !! :C1 .. Qf1 =F !! c:C1 .. (Pf1 c |~| Qf1 c)
IF (C1 = {}) THEN DIV [+] Q1 ELSE !! c:C1 .. Pf1 c [+] Q1 =F (!! :C1 .. Pf1) [+] Q1
IF (C1 = {}) THEN P1 [+] DIV ELSE !! c:C1 .. P1 [+] Qf1 c =F P1 [+] (!! :C1 .. Qf1)
IF (C1 = {}) THEN DIV |[X1]| Q1 ELSE !! c:C1 .. Pf1 c |[X1]| Q1 =F (!! :C1 .. Pf1) |[X1]| Q1
IF (C1 = {}) THEN P1 |[X1]| DIV ELSE !! c:C1 .. P1 |[X1]| Qf1 c =F P1 |[X1]| (!! :C1 .. Qf1)
!! c:C1 .. Pf1 c -- X1 =F (!! :C1 .. Pf1) -- X1
!! c:C1 .. Pf1 c [[r1]] =F (!! :C1 .. Pf1) [[r1]]
!! c:C1 .. Pf1 c ;; Q1 =F (!! :C1 .. Pf1) ;; Q1
!! c:C1 .. Pf1 c |. n1 =F (!! :C1 .. Pf1) |. n1
IF (X1 = {}) THEN DIV [+] Q1 ELSE !!<f1> x:X1 .. Pf1 x [+] Q1 =F (!!<f1> :X1 .. Pf1) [+] Q1
IF (X1 = {}) THEN P1 [+] DIV ELSE !!<f1> x:X1 .. P1 [+] Qf1 x =F P1 [+] (!!<f1> :X1 .. Qf1)
IF (Y1 = {}) THEN DIV |[X1]| Q1 ELSE !!<f1> x:Y1 .. Pf1 x |[X1]| Q1 =F (!!<f1> :Y1 .. Pf1) |[X1]| Q1
IF (Y1 = {}) THEN P1 |[X1]| DIV ELSE !!<f1> x:Y1 .. P1 |[X1]| Qf1 x =F P1 |[X1]| (!!<f1> :Y1 .. Qf1)
inj f1 ==> !!<f1> x:Y1 .. Pf1 x -- X1 =F (!!<f1> :Y1 .. Pf1) -- X1
inj f1 ==> !!<f1> x:X1 .. Pf1 x [[r1]] =F (!!<f1> :X1 .. Pf1) [[r1]]
inj f1 ==> !!<f1> x:X1 .. Pf1 x ;; Q1 =F (!!<f1> :X1 .. Pf1) ;; Q1
inj f1 ==> !!<f1> x:X1 .. Pf1 x |. n1 =F (!!<f1> :X1 .. Pf1) |. n1
IF (X1 = {}) THEN DIV [+] Q1 ELSE ! x:X1 .. Pf1 x [+] Q1 =F (! :X1 .. Pf1) [+] Q1
IF (X1 = {}) THEN P1 [+] DIV ELSE ! x:X1 .. P1 [+] Qf1 x =F P1 [+] (! :X1 .. Qf1)
IF (Y1 = {}) THEN DIV |[X1]| Q1 ELSE ! x:Y1 .. Pf1 x |[X1]| Q1 =F (! :Y1 .. Pf1) |[X1]| Q1
IF (Y1 = {}) THEN P1 |[X1]| DIV ELSE ! x:Y1 .. P1 |[X1]| Qf1 x =F P1 |[X1]| (! :Y1 .. Qf1)
! x:Y1 .. Pf1 x -- X1 =F (! :Y1 .. Pf1) -- X1
! x:X1 .. Pf1 x [[r1]] =F (! :X1 .. Pf1) [[r1]]
! x:X1 .. Pf1 x ;; Q1 =F (! :X1 .. Pf1) ;; Q1
! x:X1 .. Pf1 x |. n1 =F (! :X1 .. Pf1) |. n1
P1.1 [[r1]] [+] P2.1 [[r1]] =F (P1.1 [+] P2.1) [[r1]]
P1.1 |. n1 [+] P2.1 |. n1 =F (P1.1 [+] P2.1) |. n1
lemmas cspF_unwind_sym:
PF1 ∈ ProcFun ==> PF1 (FIX PF1) p1 =F (FIX PF1) p1
PF1 ∈ gProcFun ==> PF1 (FIX! PF1) p1 =F (FIX! PF1) p1
lemmas cspF_unwind_sym:
PF1 ∈ ProcFun ==> PF1 (FIX PF1) p1 =F (FIX PF1) p1
PF1 ∈ gProcFun ==> PF1 (FIX! PF1) p1 =F (FIX! PF1) p1
lemmas cspF_step_sym:
? :{} -> Pf1 =F STOP
? x:{a1} -> P1 =F a1 -> P1
? x:(X1 ∪ Y1) -> IF (x ∈ X1 ∧ x ∈ Y1) THEN Pf1 x |~| Qf1 x ELSE IF (x ∈ X1) THEN Pf1 x ELSE Qf1 x =F ? :X1 -> Pf1 [+] ? :Y1 -> Qf1
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| ? :Z1 -> Qf1 |~| ? :Y1 -> Pf1 |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| ? :Z1 -> Qf1 ELSE ? :Y1 -> Pf1 |[X1]| Qf1 x =F ? :Y1 -> Pf1 |[X1]| ? :Z1 -> Qf1
IF (Y1 ∩ X1 = {}) THEN ? x:Y1 -> Pf1 x -- X1 ELSE ? x:(Y1 - X1) -> Pf1 x -- X1 [> (! x:(Y1 ∩ X1) .. Pf1 x -- X1) =F (? :Y1 -> Pf1) -- X1
? y:(r1 `` X1) -> (! x:{x : X1. (x, y) ∈ r1} .. Pf1 x [[r1]]) =F (? :X1 -> Pf1) [[r1]]
? x:X1 -> (Pf1 x ;; Q1) =F ? :X1 -> Pf1 ;; Q1
? x:X1 -> Pf1 x |. n1 =F (? :X1 -> Pf1) |. Suc n1
lemmas cspF_step_sym:
? :{} -> Pf1 =F STOP
? x:{a1} -> P1 =F a1 -> P1
? x:(X1 ∪ Y1) -> IF (x ∈ X1 ∧ x ∈ Y1) THEN Pf1 x |~| Qf1 x ELSE IF (x ∈ X1) THEN Pf1 x ELSE Qf1 x =F ? :X1 -> Pf1 [+] ? :Y1 -> Qf1
? x:(X1 ∩ Y1 ∩ Z1 ∪ (Y1 - X1) ∪ (Z1 - X1)) -> IF (x ∈ X1) THEN Pf1 x |[X1]| Qf1 x ELSE IF (x ∈ Y1 ∧ x ∈ Z1) THEN Pf1 x |[X1]| ? :Z1 -> Qf1 |~| ? :Y1 -> Pf1 |[X1]| Qf1 x ELSE IF (x ∈ Y1) THEN Pf1 x |[X1]| ? :Z1 -> Qf1 ELSE ? :Y1 -> Pf1 |[X1]| Qf1 x =F ? :Y1 -> Pf1 |[X1]| ? :Z1 -> Qf1
IF (Y1 ∩ X1 = {}) THEN ? x:Y1 -> Pf1 x -- X1 ELSE ? x:(Y1 - X1) -> Pf1 x -- X1 [> (! x:(Y1 ∩ X1) .. Pf1 x -- X1) =F (? :Y1 -> Pf1) -- X1
? y:(r1 `` X1) -> (! x:{x : X1. (x, y) ∈ r1} .. Pf1 x [[r1]]) =F (? :X1 -> Pf1) [[r1]]
? x:X1 -> (Pf1 x ;; Q1) =F ? :X1 -> Pf1 ;; Q1
? x:X1 -> Pf1 x |. n1 =F (? :X1 -> Pf1) |. Suc n1