
1

Difference-based Modules:
A Class-Independent Module

Mechanism

Yuuji Ichisugi, Akira Tanaka
National Institute of Advanced Industrial Science and Technology

http://staff.aist.go.jp/y-ichisugi/mj/

June 12,2002

2

Difference-based modules

• Simpler than Java’s module mechanism
– “protected” and “nested classes” are no longer needed

• Better extensibility, re-usability
• Separation of cross-cutting concerns

3

Programming Language MixJuice

• An enhancement of Java with difference-based
modules.

• Distributed with source-code.
– http://staff.aist.go.jp/y-ichisugi/mj/

• We have already written more than 20,000 lines
of code.

• From my experience,
MixJuice programming is happy!

4

Outline of this presentation

• Problems of current object-oriented languages
• Difference-based modules
• Collision problems

– implementation defect phenomenon
on extensible systems

ma + mb > mc + md

5

Problems of current object-
oriented languages

6

Classes are not modules

• Classes are templates of objects.
• Modules are units of reuse and information-

hiding.
• A class is inappropriate as:

– a unit of reuse
– a unit of information hiding

• Pointed out by many researchers.

7

“class” is inappropriate as a unit
of information hiding.

• “class = module” is only approximately true.
[Szyperski ECOOP92]

– To alleviate this problem,
protected, package and nested classes

are introduced, however,
– language specification becomes complex and

non-intuitive !
• Especially Java’s information hiding mechanism is

complex.

8

“class” is inappropriate as a unit
of reuse

• “Separation of crosscutting concerns” is not
supported by the current OOPL.

• Various approaches which extend OOPL.
AspectJ[Kiczales 99]
Hyper/J [Ossher ICSE 99]
Mixin layers[Smaragdakis ECOOP98]
BCA[Keller ECOOP98]
AP&PC[Mezini OOSPLA98]
collabolation-based design[VanHilst OOPSLA96]
Subject-oriented programming [Ossher OOPSLA92] [Ossher OOPSLA93]
etc.

9

Difference-based modules

10

Class is not Module
Difference is Module

Module A
• Simple design principle:

“module” describes the
difference between
“original program” and
“extended program”

• Like “patch” files
• separately type-checked and

compiled

Add the differences

Module B

Module C

11

What is “difference” ?

• A module can:
– Add new classes
– Add fields and

methods to existing
classes

– Override existing
methods

• All classes and
methods are “hooks”
for extension

Original system

class S

class Bclass A

method
method

method
method

method
method

“hook” for extension

12

Module definition

module m2 extends m1
{

define class A {…}　// Addition of new class
class B {…}　//Extension of existing class

}

13

Code Example
module m1 {

define class S {
define int foo(){ return 1; }

} // 1
define class A extends S {

int foo(){ return original() + 10; }
} // 11

}

m2 and m3
are separately
type-checked
and compiled

module m2 extends m1 {
class S {

int foo(){ return original() + 2; }
} // 3
class A {

int foo(){ return original() + 20; }
} // 33

}

module m3 extends m1 {
class S {

int foo(){ return original() + 3; }
} // 4
class A {

int foo(){ return original() + 30; }
} // 44

}

14

Layered class diagram
• Extension of UML class diagram
• Useful notation for AOP languages

S

A

m1 m2 m3

15

Linking of modules
class S {
int foo(){
return (1 + 2) + 3;

}
}
class A extends S {
int foo(){

return ((super.foo() +
10) + 20) + 30;

}
}

Linearize modules
and add differences
defined by the modules

m2

m3

m1
Link

=

Link result is the same as conventional
object-oriented languages(Java).

16

Advantages of
difference-based modules

• High extensibility of applications
• Class-independency of modules
• Extensibility by third party programmers
• Module-composability by end-users
• Flexibility of module grouping
• Flexibility of name space structures
• Ease of code-moving
• Simplicity

17

Separation of crosscutting concerns
•Like AOP languages [Kiczales 97]
•Naturally achieved because class and module
are completely orthogonal in MixJuice.

18

No “glue code” needed

• End-users of applications can select and link
modules to build their own customized
applications without detailed knowledge.

Linked
Application

Selected modules

19

“nested classes” are no longer needed

• Names are visible from all descendant-modules
• More flexible name spaces than nested classes.
nested name spaces overlapping name spaces

20

“protected” is no longer needed
• Both black-box reuse and white-box reuse can be

expressed by module inheritance.
• More flexible than “protected” because subclass may

inherit super class in black-box reuse style.

point

point.implementation

Specification module
colorPoint

Implementation module
colorPoint.implementation

21

The functions of classes and
modules

FunctionsJava, C++ MixJuice

Templates of objects
Subtyping

Reuse
Information hiding

Separate compilation
Differential programming
Conditional compilation

class
class

package,
nested class

modulepatch

#ifdef

22

Collision problems

23

Collision problems
• General problems in extensible systems

+ =

Correct program Correct program Sometimes not works!

24

The cause of problems

• We have categorized problems into
three types.
– 1. Name collision
– 2. Implementation defect
– 3. Semantic collision

• We give solutions to all these
problems.

25

1. Name collision problem
• Solved by “fully qualified name of methods”

module m1{
define class C {}

}

module m2 extends m1{
class C {
　 define void m() {…}
}}

module m3 extends m1{
class C {
　 define void m() {…}
}}

module m4 extends m2,m3 {
class C {
void FQN[m2::m]() {…}
void FQN[m3::m]() {…}

}
}

Separately defined
names are distinct

26

2. Implementation defect

module m1{
define abstract class S {}
define class A extends S {}

}
Add new subclass

S
A

B

module m2 extends m1{
define class B extends S {}

}

module m3 extends m1{
class S { define abstract void m();}
class A { void m() {…}}

}

Add new
abstract method

If both m2 and m3 are composed link time error occur
because method m of class B is not implemented.

27

Implementation defect (contd.)
• Two different directions of extensions will produce

implementation defects.
• Someone who knows the specification of both m2 and

m3 should complement the defect.

Add method
m1 m2
m3 Implementation defect

Add subclass

28

An example of implementation
defect in the real world

• Someone should complement the defect
（= Someone should supply device drivers）

OS

PC Windows Linux Solaris

Mouse

Video card

LAN card

Devices

…

device drivers

…

29

Language support:
Complementary module

• m4(implemented by someone) will be found from
CLASSPATH and automatically linked if both m2 and
m3 are specified for the linker.

module m1{
define class S {}
define class A extends S {}

}

module m3 extends m1{
class S { define abstract void m() {…}}
class A { void m() {…}}

}

module m2 extends m1{
define class B extends S {}

}

module m4 complements m2,m3 {
class B {
void m() {…}

}
}

Complement
“defect” between
m2 and m3.

30

3. Semantic collision
• On-going research.
• Applying the ideas of Design by Contract　[Meyers ’88]

and behavioral subtyping [Meyers ’88][Liskov ’94] to mixins
and difference-based modules.

• If specification of each modules conforms to “a rule”,
they can be safely combined.

• The correctness of the rule will be formally proved.

31

Related Work
• These systems have achieved similar things:

– Fragment system / virtual classes of BETA
– AOP languages

• AspectJ, Hyper/J, Demeter/Java, Composition Filters, …

– Collaboration-based languages
• Mixin Layers, AP&PC, PCA, delegation layers,…

– Open-class languages
• CLOS, Smalltalk, Objective-C, Cecil, Dubious, MultiJava, Ruby…

• None of these systems have intended to simplify
existing information-hiding mechanism.

32

Application：
Extensible Java pre-processor EPP

• Framework for composable language extension
• ECOOP2002 poster session

EPP

Module
mechanism

Operator
overloading

Parameterized
types

Assertion

33

MixJuice Programming
is Happy !!

Because of
freedom of modularization and
freedom of class modeling.

34

Additional slides

35

java.util.HashMap,TreeMap

• The internal of each file is encapsulated well,
however, …

HashMap.java(500 lines)

class Entry

class
HashIterator

class HashMap

TreeMap.java(1000 lines)

class Entry

class Iterator

class TreeMap

class
EntrySetView

class SubMap

nested
classes

36

Internal of HashMap,TreeMap

• Not modular at all ! Classes depend on each other.
• Because of the limitation of the module mechanism.

EntrySetView

SubMapTreeMap

HashMap

Entry
Iterator

HashIterator
Entry

HashMap.java(500 lines) TreeMap.java(1000 lines)

37

Implementation
module m1

class A

class B
class A1 class A1

delta A

delta B Source-code
Translation
(compile time)

module m2
class B1 class A

class A2 class B1

class B2 class B
Byte-code
Translation
(link time)

Super classes
are changed
by the linker.

38

safe composition
• To define composable ADT modules：

– Design by Contract　[Meyers ’88]

• To define composable sub-classes:
– Behavioral subtyping [Meyers ’88][Liskov ’94]

• To define composable mixins:
– Each class mixin should be disjoint
– Method combinations (before/after/around, +, append, …)

• To define composable difference-based modules:
– Slightly stronger rule than mixins.
– Formal definition of the rule is on-going research.

39

Composability
m1

• In order to make m2 and m3
composable, method extensions
in m2 and m3
– should preserve pre/post condition

of the method.
– should call original method.
– should not access to the state of the

original class.
– may access to the extra state added

by the module.

C1

C2

m3m2

C1

C2

C1

C2

40

Visitor pattern in MixJuice

element visitor

Visitor
visit(concreteElementA)
visit(concreteElementB)

Element

ConcreteElementA

ConcreteElementB

accept(Visitor)

accept(Visitor)

accept(Visitor) v.visit(this);

v.visit(this);

Element

ConcreteElementA

ConcreteElementB

ConcreteVisitor1
visit(concreteElementA)
visit(concreteElementB)

ConcreteVisitor1a
visit(concreteElementA)
visit(concreteElementB)

new_concrete_element

Visitor

visit(concreteElementC)

ConcreteElementC

accept(Visitor) v.visit(this);

ConcreteVisitor1

visit(concreteElementC)

ConcreteVisitor1a

visit(concreteElementC)

Introduction
of visitor

Introduction of
new element

Tree structure
without visitor

	Difference-based Modules: A Class-Independent Module Mechanism
	Difference-based modules
	Programming Language MixJuice
	Outline of this presentation
	Problems of current object-oriented languages
	Classes are not modules
	“class” is inappropriate as a unitof information hiding.
	“class” is inappropriate as a unit of reuse
	Difference-based modules
	Class is not ModuleDifference is Module
	What is “difference” ?
	Module definition
	Code Example
	Layered class diagram
	Linking of modules
	Advantages of difference-based modules
	Separation of crosscutting concerns
	No “glue code” needed
	“nested classes” are no longer needed
	“protected” is no longer needed
	The functions of classes and modules
	Collision problems
	Collision problems
	The cause of problems
	1. Name collision problem
	2. Implementation defect
	Implementation defect (contd.)
	An example of implementation defect in the real world
	Language support: Complementary module
	3. Semantic collision
	Related Work
	Application： Extensible Java pre-processor EPP
	MixJuice Programming is Happy !!
	Additional slides
	java.util.HashMap,TreeMap
	Internal of HashMap,TreeMap
	Implementation
	safe composition
	Composability
	Visitor pattern in MixJuice

