
Extensible Type System Framework

for a Java Pre-Processor : EPP

(DRAFT)

Yuuji ICHISUGI

ichisugi@etl.go.jp

Electrotechnical Laboratory, PRESTO JST

Abstract

The author is developing an extensible Java pre-processor, EPP. EPP is the

framework for a Java source code processing system which can be extended by

adding extension modules, EPP plug-ins. EPP has an extensible recursive descent

parser and an extensible type checking system. A great variety of new language

features can be easily introduced by implementing macro expansion functions for

new language constructs. Because implementation of extensions are based on

the mixin mechanism, extension modules render high composability. Operator

overloading and multiple inheritance were implemented as pre-processor plug-

ins. We are also planning to implement a parameterized class feature that is

completely compatible with the GJ (Generic Java) system. One problem of

implementing extended Java languages is separate compilation. This framework

has solved the problem by introducing the notion of FileSignature, which can be

applied to a wide range of extended languages.

1 Introduction: Making a Programming Language

Like a PC Compatible Machine

Modern programming languages are a huge monolithic system. Recently in particu-

lar, the language features necessary for practical programming languages have been

increasing and programming language speci�cations are becoming more and more

complex. This has caused the following problems:

1. It has become very di�cult for language researchers to experiment on new lan-

guage features.

1

Examining whether a new language feature works e�ectively with real applica-

tions requires the implementation of an experimental language processor having

the necessary language features. However, now that the number of necessary

language features has increased, implementation is extremely di�cult. One al-

ternative means is to add a new language feature by altering part of the language

processor whose source code is available. Although, this is quite di�cult because

of the gigantic, monolithic language processors.

2. Although the programmer wants some language features to be implemented,

they are hardly taken into account by any of the present language processors.

All language features are provided to programmers as tie-ins: programmers are

hardly free to choose the features desired. Sometimes features selected by a

language designer to suit his own tastes are imposed on the programmer. Thus,

it is almost impossible for the latest results in the �eld of language study to be

adopted to the language processor at hand, or it takes years to do so. This is

due to the fact that the gigantic, monolithic programming language speci�cations

make it extremely di�cult to add new language features.

In order to solve the problems described above, the author has been trying to

modularize programming language processors with the aim of having programming

languages make the rapid progress as if personal computers have experienced. Per-

sonal computer hardware has been making great strides in performance over the past

decade, triggered by the advent of the technical standard of its internal architecture.

As a result, many manufacturers launched into the production of modules. Free-

market competition encouraged the manufacture of higher-performance, diversi�ed

modules. The author aims at the same for programming languages: to facilitate the

development of language features as a unit of a module by modularizing programming

language processors and setting a standard interface for connecting modules.

The author has already proposed a method for constructing a modularized recur-

sive descent parser using mixins and has con�rmed the e�ectiveness of the method

on the extensible pre-processor, EPP[9].

This paper describes the modularized, extensible type-checking mechanism newly

implemented for the EPP, which is the next step for modularization of programming

language processors.

The organization of this paper is as follows. Section 2 outlines EPP and Section 3

explains sample plug-ins of EPP which extends Java's type system. Section 4 men-

tions problems for designing an extensible type system framework. Section 5 explains

plug-ins necessary in this framework implementation. Section 6 outlines the prin-

ciple of extensible recursive descent parser. Sections 7, 8, 9 describes the design of

2

extensible type system of this framework. Section 10 describes related studies, and

Section 11 is the conclusion.

2 Outline of the EPP Extensible Pre-Processor

EPP[8, 9, 10] is an extensible Java pre-processor that can introduce new language

features. The user can specify EPP plug-ins at the top of the Java source code

by writing \#epp plug-in-name" in order to incorporate various extensions of Java.

Multiple plug-ins can be incorporated simultaneously as long as they do not collide

with each other. Emitted source codes can be compiled by ordinary Java compilers

and debugged by ordinary Java debuggers.

EPP works not only as a Java pre-processor but also as a language-experimenting

tool for language experts, a framework for extended Java implementation, and a

framework for a Java source code analyzer/translator.

The EPP's source code is written in Java extended by the EPP itself. It was

bootstrapped by the EPP written in Common Lisp[15]. The compiled byte-code of

EPP is available under any platform where Java is supported.

In designing EPP, the author aimed at a wide-range of extensibility and simultane-

ous usability of multiple extension features{hereafter called composability. Because

the EPP's architecture is independent of Java, it is applicable to the framework for

the processing system of other languages.

3 EPP Plug-In Examples

3.1 Association Array Plug-In

Figure 1 shows a program using a plug-in implementing association arrays. An as-

sociation array is a data structure that languages such as perl have. Although it is

in fact a hashtable, a programmer can handle it with the same interface as that for

an array. This plug-in has adopted speci�cations that allow type-safe assignment in

accordance with the contra-variant rule. Access to an association array is translated

into an expression to access the hashtable by the pre-processor.

3.2 Multiple Inheritance Plug-In

Figure 2 shows a program using a plug-in implementing multiple inheritance. The

multiple inheritance class is translated into the class having extra pseudo super classes

as instance variables. Also, methods that delegate messages to methods de�ned at

the pseudo super classes are added. (Of course, such simple implementation does not

3

#epp jp.go.etl.epp.AssociationArray

class Test {

public static void main(String[] args){

// Declaring and initializing

//an association array variable.

String[String] a = new String[String];

a["key1"] = "val1";

a["key2"] = "val2";

System.out.println(a["key1"].equals("val1")); // true

// Type-safe assignment.

Object[String] a1 = a;

a = new String[Object];

// Because of contra-variant rule,

//the following code causes type error.

// Object[Object] a2 = a;

}

}

Figure 1: A program using association array plug-in.

realize multiple inheritance in the true sense of the word, because it will provide an

incorrect value of \this" and it does not allow the C instance to be used as a C2-type

value.)

4 Problems with the Pre-processor Extending the

Type System

Java allows mutual dependence between classes, a problem which a Java compiler

implementor has to be careful about. In the case of Java, however, this problem

is not serious, because Java has �xed language speci�cations and the compiler can

determine class signatures simply by parsing.

EPP has generalized the mechanism for solving the interdependence between class-

es provided by the Java compiler. The generalized mechanism is provided as the Ap-

plication Program Interface (API) for plug-in programmers. Designing a framework

in which such extension features as multiple inheritance plug-ins can be implemented

requires especially careful consideration. For instance, the following problems are

encountered:

4

#epp jp.go.etl.epp.MultipleInheritance

class MITest {

public static void main(String[] args){

C obj = new C();

System.out.println(obj.m11() == 11); // true

System.out.println(obj.m12() == 12); // true

System.out.println(obj.m21() == 21); // true

System.out.println(obj.m22() == 22); // true

}

}

class C1 {

int m11() { return 11; }

int m12() { return 12; }

}

class C2 {

int m21() { return 21; }

int m22() { return 22; }

}

class C extends C1, C2 {

}

Figure 2: A program using multiple inheritance plug-in.

� Suppose the program translation depends on the signature of another class, and

at the same time the translation modi�es the signature of the class, what kind

of procedure should the translation use? For example, in the case of multiple

inheritance plug-ins, in order to add methods to delegate, it is necessary to

know what methods pseudo super classes has. Meanwhile, in the class that

allows multiple inheritance, methods to delegate are added and the signature is

modi�ed. If this class becomes a pseudo super class of another class, can the

program be translated correctly?

� Separate compilation makes the problem more complicated. Suppose �le Fa

has classes A1 and A2, and �le Fb has classes B1 and B2 (Figure 3). If the

translation of A1 depends on B1 and that of B2 depends on A2, can these two

�les be translated correctly? Also, when the content of �le Fa is updated, can

Fb, as well as Fa be re-compiled automatically?

� When a dependent relationship contains loops, can the system detect them with-

out lapsing into endless loops? For example, when class C itself is speci�ed as a

pseudo super class of class C, can it be reported as an error?

Of course, technically, all the problems raised above are not di�cult to solve.

5

A1

A2

B1

B2

Fa
Fb

Figure 3: Interdependence of �les.

Rather, signi�cant aims in designing a framework are the followings:

1. The framework should handle the demanding problems and lighten as many

burdens as possible imposed on framework users (plug-in implementors).

2. The framework should give plug-in implementors language extensibility over the

widest possible range and remove unnecessary restrictions on what they want to

do.

The author has not evaluated thoroughly as of yet to what extent this paper's

framework has achieved the aims stated above; thorough evaluation requires the im-

plementation of a large number of applications. However, it seems that the framework

has been working well at this stage.

5 Plug-Ins Necessary for the EPP's Description

The source codes of EPP and EPP plug-ins are written in Java extended by the EPP

itself. This section describes the functions of Symbol plug-in, SystemMixin plug-in

and BackQuote plug-in, which are necessary for the EPP's description.

5.1 Symbol plug-in

Symbol, a data type that languages like lisp have, features higher-speed comparison

of identity than strings. Figure 4 shows a Java program using the EPP's Symbol plug-

in. A literal of a Symbol is represented as a colon followed by an identi�er or a string

literal.

In the EPP's source code, Symbol is used for various purposes such as tags of types

or abstract syntax tree nodes to identify their kinds.

6

#epp jp.go.etl.epp.Symbol

import jp.go.etl.epp.epp.Symbol;

public class TestSymbol {

public static void main(String args[]){

Symbol x = :foo;

Symbol y = :"+";

System.out.println(x == :foo); // true

System.out.println(y == :foo); // false

}

}

Figure 4: A program using Symbol plug-in.

Mixin A

Mixin B

Mixin C

super

super

Figure 5: Mixins composing a class.

5.2 SystemMixin Plug-In

5.2.1 What is a Mixin?

SystemMixin plug-in implements its own object-oriented language on top of Java

language. The language supports the special mechanism called mixins[2], that can be

used in language systems such as Flavors and CLOS[15].

Mixins are re-usable fragments of classes. Usually, in an object-oriented language, a

particular super class name is speci�ed when de�ning a subclass; a mixin is a subclass

de�ned with no particular super class speci�ed. The mixin's super class is determined

when it is multiply inherited and linearized by another class afterward(Figure5).

Bracha[2] showed that the mixin mechanism can simulate the same inheritance

mechanisms as SmallTalk, BETA and CLOS. VanHilst[17] suggested a variation of

mixin-based inheritance which enhances reusability of object-oriented programs. EPP

has achieved a high extensibility and composability by modularizing the entirety using

7

Mixins which
define the
standard Java
grammar.

Mixins
specified as
EPP plug-ins.

A customized
pre-processor
class.

Figure 6: Mixins composing EPP.

the mixin mechanism.

5.2.2 Mixins Composing EPP

The EPP's main body is de�ned as a class named Epp, with the class de�nition

divided into multiple mixins. Starting EPP combines all the mixins composing the

standard Java parser and mixins composing the plug-in speci�ed at the top of the

source code to construct a customized version of the class Epp(Figure 6). The main

routine of EPP then generates the class instance of Epp and invokes the starting

method to begin pre-processing the source code.

5.3 BackQuote Plug-In

EPP translates the input program by manipulating the AST (abstract syntax tree)

as a result of parsing.

A BackQuote plug-in implements the same mechanism as the backquote macro of

lisp in that it enables the AST to be embedded into the source code in describing the

8

translation process.

Inside EPP, the AST is represented as having a structure similar to the S-expression

of lisp. For example, the internal representation of the AST for a Java expression:

(a + b) is the following:

(+ (id a) (id b))

To represent this in the plug-in source code using Java, The plug-in programmer

should write the following code:

Tree t = new Tree(:"+",

new Identifier(:a),

new Identifier(:b));

Clearly, this is rather complicated. With the backquote macro, it is much easier

to write AST-generating expressions. For example, the backquote macro makes the

above expression more concise as follows:

Tree t = `(+ (id a) (id b));

Also, like the lisp backquote macro, it is possible to embed Java expressions into

the AST arbitrarily with \," and \,@". For example,

Tree t = new Tree(:"+",

new Identifier(:x),

exp);

This can be rewritten as follows:

Tree t = `(+ (id x) ,exp);

6 Extensible Recursive Descent Parser

The principle of the extensible recursive descent parser[1] has been described in

another paper[9]. The following outlines this principle.

Figure 7 shows a framework for a method of parsing the non-terminal exp. This

program itself does nothing but invoke the method term. However, it has hooks for

the grammar extension named expTop, expRight and expLeft. It is possible to add

alternatives to the non-terminal by adding mixins to extend these methods.

Figure 8 shows a method which add a left associative binary operator alternative.

Adding mixins with the method laid out in Fig. 8 to mixins with the method laid out

9

Tree exp(){

Tree tree = expTop();

while (true){

Tree newTree = expLeft(tree);

if (newTree == null) break;

tree = newTree;

}

return tree;

}

Tree expTop(){ return expRight(exp1()); }

Tree expRight(Tree tree){ return tree; }

Tree expLeft(Tree tree){ return null; }

Tree exp1(){ return term(); }

Figure 7: A framework for an extensible non-terminal parser.

Tree expLeft(Tree tree) {

if (lookahead() == :"+") {

matchAny();

return new Tree(:"+", tree, exp1());

} else {

return original(tree);

}

}

Figure 8: An extension of a left associative binary operator.

10

in Fig. 7 extends the behavior of the parser. (The method-invocation expression,

"original", introduced by SystemMixin plug-in, corresponds to the super method-

invocation in traditional object-oriented languages.)

The EPP's parser is implemented in the style described above. Some parts, how-

ever, are implemented by means of ad-hoc techniques such as back-tracking because

the Java grammar is not LL(1).

7 Extensible Type System

7.1 Outline of the Type-Checking Pass

In the type-checking pass, type information is added to each node of the AST. An

AST node, an immutable object, is translated into a node with type information by a

TypeChecker object. A type-checking pass is described in the functional programming

style rather than in the object-oriented paradigm. The reason for this design is

described in Section 8.

7.2 Type Object

A class Type is a data type for expressing types within EPP. All types have a tag,

with a name representing the kind of type. For example, class type has a tag named

:class.

Plug-ins can introduce new data types by de�ning the subclass of the class Type

with a new tag. A Type object only preserves information necessary to express a

type; it does not de�ne \the meaning of a type" at all. The meaning of a type is

de�ned by methods of the class Epp and TypeChecker objects.

Each Type object with the :class tag has another object named ClassInfo which

has detailed information of the class. The ClassInfo gives information such as what

kind of methods the class has. The ClassInfo is generated by the Type object lazily

when necessary. This lazy generation mechanism enables the handling of interde-

pendent classes. If the content of a class is accessed from outside in the midst of

the lazy generation of the content, it is reported as an error on the basis of circular

dependence with intrinsic contradiction. For example, such an error is reported if the

user speci�ed a class for the super class of itself.

If the user accesses ClassInfo of a particular class C for the �rst time when com-

piling �le F , the information saying, \F depends on a �le where C is de�ned" is

automatically recorded. This information is used for automatic re-compilation of the

�le that depends on the updated �le.

11

� ���

� ���:int :double

:double

Figure 9: Adding type information to the AST.

7.3 TypeChecker Object

TypeChecker objects de�ne how control structures and operators handle types.

A TypeChecker has a method named call, which translates a tree without type

information into a tree with type information(Figure 9).

A TypeChecker is registered in a hashtable which associates a tag of a node with

the TypeChecker. The type-checking pass recursively invokes call of TypeChecker

objects associated to each node of AST from top to down.

Figure 10 shows a TypeChecker associated with the binary operator for four basic

mathematical operations. The method coerce checks if the second argument tree

can be used as an expression with the �rst argument type. If it is not, a type error is

reported with a user-friendly error message.

A TypeChecker can be extended by decorator pattern[5]. For example, Figure 11

shows a decorator handling the special semantics for strings in the Java binary op-

erator \+". The decorator regards the type of the operation result as String type

if either the right or left operand is String type; and in the other cases it invokes

the original TypeChecker. The decorator is added only to the TypeChecker object

associated with the node having the tag \+".

Adding more decorators to the TypeChecker object of a binary operator enables

implementation of operator overloading. Figure 12 shows a decorator to add to the bi-

nary operator \-". If the left operand type is a class type, the expression is translated

to the following method invocation expression:

e1.minus(e2)

12

// +, -, *, /

class DoubleOperatorTypeChecker extends TypeChecker {

public Tree call(Tree tree) {

checkArgsLength(tree, 2);

Tree[] newArgs = typeCheckArgs(tree);

Symbol s1 = newArgs[0].type().tag();

Symbol s2 = newArgs[1].type().tag();

Type t;

if (s1 == :double || s2 == :double){

newArgs[0] = Type.coerce(Type.Tdouble, newArgs[0]);

newArgs[1] = Type.coerce(Type.Tdouble, newArgs[1]);

t = Type.Tdouble;

} else if (s1 == :float || s2 == :float){

newArgs[0] = Type.coerce(Type.Tfloat, newArgs[0]);

newArgs[1] = Type.coerce(Type.Tfloat, newArgs[1]);

t = Type.Tfloat;

} else if (s1 == :long || s2 == :long){

newArgs[0] = Type.coerce(Type.Tlong, newArgs[0]);

newArgs[1] = Type.coerce(Type.Tlong, newArgs[1]);

t = Type.Tlong;

} else {

newArgs[0] = Type.coerce(Type.Tint, newArgs[0]);

newArgs[1] = Type.coerce(Type.Tint, newArgs[1]);

t = Type.Tint;

}

return tree.modifyTypeAndArgs(t, newArgs);

}

}

Figure 10: A TypeChecker for binary operators.

13

class StringPlusOperatorTypeChecker extends TypeChecker {

public Tree call(Tree tree) {

checkArgsLength(tree, 2);

Tree[] newArgs = typeCheckArgs(tree);

Type t1 = newArgs[0].type();

Type t2 = newArgs[1].type();

if ((t1.tag() == :class &&

t1.classInfo().getName() == :"java.lang.String")

||

(t2.tag() == :class &&

t2.classInfo().getName() == :"java.lang.String")){

return tree.modifyTypeAndArgs(Type.TString,

newArgs);

} else {

return orig.call(tree.modifyArgs(newArgs));

}

}

}

Figure 11: A TypeChecker decorator.

class ExpandOperatorOverloadingOfMinus

extends TypeChecker {

public Tree call(Tree tree) {

Tree[] newArgs = typeCheckArgs(tree);

Type t1 = newArgs[0].type();

if (t1.tag() == :class){

// Return the AST of "e1.minus(e2)" .

return `(invokeExp ,(newArgs[0])

(id minus) (argumentList ,(newArgs[1])));

} else {

return orig.call(tree.modifyArgs(newArgs));

}

}

}

Figure 12: The decorator which implements operator overloading.

14

boolean isSuperType(Type t1, Type t2){

if (t1.tag() == :assocArray){

if (t2.tag() == :assocArray){

AssocArrayType a1 = (AssocArrayType)t1;

AssocArrayType a2 = (AssocArrayType)t2;

// Contra-variant rule.

return isSuperType(a1.getKeyType(),

a2.getKeyType())

&& isSuperType(a2.getValueType(),

a1.getValueType());

} else {

return false;

}

} else {

return original(t1, t2);

}

}

Figure 13: Extension of the method isSuperType by mixins.

Because a decorator pattern is used here, the system works correctly even if some

other plug-in extends the same TypeChecker simultaneously. (The reason why mixin

mechanism is not used here is discussed in Section 8.)

7.4 TypeNameChecker Object

A TypeNameChecker object determines what kind of type an AST expressing a type

name (like \String") or a type constructor (like \String[]") actually represents.

TypeNameChecker, like TypeChecker, has a method named call which translate a

tree without type information to a tree with type information.

Plug-ins can de�ne new TypeNameCheckers in order to introduce new type con-

structors that do not exist in standard Java.

7.5 Relationship Between Types

Methods for de�ning the relationship between two types are de�ned as extensible

methods of the class Epp. Plug-ins can modify the relationship between types by

adding mixins which extend these methods.

Figure 13 shows an extension of a method in the source code of an association

array plug-in. The method isSuperType determines whether the �rst argument type

is a super type of the second argument type. In the method, the relationship between

association arrays is de�ned in accordance with the contra-variant rule.

15

7.6 Introduction of New Types

The extension mechanisms described in Section 7 o�er extremely wide-ranging lan-

guage extension with high composability.

This section outlines the association array implementation described in Section 3.

This plug-in is implemented in 210 lines.

� The de�nition of grammar for association arrays.

� The extension of methods such as isSuperType, which de�ne the relationship

between types.

� The de�nition of AssociationArrayType, a subclass of the class Type, repre-

senting an association array type.

� The de�nition of a TypeNameChecker that de�nes the meaning of the AST which

expresses type constructors of association array types. This TypeNameChecker

is implemented such that an association array type is handled as an Association-

ArrayType type internally, while it is translated to a Hashtable in the output

source code.

� The de�nition of decorators that extend TypeCheckers of array access expression

and assignment statement. These decorators translate access to an association

array into an access expression to a Hashtable.

8 Reason for Designing Type-Checking Pass

8.1 Why is visitor pattern not used?

Visitor pattern[5] is a kind of design pattern for describing a highly extensible com-

piler. If a compiler is implemented in accordance with a visitor pattern, it is possible

to add the traversing process of an AST afterward.

A visitor pattern, however, has a drawback: there is the di�culty of adding new

nodes. That is, a visitor pattern is suitable for the description of a compiler which

has �xed language speci�cations and the possibility that some features, such as opti-

mization, will be added to it in the near future. It is unsuitable, on the other hand,

for such systems as the EPP to which new syntax can be added.

16

8.2 Why meaning of type is not de�ned as Type object's

methods?

Using the object-oriented language style, it is di�cult to describe the relationship

between two types, e.g. whether type t1 is the super type of type t2.

One way of sticking to the object-oriented description is to use double dispatch (or

the multi-method, if supported by the description language). Applying the hierarchi-

cal structure of the source language type to the hierarchy of the description language

class would simplify the implementation. However, this way con
icts with the EPP's

aim of \supporting wide-ranging language extension" in that it never realizes the

type system inapplicable to the hierarchical structure of classes of the description

language.

The drawback of the non object-oriented description style was that all the processes

proceeded through some particular functions, resulting in lowmodularity/extensibility.

The mixin-based description has completely solved this problem by de�ning each

function split into several mixins.

8.3 Why are mixins and decorator patterns both used?

In order to achieve high composability of extension modules, both the mixin and

decorator pattern mechanisms are utilized in this framework. Although they are very

much alike, each of them has its own advantages and disadvantages.

The problem of current implementation of mixin mechanism is the method invo-

cation overhead of mixins. In order not to generate such overhead, the framework is

designed such that the minimum number of mixins is used only where necessary.

On the contrary, the parser will generate greater overhead with the decorator

pattern because the parser consists of more than 100 mixins. Its implementation

with the decorator pattern would generate a large number of method delegations.

Intrinsically, de�ning every class in the system as mixins renders the highest ex-

tensibility. The author intends to improve the method invocation overhead of the

SystemMixin plug-in in the near future.

9 Separate Compilation

9.1 How the Java Compiler Operates

Java allows interdependence between classes or �les without any forward declaration.

The Java's compiler executes separate compilation and automatic re-compilation

without header �les or a make�le. This is a remarkable feature of the Java lan-

guage. This feature play a signi�cant role in improving software productivity, because

17

Phase1

Phase2

FileSignature

Type-checking pass

Parsing pass

Macro-expansion pass

Code-emitting pass

Figure 14: Two phases of the translation.

in many cases object-oriented languages intrinsically require complicated dependent

relationship between classes.

As for the header �les and a make�le, we can understand that they are in fact

automatically generated out of the source code by the Java compiler and written in

the class �le. When a class �le does not exist, it is possible to determine the class

signature by parsing the class de�nition.

9.2 How EPP Operates

EPP incorporates more generalized operations than those of the Java compilers

and provides them to plug-in programmers as an API.

Within the EPP framework, the data structure called FileSignature is the minimum

information needed when a �le is externally referenced. FileSignature is a table

corresponding to the class name included in the �le and the digest form of the AST

de�ning the class. Detailed class type information (ClassInfo) can be constructed

using FileSignatures.

More speci�cally, the translating process of one �le by the EPP proceeds as follows:

18

It divides the process into two procedures called Phase1 and Phase2(Figure 14).

Phase1 consists of the parsing pass and the macro-expansion pass that does not

depend on the type information. Phase1 is executed independent of all other �les.

When Phase1 has �nished, FileSignature of the �le is determined. The FileSignature

is saved in a �le. Phase2 consists of the type-checking pass and the code-emitting pass.

In Phase2, the EPP executes a type-checking pass{while referencing the FileSignature

in other �les if required{and macro expansion utilizing type information.

When EPP translates multiple �les simultaneously, the EPP executes Phase1 for

all �les �rst to determine all FileSignatures, and then begin executing Phase2 for all

�les.

In order to introduce new types, EPP plug-ins can write their original data struc-

tures in the FileSignature. This enables the implementation of extended classes such

as a parameterized class. Also, in addition to classes, any kind of information that

can be referenced externally, such as a user-de�ned macro, can be included in the

FileSignature entries.

Note that the EPP has an important requirement for plug-ins:

� All types should be determined using only FileSignatures.

This is a strong demand that greatly restricts the capabilities of plug-ins. For

example, a language extension in which the types cannot be determined without

results of Phase2 translation is not supported by the EPP framework. However,

as long as its plug-ins meet the requirement, they can gain support of the separate

compilation provided by the EPP framework.

9.3 An Example of Plug-In Implementation Using FileSig-

nature

The following is an outline of multiple inheritance plug-in implementation. This

plug-in is implemented in 259 lines.

� The grammar extension. Actually, no grammar extension is needed because the

EPP's parser accepts multiple class names after the extends keyword.

� The extension of the translating method from a class-de�ning AST into the

FileSignature entry. Actually, no such extension is needed for the same reason

as stated above.

� The extension of the translating method from FileSignature into ClassInfo. This

method determines the signature of the class doing multiple inheritance from

the FileSignatures of the true super class and pseudo super classes.

19

� The de�nition of a decorator which extends the TypeChecker of the node rep-

resenting the class-de�ning AST. The decorator translates the AST of the class

doing multiple inheritance into a single inheritance class that delegates methods

to pseudo super classes.

This implementation process renders multiple inheritance plug-in that solves all

the problems discussed in Section 4.

10 Related Work

Eli[7] is a compiler generator which modularizes grammar and semantic de�nitions.

It automatically generates a language processor using grammar and semantics de�ni-

tions based on attribute grammar, and de�nes a new language by a kind of inheritance

using existing de�nition modules.

MPC++[11], OpenC++[4], JTRANS[13] and OpenJava[16] are extensible sys-

tems which can introduce new language features by providing MOP (Meta Object

Protocol[12]) during compilation. Like EPP, their task is to perform translation on an

AST after parsing. Also, the grammar is extensible in a limited range. For example,

MPC++ allows addition of new operators and statements. Also, MPC++, OpenC++

and OpenJava allow the utilization of type information during macro expansion as

EPP does.

Traditionally, there have been many \extensible languages" around that allow

grammar modi�cation. For example, Camlp4[14], Objective Campl pre-processor, is

an pre-processor in that its grammar can be extended by adding modules.

Nevertheless, EPP is the only system that allows a wide-ranging extension of the

type system.

11 Conclusion

The Java pre-processor framework, EPP, which allows type system extension, has

been described.

The type-checking framework using FileSignature has been implemented already

and all the plug-ins described in this paper have been working well.

The separate compilation and automatic re-compilation mechanisms described in

this paper have not been implemented yet; they will be implemented in the near fu-

ture. Also, large-scale and practical plug-ins such as GJ (Generic Java)[3] compatible

plug-ins will be implemented.

The source code of EPP and sample plug-ins are distributed on the EPP web

page[10].

20

References

[1] Aho, A.V., Sethi, R. and Ullmann, J.D.: "Compilers: Principles, Techniques and

Tools.", Addison-Wesley Publishing company, 1987.

[2] Bracha, G. and Cook, W.: "Mixin-based Inheritance", In Proc. of E-

COOP/OOPSLA'90, pp.303{311, 1990.

[3] Bracha, G., Odersky, M., Stoutamire, D. and Wadler, P.: GJ,

http://www.cis.unisa.edu.au/~pizza/gj/

[4] Chiba, S.: "A Metaobject Protocol for C++", In Proc. of OOSPLA'95, pp.285{

299, 1995.

http://www.softlab.is.tsukuba.ac.jp/~ chiba/openc++.html

[5] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: "Design Patterns", Addison

Welsley, 1995.

[6] Gosling, J., Joy, B. and Steele. G.: "The Java Language Speci�cation.", Java

Series, Sun Microsystems, 1996.

[7] Gray,R.W., Heuring,V.P., Levi,S.P., Sloane,A.M. andWaite,W.M.: "Eli: A Com-

plete, Flexible Compiler Construction System", Communications of the ACM 35

(February 1992), pp.121{131.

[8] Ichisugi, Y. and Yves Roudier: "The Extensible Java Preprocessor Kit and a Tiny

Data-Parallel Java", In Proc. of ISCOPE'97, LNCS 1343, pp153{160, California,

Dec, 1997.

[9] Ichisugi, Y.: "Modular and Extensible Parser Implementation using Mixins",

Transaction of SIG PRO, Information Processing Society of Japan, December,

1998. (In Japanese)

[10] Ichisugi, Y.: EPP,

http://www.etl.go.jp/~ epp/

[11] Ishikawa, Y.: "Meta-level Architecture for Extendable C++ Draft Document",

Technical Report TR-94024, RWCP, 1994.

http://www.rwcp.or.jp/lab/mpslab/mpc++/mpc++.html

[12] Kiczales, G., des Rivieres, J. and Bobrow, D. G.: "The Art of Metaobject Pro-

tocol", MIT Press, 1991.

21

[13] Kumeta, A. and Komuro, M.: "Meta-Programming Framework for Java", The

12th workshop of object oriented computing WOOC'96, Japan Society of Soft-

ware Science and Technology, March, 1997.

[14] Rauglaudre, D.: Camlp4,

http://pauillac.inria.fr/camlp4/

[15] Steele, G.L.: "Common Lisp the Language 2nd edition.", Digital Press, 1990.

[16] Tatsubori, M.: OpenJava,

http://www.softlab.is.tsukuba.ac.jp/~mich/openjava/

[17] VanHilst, M. and Notkin, D.: "Using Role Components to Implement

Collaboration-Based Designs", In Proc. of OOSPLA'96, pp.359{369, Oct., 1996.

22

