
Hierarchical Reinforcement Learning with
Unlimited Recursive Subroutine Calls

Yuuji Ichisugi1(y-ichisugi@aist.go.jp)*, Naoto Takahashi1, Hidemoto Nakada1,
and Takashi Sano2

1 National Institute of Advanced Industrial Science and Technology (AIST), AIRC
2 Department of Computer and Information Science, Faculty of Science and

Technology, Seikei University

Abstract. Humans can set suitable subgoals to achieve certain tasks.
They can also set sub-subgoals recursively if required. The depth of this
recursion is apparently unlimited. Inspired by this behavior, we propose a
new hierarchical reinforcement learning architecture called RGoal. RGoal
solves the Markov Decision Process (MDP) in an augmented state-action
space. In multitask settings, sharing subroutines between tasks makes
learning faster. A novel mechanism called thought-mode is a type of
model-based reinforcement learning. It combines learned simple tasks to
solve unknown complicated tasks rapidly, sometimes in zero-shot time.

Keywords: Hierarchical reinforcement learning, Model-based reinforce-
ment learning, Zero-shot learning, Computational neuroscience

1 Introduction

Humans can set suitable subgoals to achieve certain tasks (goals). They can also
set sub-subgoals recursively if needed. For example, if you wish to get an object
on a high shelf, it is necessary to set up a ladder first. In this case, “the ladder
is set up” is a subgoal state. If the ladder is in a store room, it is necessary
to go to the store room first to retrieve the ladder. In this case, “you are in
the store room” becomes a sub-subgoal state. The depth of this recursion is
apparently unlimited for humans. Inspired by this behavior, we propose a new
hierarchical reinforcement learning architecture [2][3][4][5][6][8][9][11] called the
RGoal architecture.

In RGoal, an agent’s subgoal settings are similar to subroutine calls in pro-
gramming languages. Each subroutine can execute primitive actions or recur-
sively call other subroutines. The timing for calling another subroutine is learned

� �

�
�

�
�

�
�

Fig. 1. Even though goals (G1, G2, and G3) are different between tasks, the route from
the state S to the subgoal m is common. If the tasks share that route as a subroutine,
learning will be accelerated.

Ichisugi Y., Takahashi N., Nakada H., Sano T., Hierarchical Reinforcement Learning with Unlimited Recursive Subroutine 
Calls. In Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning, Lecture Notes in Computer 
Science, vol 11728, pp. 103--114, Springer, Cham, 2019.

The final authenticated version is available online at https://doi.org/10.1007/978-3-030-30484-3_9



2 Authors Suppressed Due to Excessive Length

by using a standard reinforcement learning method. Unlimited recursive subrou-
tine calls accelerate learning because they increase the opportunity for the reuse
of subroutines in multitask settings.

RGoal is strongly influenced by the previously proposed HDG[4] and MAXQ[6]
architectures. MAXQ is a multi-layered hierarchical reinforcement learning ar-
chitecture with a fixed number of layers. It accelerates learning based on the
following three features.

1. Subtask sharing: In multitask settings, sharing subroutines between tasks
makes learning faster (Fig.1).

2. Temporal abstraction: When learning complicated tasks, restricting the search
space such that it only includes combinations of simple subroutines makes
learning faster.

3. State abstraction: Abstracting states to such an extent that they do not
affect the execution of subroutines makes learning faster.

RGoal provides the first feature through value function decomposition (Sec.2.3)
and the second feature through a novel mechanism called thought-mode (Sec.2.7).
Although we have not yet implemented the third feature, it should be possible
through function approximation using neural networks.

In the future, by extending RGoal, we wish to construct a computational
model of the mechanism of human planning based on the prefrontal cortex of
the human brain. Therefore, RGoal is designed not only to be useful from an
engineering perspective, but also to be a simple architecture that can be easily
implemented in the neural circuits of the brain.

The remainder of the paper is organized as follows. First, we describe the
architecture of RGoal in Sec.2 and evaluate it in Sec.3. We describe related
works in Sec.4. Finally, we present our conclusions in Sec.5.

2 The RGoal architecture

2.1 Landmarks and subgoals

In this paper, we assume that the set of states that may become goals or subgoals
on the environment is given beforehand. We refer to an element of this set as a
landmark. Typically, landmarks are states of the environment that are salient to
the agent.

In RGoal, a subroutine g is “a policy for reaching the subgoal state g from
arbitrary states.” We assume that an agent executing subroutine g will reach the
corresponding state g within finite time. This assumption simplifies the theoret-
ical framework and algorithm for RGoal, and facilitates the realization of the
thought-mode described in Sec.2.7. It must be possible to extend RGoal in the
future such that each subroutine can have more than one terminal state, similar
to the MAXQ architecture[6]. Although the reusability of subroutines can be in-
creased in this manner, it may also increase the calculation cost of action-value
functions or decrease calculation accuracy.



Hierarchical RL with Unlimited Recursive Subroutine Calls 3

�

��

������	
�

���

���

�

���

���

���

� � ��

� � ��

� � ��

��

������	
�

���

Fig. 2. (a) An example state-action space in a two-dimensional grid. (b) The augmented
state-action space when a landmark set M = {m1,m2,m3} is given. Possible actions
include the subroutine calls CM = {Cm1 , Cm2 , Cm3} and movements within the two-
dimensional space.

An agent maintains a stack to remember subgoals. When an agent calls a
subroutine g′, the current subgoal g is pushed onto the stack. When the sub-
routine g′ terminates (the agent reaches the corresponding state g′), the original
subgoal g is popped from stack and reset as a new subgoal.

There is another design methodology that does not use a stack. In this
methodology, an agent only remembers the original goal G. Whenever the fi-
nal called subroutine terminates, the current subgoal is reset to G. Although we
have confirmed that this methodology also works, we do not present its details
in this paper.

Although the landmark set affects performance, a bad landmark set does
not make a task unsolvable. If a landmark set only contains the goal state,
the behavior of RGoal is the same as non-hierarchical reinforcement learning.
If there are too many landmarks in the set, learning becomes very difficult.
However, landmarks that are not worth using will be gradually filtered out as
learning progresses.

2.2 The augmented state-action space

The RGoal architecture learns the action-value function for the Markov decision
process (MDP) in the augmented state-action space[9] described in this Section.
Because the mathematical structure of this MDP is the same as typical MDPs,
we can utilize various theoretical conclusions (e.g., convergence to an exact solu-
tion) and implementation techniques (e.g., function approximation and eligibility
trace) to solve problems.

An MDP is defined as < S,A, P, r >, which consists of a set of states S, set
of actions A, transition function P : S ×A → (S → [0, 1]), and reward function
r : S × A → R. When an MDP and a landmark set M = {m1,m2, · · ·} ⊆ S
are given, another MDP on the augmented state-action space < S̃, Ã, P̃ , r̃ > is
defined as follows. First, a set of augmented states S̃ and a set of augmented



4 Authors Suppressed Due to Excessive Length

actions Ã are defined as

S̃ = S ×M
Ã = A ∪ CM, CM = {Cm1 , Cm2 , · · ·}. (1)

An augmented state s̃ = (s, g) ∈ S̃ is a pair consisting of an original state s and
a subgoal state g ∈ M. Cm ∈ CM is an action that calls a subroutine m. In
other words, Cm sets the landmark m as a new subgoal. Taking an action Cm

changes the augmented state (s, g) to (s,m). A transition function P̃ (s̃′|s̃, ã) is
defined based on the original transition function P (s′|s, a) as follows:

P̃ ((s′, g)|(s, g), a) = P (s′|s, a)
P̃ ((s,m)|(s, g), Cm) = 1. (2)

A reward function r̃(s̃, ã) is defined based on the original reward function r(s, a)
as follows:

r̃((s, g), a) = r(s, a)

r̃((s, g), Cm) = RC , (3)

where the constant RC is a hyperparameter that represents the cost of each
subroutine call.

Fig.2 presents an example of an augmented state-action space. It contains
the subgoal g, which represents the agent’s inner state, as part of the state of
the external environment. If the original state-action space is a two-dimensional
space and n landmarks are given, the augmented state-action space looks like a
building with n floors. At each step, the agent moves within the current floor
or moves to another floor. In general, optimal policies do not execute any Cm.
However, the execution of some Cm may make convergence to a suboptimal
policy faster.

2.3 Value function decomposition

Decomposition of the action-value function in the augmented state-action space
makes learning faster because parts of the decomposed functions are shared
between different tasks. The details of this process are provided below.

Given a policy π : S̃×Ã → [0, 1] and a goal G ∈M, the action-value function
Qπ

G(s̃, ã) is defined as

Qπ
G((s, g), ã) = Eπ

G[Σ
∞
t=0rt+1|s̃0 = (s, g), ã0 = ã], (4)

which is the expected value of the summation of the sequence of rewards r1 =
r̃(s̃0, ã0), r2 = r̃(s̃1, ã1), · · ·, which are obtained when taking an action ã at an
initial state s̃0 = (s, g) and taking actions according to the policy π. We assume
that the total reward obtained after reaching the goal stateG is 0. In other words,
tasks are episodic. In this paper, we assume that rewards are not discounted.



Hierarchical RL with Unlimited Recursive Subroutine Calls 5

We assume that if an agent is using a policy π, the agent at a state (s, g)
reaches the subgoal state (g, g) within finite time. Furthermore, an agent at
the state (g,G) reaches the goal state (G,G) within finite time. When the stack
contains onlyG and an agent reaches the subgoal state (g, g) from (s, g), the state
is automatically set to (g,G) and the reward at the time is 0. Then, Qπ

G(s̃, ã) can
be decomposed into two parts (i.e., rewards obtained before and after reaching
the subgoal g) as follows:

Qπ
G((s, g), ã) = Qπ(s, g, ã) + V π

G (g), (5)

where Qπ(s, g, ã) is the expected value of the total rewards obtained when taking
an action ã at an initial state (s, g) and taking actions according to the policy
π until reaching (g, g). Additionally, V π

G (g) is the expected value of the total
rewards after the state (g,G) until reaching (G,G), which can be efficiently
calculated based on Qπ(s, g, ã) as

V π
G (g) = Σãπ((g,G), ã)Qπ

G((g,G), ã)

= Σãπ((g,G), ã)(Qπ(g,G, ã) + V π
G (G))

= Σãπ((g,G), ã)Qπ(g,G, ã). (6)

(Note that V π
G (G) = 0.）

Because the functionQπ(s, g, ã) does not depend on the original goalG, it can
be shared between different tasks to make learning faster. The same argument
holds when recursive calls are permitted.

2.4 Update rule

The current implementation of RGoal represents an action-value functionQ(s, g, ã)
as a table. The update rule for the table can be derived from a standard rein-
forcement learning method, Sarsa algorithm for QG(s̃, ã) :

QG(s̃, ã)← QG(s̃, ã) + α(r +QG(s̃
′, ã′)−QG(s̃, ã)). (7)

Consider the case where ã is Cg′ , which represents a subroutine call g′. When
the stack contains only G and prior to the subroutine call, the assumed route
of the agent is s → g → G. After the subroutine call, the route is changed to
s→ g′ → g → G. Therefore, the following equation holds:

QG(s̃
′, ã′)−QG(s̃, ã)

= (Q(s′, g′, ã′) + Vg(g
′) + VG(g))− (Q(s, g, ã) + VG(g))

= Q(s′, g′, ã′)−Q(s, g, ã) + Vg(g
′). (8)

This equation also holds when ã is not a subroutine call, but is a primitive action.
(Not that g = g′ and Vg(g

′) = 0, in such cases.) The same argument holds when
recursive calls are permitted. From Eqs. (5)(7)(8), the update rule for Q(s, g, ã)
is derived as

Q(s, g, ã)← Q(s, g, ã) + α(r +Q(s′, g′, ã′)−Q(s, g, ã) + Vg(g
′)). (9)



6 Authors Suppressed Due to Excessive Length

Note that special treatment is required when s = g (i.e., the agent reaches
the subgoal g). Because Q(s, g, ã) = 0 when s = g, by definition, the table values
should not change in such cases.

2.5 Table initialization

The elements of the table Q should be initialized as Q(s, g, ã) = 0 if s = g.
If s ̸= g, the initial values are arbitrary. However, the values do affect per-

formance[7]. As an extreme case, we can restrict subroutine calls by setting
Q(s, g, Cm) = −∞ for some appropriate set of (s, g,m) to reduce the search
space. If such a restriction is too strong, performance will become worse. How-
ever, this does not make a task unsolvable because the execution of primitive
actions is not restricted. An engineer may design appropriate restrictions of sub-
routine calls to tune overall performance, similar to the task graph design in the
MAXQ architecture[6].

2.6 Action selection

The action-selection policy π(s̃, ã) is derived from the action-value function
QG(s̃, ã). The current implementation uses a softmax action selection policy,
which is defined as follows:

π((s, g), ã) =
exp(βQG((s, g), ã))

Σã′exp(βQG((s, g), ã′))
=

exp(βQ(s, g, ã) + βVG(g))

Σã′exp(βQ(s, g, ã′) + βVG(g))

=
exp(βQ(s, g, ã))

Σã′exp(βQ(s, g, ã′))
. (10)

2.7 Thought-mode

When learning complicated tasks, restricting the search space to include only
combinations of simple subroutines makes learning faster. In this case, subrou-
tines realize the temporal abstraction[5] of action sequences. In the RGoal ar-
chitecture, a novel mechanism called thought-mode facilitates this behavior.

Suppose that the optimal routes between all neighboring pairs of landmarks
have been already learned. Then, an approximate solution for the optimal route
between distant landmarks can be obtained by connecting neighboring land-
marks. For example, in Fig.1, the route S → m → G1 is an approximate so-
lution for the route from S to G1. Such solutions can be found without taking
any actions within the environment [2][3][4]. The thought-mode of RGoal is a
mechanism for finding approximate routes by repeating simulations of episodes
within an agent’s brain. This mechanism can be implemented with only a few
small modifications to the RGoal algorithm. Because of its simplicity, we con-
sider this mechanism to be a promising first step toward a computational model
for the planning mechanism of the human brain.

The behavior of thought-mode is described below. If the selected action ã is a
primitive action, the simulated state in the agent’s brain is immediately changed



Hierarchical RL with Unlimited Recursive Subroutine Calls 7

1: procedure Episode(S, G, think-flag)
2: s← S; g ← G; stack ← empty
3: Choose ã from s, g using policy derived from Q
4: while s ̸= G do
5: # Take action.
6: if ã = RET then
7: s′ ← s; g′ ← stack.pop(); r ← 0
8: else if ã is Cm then
9: stack.push(g); s′ ← s; g′ ← m; r ← RC

10: else
11: if think-flag then
12: s′ ← g; g′ ← g; r ← dummy
13: else
14: Take action ã, observe r, s′; g′ ← g

15: # Choose action.
16: if s′ = g′ then
17: ã′ ← RET
18: else
19: Choose ã′ from s′, g′ using policy derived from Q

20: # Update.
21: if s = g or (think-flag and ã is not Cm) then
22: # Do nothing.
23: else
24: Q(s, g, ã)← Q(s, g, ã) + α(r +Q(s′, g′, ã′)−Q(s, g, ã) + Vg(g

′))

25: s← s′; g ← g′; ã← ã′

Fig. 3. Pseudo code for the RGoal algorithm, which is based on the Sarsa algorithm.

from s to the current subgoal g. In such cases, the table element Q(s, g, ã) is not
updated. If ã is a subroutine call Cm, the behavior of thought-mode is the same
as that of the normal mode. In such cases, the subgoal g is changed to m and
the table element Q(s, g, Cm) is updated normally.

The behavior described above can be regarded as a type of model-based
reinforcement learning[1]. The learned value of Q(s, g, ã) is used as a model of
the environment that tells the agent how much reward will be obtained if the
agent moves from s to g.

2.8 RGoal algorithm

The pseudo code for the RGoal algorithm, which is based on the Sarsa algorithm,
is presented in Fig.3. This algorithm uses a flat table and stack with a single
loop consisting entirely of simple operations.

3 Evaluation

RGoal performance was evaluated on a maze task. Here, we focus on convergence
speed to suboptimal solutions, rather than exact solutions.



8 Authors Suppressed Due to Excessive Length

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

Fig. 4. Map of a maze on the 2D grid used for the evaluation. Twenty landmarks
(denoted m) are placed on the map. For each episode, the start S and goal G are
randomly selected from the landmark set.

�������������	�

�
�
��
�
�
�
��
��
�
�
�

�

����

����

����

����

����

����

���	

���


� � � 	 � �� �� �� �	 �� �� �� �� �	 �� �� �� �� �	 ��

���

���

���

���

���

�����

Fig. 5. Experiment 1. Relationship between the upper limit S of the stack depth and
RGoal performance. S = 0 corresponds to non-hierarchical reinforcement learning.
When S = 1, recursive calls are not allowed, as in the two-layered reinforcement learn-
ing. A greater upper limit results in faster convergence because it increases the oppor-
tunity for the reuse of subroutines.



Hierarchical RL with Unlimited Recursive Subroutine Calls 9

�������������	�

�
�
��
�
�
�
��
��
�
�
�

�

����

����

����

����

���

����

����

� � 	 
 � �� �� �	 �
 �� �� �� �	 �
 �� �� �� �	 �
 ��

���

������

������

Fig. 6. Experiment 2. Relationship between the length P (times 1000 steps) of the
pre-training phase and RGoal performance. In the pre-training phase, only pairs of the
start and goal within Euclidean distances of eight are selected. S = 100. The graph
also includes a change in the score during the pre-training phase. The greater the value
of P , the faster the convergence speed.

�����������	�

�
�
��
�
�
�
��
��
�
�
�

�

����

����

����

����

����

����

���	

���


�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
�
	
�

�
�
	
�

�
�
�
�

�
�
�
�

�
�


�

�
�


�

�
�


�

�
�
�
�

�
�
�
�

���

���

����

�����

Fig. 7. Experiment 3. Relationship between thought-mode length T and RGoal per-
formance. T is the number of simulations executed prior to the actual execution of
each episode. S = 100, P = 2000. Here, we only plot the change in score after the
pre-training phase. If thought-mode length is sufficiently long, approximate solutions
are obtained in almost zero-shot time.



10 Authors Suppressed Due to Excessive Length

The map and landmark set are presented in Fig.4. For each episode, the
start S and goal G are randomly selected from the landmark set. When the
agent reaches G, the episode ends and the next episode with a different start
and goal begins.

The reward for moving up, down, left, or right is −1, that for moving diag-
onally is −

√
2, that for hitting a wall is −1, and that for a subroutine call is

RC = −1. As mentioned earlier, rewards are not discounted.

The table elements of Q(s, g, ã) are initialized to zero if s = g and −50−n (n
is small noise), otherwise. To make learning faster, subroutine calls are restricted
to be executable only on landmarks by initializing some appropriate elements to
−∞, as described in Sec.2.5.

The action-selection function is a softmax function with β = 1. The learning
rate is α = 0.1.

For each of the following experiments, the average values of 10 trials were
calculated. For each graph, the horizontal axis is the number of steps and the
vertical axis is the number of episodes per step. The larger the value of the y-
axis, the faster the agent reaches the goal. Here, “the number of steps” means
the number of moves within the map or collisions with a wall. Subroutine calls,
returns from subroutines, and execution steps in thought-mode are not included
because they are regarded as virtual actions in the agent’s brain.

Experiment 1 examined the relationship between the upper limit S of the
stack depth and RGoal performance (Fig.5). When the stack depth reaches the
upper limit, the agent does not make any further subroutine calls. S = 0 corre-
sponds to non-hierarchical reinforcement learning. A greater upper limit results
in faster convergence. However, at S = 100, the convergence is slightly slower
than that at S = 4. The score after convergence is the best when S = 0. This
is because if subroutines can be used, an agent may choose suboptimal routes
through some landmarks. We have confirmed that even when subroutine calls
can be used, if we optimize the search tendency by choosing a small value of β,
then increasing β, the agent eventually finds the optimal policy that does not
call subroutines.

Experiment 2 examined the relationship between the length P (times 1000
steps) of the pre-training phase and RGoal performance (Fig.6). In the pre-
training phase, only pairs of the start S and goal G within Euclidean distances
of eight are selected. Such pairs constitute 60 pairs out of the 20 × 19 = 380
total pairs. In this experiment, S = 100. For fair comparison, the graph includes
changes in the score during the pre-training phase. The results show that a
greater value of P results in faster convergence during the normal phase after
the pre-training phase. This means that if an agent learns simple tasks first,
learning difficult tasks becomes faster because the learned simple tasks can be
reused as subroutines.

Experiment 3 examined relationship between thought-mode length T and
RGoal performance (Fig.7). T is the number of simulations in an agent’s brain
that are executed immediately before each actual execution of an episode in
the environment. In this experiment, S = 100 and P = 2000. Here, we only



Hierarchical RL with Unlimited Recursive Subroutine Calls 11

plot changes in the score after 2,000,000 steps of the pre-training phase. The
results show that if the thought-mode length is sufficiently long, approximate
solutions for unknown tasks are obtained immediately (almost in zero-shot time)
by combining knowledge from previously experienced simple tasks.

4 Related work

Unlike previous hierarchical reinforcement learning architectures, RGoal is unique
in that the caller and callee relation between subroutines is not predefined, but is
learned within the framework of reinforcement learning. We have integrated sev-
eral important ideas that were proposed in previous papers into a single simple
architecture to realize the desired RGoal features.

RGoal has a very similar structure to the Hierarchical Distance to Goal
(HDG) architecture[4]. HDG uses a dedicated algorithm for offline searching of
routes by connecting distant landmarks. In contrast, RGoal accomplishes the
same goal by using thought-mode, which is much easier to implement and is
similar to human behavior.

The H-DYNA architecture[2][3] also utilizes planning with temporal abstrac-
tion, similar to the thought-mode in our architecture.

MAXQ[6] is an architecture for hierarchical reinforcement learning that can
utilize layers deeper than two and handles subtask sharing through value function
decomposition. In RGoal, decomposition becomes simpler based on the assump-
tion that each subroutine terminates in a single state.

The R-MAXQ architecture[8] introduced the feature of model-based rein-
forcement learning into MAXQ. It straightforwardly leans and utilizes a model
of the environment. In RGoal, the learned Q(s, g, ã) is used as a model of the
environment.

Derivation of a hierarchical policy using an augmented state-action space
was proposed in [9]. The space in RGoal is simpler and visually understandable,
thereby facilitating easier understanding of recursive subgoal settings.

The option-critic architecture[11] acquires options (subroutines) from agent
experiences. In RGoal, the landmark set is given or supposed to be acquired as
salient states experienced by the agent.

Because the theoretical framework of RGoal is simple, it is easy to extend. For
example, techniques for accelerating learning, such as universal value function
approximators[10] or hindsight experience replay[12], should be easily applicable.

5 Conclusion

We proposed a novel hierarchical reinforcement learning architecture that al-
lows unlimited recursive subroutine calls. We integrated several important ideas
that were proposed in previous papers into a single simple architecture. A novel
mechanism called thought-mode combines learned simple tasks to solve unknown
complicated tasks rapidly, sometimes in zero-shot time. Because of its simplicity,



12 Authors Suppressed Due to Excessive Length

we consider RGoal to be a promising first step toward a computational model of
the planning mechanism of the human brain. In the future, RGoal will be appli-
cable to robots that purposefully use tools such as ladders. A dialogue system
that makes purposeful speech is also one of the applications aimed at.

In the future, we will attempt to speed up learning by introducing state
abstraction via function approximation and aim for more realistic application
tasks. Detailed comparisons with other approaches are also important future
work.

Acknowledgments We gratefully acknowledge Yu Kohno and Tatsuji Taka-
hashi for their helpful discussion.

This work was supported by JSPS KAKENHI Grant Number JP18K11488.

References

1. Sutton, R. S., Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Proceedings of the Seventh International
Conference on Machine Learning,pp. 216–224 1990.

2. Singh, S. P., Reinforcement learning with a hierarchy of abstract models. In Pro-
ceedings of the Tenth National Conference on Artificial Intelligence, San Jose,
California. AAAI Press. 202–207, 1992.

3. Singh, Satinder Pal, Scaling reinforcement learning algorithms by learning variable
temporal resolution models. In Proceedings of the Ninth International Conference
on Machine Learning, Aberdeen, Scotland. Morgan Kaufmann. 406–415, 1992.

4. Kaelbling, L. P., Hierarchical Learning in Stochastic Domains: Preliminary Results.
In Proceedings of the 10th International Conference on Machine Learning, San
Francisco, California. Morgan Kaufmann. 167–173, 1993.

5. Sutton, R. S., Precup, D., and Singh, S. P., Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelli-
gence 112(1-2), 181–211, 1999.

6. Thomas G. Dietterich, Hierarchical Reinforcement Learning with the MAXQ Value
Function Decomposition, Journal of Artificial Intelligence Research 13, 227–303,
2000.

7. Wiewiora, E., Potential-based shaping and Q-value initialization are equivalent,
Journal of Artificial Intelligence Research 19, 205-208, 2003.

8. Jong, N. and Stone, P., Hierarchical model-based reinforcement learning: R-Max
+ MAXQ. In Proceedings of ICML, 2008.

9. Levy, K. Y., and Shimkin, N., Unified inter and intra options learning using policy
gradient methods. In Proceedings of The 9th European Workshop on Reinforce-
ment Learning (EWRL-9), 153–164, 2011.

10. Schaul, T., Horgan, D., Gregor, K., and Silver, D., Universal value function approx-
imators. In Proceedings of the 32nd International Conference on Machine Learning
(ICML-15), 1312–1320, 2015.

11. Bacon, P.-L., Harb, J., and Precup, D., The option-critic architecture. In Proceed-
ings of AAAI, 1726–1734, 2017.

12. Andrychowicz, M., Crow, D., Ray, A., Schneider, J., Fong, R., Welinder, P. , Mc-
Grew, B., Tobin, J., Abbeel, O. P., and Zaremba, W., Hindsight experience replay,
Advances in Neural Information Processing Systems 30, pp. 5055–5065, 2017.


