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Abstract. Most sentences expressed in a natural language are ambigu-
ous. However, human beings effortlessly understand the intended mes-
sage of the sentence even when a computer program finds out countless
possible interpretations. If we want to create a computer program that
understands a natural language in the same way as human beings do, a
promising way would be implementing a human-like mechanism of sen-
tence processing instead of implementing a “list exhaustively then select”
method. By the way, it is highly likely that human’s language ability is
realized mostly by the cerebral cortex, and recent neuroscientific stud-
ies hypothesize that the cerebral cortex works as a Bayesian network.
Then it should be possible to reproduce human’s language ability us-
ing a Bayesian network. Based on this idea, we implemented a syntactic
parser using a restricted quasi Bayesian network, which is a prototyping
tool for creating models of cerebral cortical areas. The parser analyzes a
sequence of syntactic categories based on a subset of combinatory catego-
rial grammar. We confirmed that the parser correctly parsed grammatical
sequences and rejected ungrammatical sequences.

Keywords: syntactic analysis, Bayesian networks, combinatory catego-
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1 Introduction

Most sentences expressed in a natural language are lexically and syntactically
ambiguous. This fact is easily demonstrated by parsing natural languages with
computer programs; you will be surprised by seeing countless possible interpre-
tations that you have never imagined. Therefore it is necessary to assess each
interpretation based on a certain criterion to select the most probable one.

Nevertheless, human beings effortlessly understand the intended message of
the sentence without being troubled by possible but unintended interpretations.

If we want to create a computer program that understands a natural lan-
guage in the same way as human beings do, one of the most promising way
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would be implementing a human-like mechanism of sentence processing instead
of implementing a “list exhaustively then select” method.

By the way, medical case studies of aphasia and observations of brain ac-
tivities measured by recent technologies strongly suggest that specific areas of
cerebral cortex, so called language areas, play crucial roles in language process-
ing [7]. At the same time, neuroscientific studies hypothesize that the cerebral
cortex works as a Bayesian network [10] or a kind of probabilistic graphical
model [1–6, 8, 9, 11–14]. If human’s language ability is realized by the cerebral
cortex, and if the cerebral cortex works as a Bayesian network, then it should
be possible to reproduce human’s language ability using a Bayesian network.

Based on this idea, the current authors formerly implemented a syntactic
parser for a context free grammar using a restricted quasi Bayesian network
[16]. We present another syntactic parser for a different type of grammar, i.e.
combinatory categorial grammar, in this article.

2 Restricted Quasi Bayesian Networks

One way to study the mechanism of information processing in the brain is to
create computational models of the targeted function. However, creating realis-
tic models using machine learning techniques, e.g. Bayesian networks, forces the
designers to resolve inessential problems, like tuning hyper parameters. More-
over, it is often difficult to trace the real cause of unsatisfying results when the
created model does not behave as expected.

It is often helpful to create prototypes before creating a realistic model. By
creating prototypes, we can estimate the hopefulness of the fundamental design
of the realistic model that we are going to create.

Restricted quasi Bayesian network [16] is a prototyping tool for creating
models of cerebral cortical areas. It is a simplified Bayesian network that only
distinguishes probability value zero from other values. Its conditional probability
tables are restricted to fulfill certain mathematical conditions to avoid combina-
torial explosion.

Restricted quasi Bayesian network provides gates, which control the flow of
information. Thus the designer can design generative models in a similar way as
designing logical circuits.

Since restricted quasi Bayesian network does not have learning ability, condi-
tional probability tables must be prepared by the designer. Because of its limited
capabilities, restricted quasi Bayesian network may not be applied to practical,
real-world problems. However, it releases the designers from inessential prob-
lems and allows them to concentrate on the essential part of model design. As
a result of agile prototyping activities, designers would find potential problems
in the model, which can be extremely difficult to find in a complicated, realistic
model.
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3 Combinatory Categorial Grammar

Combinatory categorial grammar [15] generalizes classical categorial grammar
by introducing functional composition. It is suitable to describe syntactic rules of
natural languages because its weak generative capacity locates between context-
free grammar and context-sensitive grammar.

In traditional phrase structure grammar, each syntactic category is repre-
sented as a unique non-terminal symbol. For example, sentence, noun phrase
and verb are often represented as S, NP and V , respectively.

In combinatory categorial grammar, on the other hand, syntactic categories
are represented by ground categories and operators. When X and Y are syn-
tactic categories, X\Y represents a syntactic category that constitutes X when
preceded by Y . Likewise, X/Y represents a syntactic category that constitutes
X when followed by Y .

In English, for example, a verb phrase is composed with a preceding noun
phrase (NP ) to constitute a sentence (S). Thus the category for verb phrase
is represented as S\NP , assuming that S and NP are ground categories. Fur-
thermore, a transitive verb is composed with a succeeding noun phrase (NP )
to constitute a verb phrase (S\NP ). Thus the category for transitive verbs is
represented as (S\NP )/NP .

4 Implementation

In this section, we explain a restricted quasi Bayesian network that implements
the forward/backward functional application rules of combinatory categorial
grammar.

4.1 Representation of Syntactic Categories in a Bayesian Network

Theoretically, the length of a syntactic category in combinatory categorial gram-
mar is unlimited. However, we suppose it is limited because of the information
processing ability of human. In this article, we represent a syntactic category by
five nodes. Each node takes a ground category or an operator as its value.

We adopt prefix notation to eliminate parentheses. In a sequence of five
nodes, first comes the operator, then the category that was originally at the
right side, and finally the category that was at the left side. Five nodes are used
in the flush-left mode; unused nodes take a special value to explicitly indicate
its inactivity (Fig. 1).

4.2 Forward/Backward Functional Application Rules

Figure 2 shows a restricted quasi Bayesian network that implements the for-
ward functional application rule. The value combinations that appear with a
probability greater than zero are listed in Table 1.
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Fig. 1. The ordinary notation of syntactic categories in combinatory categorial gram-
mar (left) and their prefix notation in this article (right). A full stop (.) represents an
unused node
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Fig. 2. A restricted quasi Bayesian net-
work that implements the forward func-
tional application rule. Each node in a syn-
tactic category takes a ground category or
an operator as its value. Each compara-
tor node has two children. If both children
have the same value, the parent compara-
tor takes that value. Otherwise it takes a
special value that represents “unmatched”.
The judge node controls the gates between
the left syntactic category and the com-
posed syntactic category based on the val-
ues of the comparators. Only the first three
nodes of the composed syntactic category
are depicted since the length of the syn-
tactic category is always shorten when a
function application rule is applied
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Fig. 3. An example of the forward
functional application rule in which
the first three nodes of the right
syntactic category match a part
of the left syntactic category. The
gates operate so that the final node
of the left syntactic category and
the first node of the composed syn-
tactic category have the same value
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Table 1. The value combinations that have a probability greater than zero in Fig. 2.
X is an arbitrary ground category and can be different from column to column. A full
stop (.) means “unused” or “unmatched”. An underscore ( ) is an arbitrary value. The
rightmost four columns indicate connection/disconnection between nodes controlled by
the gates. The value of the judge node (JC) may be anything as long as each row can
be distinguished

JC A0 C0 C1 C2 A1B0 A2B1 A3B2 C0A2 C0A4 C1A3 C2A4

J0 / X . . /, \ X X off on off off
J1 / /, \, X X, . X, . X . on off on on

When the first node, namely the topmost operator, of the left syntactic cat-
egory has the value slash (/) and the values of the following three nodes match
the values of the first three nodes of the right syntactic category, the gate that
connects the final node of the left syntactic category and the first node of the
composed syntactic category opens to make their values equal (Fig. 3). At the
same time, all the other nodes in the composed syntactic category are marked
as “unused”.

When the first node of the left syntactic category has the value slash (/)
and only one succeeding node matches the leftmost part of the right syntactic
category, the gates operate so that the remaining three nodes of the left syntactic
category and the nodes of the composed syntactic category have the same values
(Fig. 4).
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Fig. 4. Examples of the forward functional application rule in which only one node of
the left syntactic category matches the leftmost part of the right syntactic category.
The gates operate so that the last three nodes of the left syntactic category and the
nodes of the composed syntactic category have the same values

The backward functional application rule is implemented similarly as the
forward functional application rule (Fig. 5 and Table 2).



6 Takahashi and Ichisugi

By combining the networks described in Figs. 2 and 5, we obtain a restricted
quasi Bayesian network that performs the forward/backward function applica-
tion rules between two syntactic categories.

Table 2. The value combinations that have a probability greater than zero in Fig. 5

JC B0 C0 C1 C2 A0B1 A1B2 A2B3 C0B2 C0B4 C1B3 C2B4

J2 \ X . . /, \ X X off on off off
J3 \ /, \, X X, . X, . X . on off on on
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Fig. 5. A restricted quasi Bayesian
network that implements the back-
ward functional application rule
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Fig. 6. The nodes for the third syn-
tactic category (D0 to D4), the
composed category (E0 to E2) and
their connections for applying the
functional application rules. The
judge node and the comparator
nodes are omitted

4.3 A Bayesian Network for Three Syntactic Categories

Now we explain how to construct a restricted quasi Bayesian network that applies
the forward/backward functional application rules to three syntactic categories.

First, we introduce the third syntactic category for input, which is repre-
sented by the nodes D0 to D4. Then we connect the B nodes and the D nodes
in the same way as we did for the A nodes and the B nodes. The composed
syntactic category is represented by the nodes E0 to E2 (Fig. 6).

Then we connect the A nodes (the first input category) and the E nodes (the
composition of the second and the third input categories), as well as the C nodes
(the composition of the first and the second input categories) and the D nodes
(the third input category). Both compositions are represented by the nodes F0
to F2 (Fig. 7).

We have implemented the above-mentioned network for three syntactic cat-
egories as a restricted quasi Bayesian network. We also confirmed that all the
input combinations that are applicable to the functional application rules were
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correctly parsed, and inapplicable combinations were rejected, using up to three
different ground categories.

Figure 8 is an example of parsing three syntactic categories. It shows how
the created network parses a three-word sentence that consists of a subject noun
phrase, a transitive verb and an object noun phrase. First, the transitive verb
(wrote) and the object noun phrase (plays) compose a verb phrase (S\NP ).
Next, the subject noun phrase (Shakespeare) and the composed verb phrase
make a sentence (S).
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Fig. 7. A restricted quasi Bayesian network that parses three-word sentences. Multiple
nodes that belong to the same group are depicted as a single oval. A0..A4, C0..C2, etc.
are nodes to represent syntactic categories. A?B?, C?D?, etc. are comparators between
two syntactic categories. JC, JE and JF are judge nodes. Rectangles are gates

5 Conclusion

We examined the feasibility of creating a syntactic parser for combinatory cat-
egorial grammar as a restricted quasi Bayesian network. So far we have only
implemented the forward/backward functional application rules. The number of
acceptable syntactic categories is also limited to a small number. To extend the
current parser to a practical level, it is necessary to confirm that the presented
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Fig. 8. A three-word sentence parsed by the restricted quasi Bayesian network. First,
the transitive verb (wrote) and the object noun phrase (plays) compose a verb phrase
(S\NP ). Next, the subject noun phrase (Shakespeare) and the composed verb phrase
make a sentence (S). The judge nodes and the comparator nodes are not illustrated

design strategy does not cause combinatorial explosion with sufficient number
of syntactic categories for input.

One of the advantages in using combinatory categorial grammar is that syn-
tactical derivation and semantic composition can be associated elegantly; this
property should be utilized in a practical parser.

Restricted quasi Bayesian networks perform exhaustive search to find all the
combinations that have a probability greater than zero, but ordinary Bayesian
networks can calculate the most probable combination quickly with approxima-
tion. It is possible that humans also use some kind of approximation to realize a
real-time sentence interpretation because humans do not perform, at least con-
sciously, exhaustive search, and they fail to interpret some types of grammatical
sentences, e.g. deep centre-embedded sentences.

Our final goal is to reproduce human’s language ability using an ordinary
Bayesian network. For this purpose, we designed a prototype using a restricted
quasi Bayesian network to see the feasibility of such networks. We plan to ex-
amine other implementations for comparison.
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