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Abstract. We propose a formal model of the mechanism of semantic
analysis in the language areas of the cerebral cortex. The framework
of Combinatory Categorial Grammar, a framework of grammar descrip-
tion in theoretical linguistics, is modified so that it does not use lambda
calculus to represent semantic rules. This model uses a novel form of
semantic representation named hierarchical address representation, and
uses only fixed-length data structures. The knowledge of syntax and the
knowledge of semantics are clearly separated in this model. Therefore, it
is possible to reproduce disorders specific to syntax (utterance similar to
Broca’s aphasia) and disorders specific to semantics (utterance similar
to Wernicke’s aphasia) by disabling different modules in the model. We
estimate that the model can be implemented using the Bayesian net-
work model of the cerebral cortex that we have proposed earlier. We
believe that this research will connect computational neuroscience and
theoretical linguistics, and greatly evolve both of them.

1 Introduction

The language areas, which are considered to be centers of human language ac-
tivities, are parts of the cerebral cortex. There is a hypothesis[3] that claims
“the cerebral cortex is a kind of Bayesian network.” If so, we must be able to
build a system that reproduces the behavior of the human language areas using
a Bayesian network. Thus we aim at constructing a system that processes Com-
binatorial Categorial Grammar(CCG)[2], a framework of grammar description,
using a Bayesian network[9]. As the first step towards the aim, we propose a
formal model of the mechanism of semantic analysis in the brain based on CCG.

Theoretical linguistics is one field of linguistics that analyzes the character-
istics of natural languages by mathematical methods. The relation between lin-
guistics and theoretical linguistics resembles the relation between neuroscience
and computational neuroscience. One purpose of theoretical linguistics is to find
out some characteristics shared by all existing natural languages. Such charac-
teristics can be considered as the characteristics of the information processing
of the language areas in the brain.

Lambda calculus is usually used as a tool to describe semantic rules of CCG;
however, it is difficult to handle variable-length data structures like lambda terms
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by Bayesian networks. The proposed model uses a novel form of semantic repre-
sentation named hierarchical address representation, which does not use lambda
terms. The model uses only fixed-length data structures. We estimate that the
model can be implemented within the framework that we have proposed[5][9],
which is based on Bayesian networks.

Although it is unknown whether the proposed method is applicable to the
syntactic rules and the semantic rules of all the existing natural languages, we
believe that this research will connect computational neuroscience and theoret-
ical linguistics and greatly evolve both of them.

Sec.2 briefly explains CCG. Sec.3 describes the proposed model and examples
of analysis of some sentences. Sec.4 describes the correspondence between the
modules of the model and some areas of the cerebral cortex, then we demonstrate
reproduction of utterance of aphasia by disabling several modules.

2 Combinatory Categorial Grammar (CCG)

CCG is one of the most successful frameworks of grammar description. Its ex-
pressive power of grammar description is “mildly context-sensitive”, which lo-
cates in between context-sensitive and context-free in the Chomsky hierarchy.
Although the framework is very simple, grammars defined in CCG successfully
explain many language phenomena (even though it is not complete). Therefore,
we consider that CCG is the theory of information processing of the language
areas in the brain.

In theoretical linguistics, some frameworks use unification as the core op-
eration of analysis, and they are called unification grammars. CCG is one of
unification grammars.

In CCG, general syntactic categories have structures that consist of ground
categories (e.g., S for sentence, N P for noun phrase) combined by the operators
“/7 and “\”. Theoretically, the length of a syntactic category is not restricted.

A ground category may have syntactic features. A syntactic feature may be
a discrete variable whose value will be determined by the unification operations
during the process of syntactic analysis. A ground category G with a syntactic
feature F is denoted as Gp.

Production rules are defined by the form of inference rules in CCG. Syn-
tactic analysis (i.e. parsing) is formalized as proof search showing a given word
sequence being a sentence. A parse tree obtained as a result of syntactic analysis
corresponds to a proof diagram.

The inference rules in CCG are accompanied by semantic rules that compose
meaning of phrases. For example, the function which is the meaning of the word
“black” : Az.black(z) is applied to the term that means “cats” : cats to get the
meaning of the phrase “black cats” : black(cats). The semantic representation
of the whole sentence is obtained by performing function applications (i.e. beta
reductions) or function compositions sequentially from the leaves to the root,
along with the parse tree.
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In theoretical linguistics, including CCG, lambda calculus has been used as
a tool for describing semantics; however, it is hard to imagine that the actual
neural networks in the language areas have realized the complicated lambda
calculus. In the following section, we propose a model of semantic analysis that
does not use lambda calculus.

Lexicon

Syntactic Categories

[Semantic Representations]

Fig. 1. The architecture of the model and typical information flow among the modules
during the parsing process.

3 The proposed model

3.1 Scope of the model

We aim at constructing a model of the mechanism for unconscious and instant
interpretation of the superficial and literal meaning of comparatively simple sen-
tences. Neither conscious interpretation of sentences with complicated structures
nor presumption of unexpressed intention is a target of this model.

The length of word sequences, the length of syntactic categories, and the
length of generated semantic representations are all limited. Although human
can interpret a long sentence incrementally from the head, this model assumes
that all words are given at once.

We adopt a simplified English grammar for a straightforward explanation
of the behavior of the proposed model. Although the model accepts complex
sentences consisting of two clauses connected with a subordinating conjunction
(“if”, “after”, etc.) and sentences containing relative pronouns (“which”, etc.),
it is assumed that a subordinating conjunction or a relative pronoun appears at
most once in a sentence.

3.2 The outline of the process of semantic analysis

In this model, syntactic analysis and semantic analysis are conducted simultane-
ously. Fig.1 shows a typical information flow among the modules during parsing.
(1) First, a word sequence is given. (2) By referring to the lexicon, three data
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Address SR

(sconj, —, —) if

(c1, agent, size) big

(c1, agent, color) |*

(c1, agent, entity) |dogs

(c1,modality, —) |*

(c1, action, —) chase X/Y Y Y X\Y
(c1, patient, size) |small ST x < X

(c1, patient, color) |* XY Y/z Y\z X\Y
(c1, patient, entity)|mice > B X/Z <B X\Z

(c2, agent, size) * < <

c2, agent, color black >T ———— <T ——————
ECQ agent, entztg);) cats T/(T\X) TAT/X)
(c2, modality,—) |may . ) ]

(2, action, —) eat Fig. 3. The mferepce rl'lles in the Proposed
(c2, patient, size) |* model. These are identical to the inference
(c2, patient, color) |* rules of the us.ual CCG .except that there
(c2, patient, entity)|mice are no semantic rules using lambda calcu-

lus.
Fig. 2. All addresses in the prototype sys-

tem and semantic representations obtained

as a result of the semantic analysis of the
sentence “if small mice areChasedBy big
dogs black cats may eat mice”. Undeter-
mined values are denoted by “x”.

structures, a syntactic category, an address and a semantic representation, are
obtained for each word. Variables may be unbound in syntactic features and
in addresses at the time. (3) The parser merges syntactic categories and finds
a parse tree in which the whole word sequence forms a sentence. During this
process, unbound syntactic features receive a value through unification opera-
tions. (4) If a complete parse tree is generated, all values of syntactic features
are determined. (5) All values of variables contained in the addresses are also
determined. (6) A set of pairs of addresses and semantic representations that
represents the meaning of the whole sentence is obtained. (7) Each semantic
representation is written into the “memory” at the corresponding address.

Generally speaking, the information flow is not limited in the direction above.
For example, when a prior knowledge for the meaning is given, the information
will flow backwards from the semantic representation module to the parser mod-
ule and the parser can use it to resolve lexical or syntactic ambiguities. Moreover,
it is also possible to infer appropriate word sequences when a semantic represen-
tation is given. We show such an example in Sec. 4.
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3.3 Hierarchical address representation, inference rules and lexicon

In this model, the meaning of a sentence is represented as a set of pairs of
addresses and semantic representations. We call this form “hierarchical address
representation”.

Each address is a tuple of the three values (C,R,F). Each semantic rep-
resentation is written into an address. All possible addresses in the prototype
system are listed in Fig.2.

The topmost hierarchy of an address, C, represents the index of a clause in
a complex sentence, which uses either a subordinate conjunction (e.g. “if”) or a
relative pronoun (e.g. “which”). The value of C is either ¢l (for the first clause)
or ¢2 (for the second). The type of the subordinate conjunction is written into
the special address: (sconj, —, —). For example, when the sentence starts with an
“if”, the semantic representation of “if” is written into the said special address.

The second hierarchy of an address, R, primarily indicates the semantic role
of a word in the sentence. In the current prototype system, its value is limited
to either agent or patient, but it can be extended for other semantic roles (e.g.
instrument, location, time) easily. Also, R can take the value action (for the
semantic representation of a verb) or modality (for the semantic representation
of an auxiliary verb).

When the value of R is agent or patient, i.e. when the word is a part of
a noun phrase, the third hierarchy, F, indicates a feature of the word. In the
prototype system, the value of F is limited to color, size, and entity. F being
entity means that the word is the head noun of a noun phrase.

The hierarchical address representation is inspired by a neuroscientific find-
ing about the encoding of sentence meaning in the brain[8], which suggests that
each semantic role (agent, patient) has its own representing place in the brain,
regardless of the superficial voice (active or passive) of the sentence. We sup-
pose that fixing positions for all elements of meaning facilitates learning and
processing of language for neural networks and Bayesian networks in the brain.

Fig.3 shows the inference rules in the proposed model. There are no seman-
tic rules using lambda calculus. The semantic analysis is performed by merely
unification operations of syntactic features as explained in the next subsection.

The lexicon is a set of lexical items. A lexical item in this model is represented
as a tuple of four data structures (a word, a syntactic category, an address, and
a semantic representation), as shown in Fig.4.

3.4 Examples of analysis

Fig.5 shows the parse tree of the sentence “black cats eat mice”.

Let us explain the process of analyzing the phrase “black cats” in detail. First,
by referring to the lexicon for these words, the corresponding syntactic categories
NP¢, r,/NPc, r, and NPc, r, are obtained. Next, the inference rule “>” is
chosen because this rule has the premises that unify with the obtained syntactic
categories. Then, the inference rule is applied to the syntactic categories and the
merged syntactic category N Pc, R, is derived as a result. This derived syntactic
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Word Syntactic Category Address SR

if? (Scl/SCQ)/Scl (SCOn], ’ ) if

black’ NPcr/NPcr (C, R, color) black

‘big’ NPcr/NPcr (C,R, size) big

‘cats’ NPcr (C,R, entity) |cats

‘eat’ (Sc\N Pc,agent ) /N Pc patient (C,action,—) |eat
‘areEatenBy’|(Sc\N Pc patient ) /N Pc,agent (C,action,—) |eat

‘may’ (Sc\NPc,r)/(Sc\NPcRr) (C, modality, —)|may

"which’ (NPe1,r \NPe1,r,)/(Sc2\NPe2,r,) |(c2,Ra, entity) |(cl, Ry, entity)
"which’ (NP, \NPe1,r,)/(Sc2/NPe2r,) |(c2,Ra, entity) |(cl, Ry, entity)

Fig. 4. Examples of lexical items contained in the lexicon. Each bold letter denotes an
unbound variable. The same variables within a lexical item must have the same value
at the end of the parsing. The first lexical item of “which” is used for the nominative
case, and the second one is for the objective case.

category itself is merged with other syntactic categories as the analysis goes
further.

The analysis progresses in such a way until the syntactic category Sc (sen-
tence) is finally derived. At that time, the proof of the whole word sequence
being a sentence is completed. By the unifications performed during the process
of analysis, the semantic roles Ry (for “cats”) and R4 (for “mice”) are deter-
mined as agent and patient, respectively. Then, the address where the semantic
representation of each word should be written is determined. The addresses and
the semantic representations finally obtained are shown in Fig. 7.

Fig.6 shows a part of the parse tree of the sentence “mice which dogs chase
areEatenBy cats” that uses a relative pronoun of the objective case. The analysis
of this sentence requires the type raising rule “> T”. The semantic representation
of the relative pronoun “which” is the address of its antecedent (Fig.8).

black cats eat mice
NPc, r,/NPc,r, NPc,Rr, > (Scy \N Pcyagent) /N Poy patient N Pcy Ry
NPcl,Rl SCg\NPC;;,agent
Sc,

Fig. 5. A parse tree (proof diagram) of the sentence “black cats eat mice”. Although the
variables R;, semantic roles, are unbound at the beginning, their values are determined
as R1 = Ry = agent and R4 = patient by unification operations during parsing. A
parse tree of the sentence “black cats areEatenBy mice” results in the same form
but the semantic roles of agent and patient are exchanged. The variables C; are left
unbound after parsing; however, they are restricted to have the same value, i.e. C; =
Cy; =C3 =Cay.
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>T
which

(NPe1,Ro; \NPc1,Ry;)/(Sc2/NPe2,Rys)

dogs
NP03 ,Rg3 chase

T3/(T3\NP03,R3) (SC4\NPC4,agent)/NPC4,pu.tient

Sc, /N Pc, patient

NPci Ry \NPULRZI

Fig. 6. A parse tree of the word sequence “which dogs chase”. In this relative clause,
whose index is C3 = C4 = 2, the semantic roles of “dogs” and “which” become Rs =
agent and Raa = patient, respectively. The index of the main clause is determined as
cl, but the semantic role of the antecedent Ras1, is determined only when the whole

sentence has been analyzed.

Address |SR
(c1, agent, color) |black
(c1, agent, entity) |cats
(c1, action, —) eat
(cl, patient, entity)|mice

Fig. 7. The pairs of addresses and
semantic representations obtained
by analyzing the sentence “black
cats eat mice”. Because the value
of the address C is arbitrary, we
set it as cl.

Address SR

BA44,4
Addresses;
ategorie
Semantic @
Representatio

(c1, agent, entity) |cats
(c1, action, —) eat
(c1, patient, entity)|mice
(2, agent, entity) |dogs

(2, action, —) chase

(2, patient, entity)|(cl, patient, entity)

Fig. 8. The pairs of addresses and se-
mantic representations obtained by an-
alyzing the sentence “mice which dogs
chase areEatenBy cats”.

BA22

Fig.9. A possible correspondence between the modules in the model (Fig. 1) and

cortical areas.
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4 Correspondence to cortical areas

A possible correspondence between the modules in the model (Fig. 1) and cor-
tical areas is shown in Fig. 9. Broca’s area (Brodmann Areas 44 and 45) partic-
ipates in grammar processing and Wernicke’s area (BA22; close to the primary
auditory area (BA41,42) and to the angular gyrus (BA39)) participates in as-
sociation between speech sounds and concepts[7]. The parser in the proposed
model is the module of grammar processing, thus it is matched with Broca’s
area. Because it is suggested that agents and patients are represented at the
left mid-superior temporal gyrus[8], we suppose that the human’s module for
semantic representations is located there, around BA22.

By “disabling” a part of the model, utterance that is similar to Broca’s
aphasia or to Wernicke’s aphasia can be reproduced. Although the symptoms
of aphasia[7] is complicated and largely vary from patient to patient, we give
simple explanation below. Broca’s aphasia arises from damage to Broca’s area.
Its utterance consists of scattering words that do not constitute sentences. The
Wernicke’s aphasia arises from damage to the Wernicke’s area. Its utterance is

fluent but does not make sense because of mistakenly selected words.

The proposed model has been implemented in the Prolog language. First, we
show an example of a normal behavior of sentence generation. For this example,
the semantic representation shown in Fig. 7, which means “black cats eat mice”,
is given. If the model infers all possible sentences that consist of four words, the
following two sentences are obtained as solutions.

black cats eat mice
mice areEatenBy black cats

In the same condition but without the parser module, the obtained solutions
include syntactically incorrect word sequences; however, only those words that
are semantically suitable are chosen (Fig.10(a)). This phenomenon is essentially
the same one seen in utterance of Broca’s aphasia.

If the model infers all possible sentences that consist of four words without
giving concrete semantic representation, all syntactically correct sentences will
be obtained as solutions(Fig.10(b)). This phenomenon is essentially the same
one seen in utterance of Wernicke’s aphasia.

In the proposed model, the parser module processes only the addresses where
meanings are written, but does not process the semantic representations them-
selves. Because the knowledge of syntax and the knowledge of semantics are
clearly separated in this architecture, we can reproduce syntactic disorder and
semantic disorder, like actual aphasia.

5 Related work

We aim at the model of the language processing that can be realized easily in
the form of Bayesian networks or neural networks like the cerebral cortex. The
essential difference from the conventional frameworks of the formal semantics
is a complete exclusion of variable-length data structures. Although unification
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(a) (b)

black black black black white dogs eat dogs

black black black cats white dogs eat cats

black black black mice white dogs eat mice

black black black eat white dogs chase dogs
black black black areEatenBy white dogs chase cats
black black cats black white dogs chase mice
black black cats cats white dogs areEatenBy dogs
black black cats mice white dogs areEatenBy cats

Fig. 10. Inferred word sequences similar to (a)Broca’s aphasia and (b)Wernicke’s apha-
sia.

operations are occasionally used to express semantic rules, tree structures have
been used to express semantic representations. MRS (Minimal Recursion Seman-
tics)[4] expresses meanings not with a tree structure but with a flat structure;
however, it needs to handle variable-length data structures.

There are some systems that parse natural language efficiently using loopy
belief propagation. For example, the system in [6] is an efficient CCG parser;
however, it does not include semantic analysis.

6 Conclusion

We proposed a model of the mechanism of the semantic analysis that does not
use variable-length data structure (e.g. lambda terms) but uses a novel form of
semantic representation named hierarchical address representation. The modules
of the model have correspondence to cortical areas in the brain.

We can reproduce utterance of aphasia by “disabling” some modules in the
model.

A chart parser for context-free grammar can be realized as a Bayesian net-
work[9]. It should be possible to apply this method to CCG. Moreover, the
mechanism of the unification that the proposed model uses is also easily realiz-
able as Bayesian networks. If the whole model is realized as a Bayesian network,
it is possible that lexical items and inference rules can be learned from pairs
of word sequences and semantic representations. We believe that this research
will connect computational neuroscience and theoretical linguistics, and greatly
evolve both of them.
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