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Abstract. We describe a method of regularization for the restricted
Bayesian network BESOM, which possesses a network structure similar
to that of Deep Learning. Two types of penalties are introduced to avoid
overfitting and local minimum problems. The win-rate penalty ensures
that each value in the nodes is used evenly; the lateral-inhibition penalty
ensures that the nodes in the same layer are independent. Bayesian net-
works with these prior distributions can be converted into equivalent
Bayesian networks without prior distributions, then the EM algorithm
becomes easy to be executed.

1 Introduction

One of the remarkable hypotheses in the latest neuroscience is “the cerebral
cortex is a kind of Bayesian network[4].” The cerebral cortex plays an important
role in human intelligence. The cerebral cortex has many similarities to Bayesian
networks[2], from the functional and structural point; this is suggested by a
number of neuroscientific phenomena, well-simulated by the models involving
Bayesian networks(For example [4-6,8-10]).

Deep Learning, which stems from the Neocognitron[l], is garnering atten-
tion for its high recognitive performance. Neocognitron was designed to have
the functionality of the visual cortex through the imitation of the hierarchical
structure of ventral pathway of the cortex.

Combining the latest neuroscientific insights and the Deep Learning tech-
nology will lead to the better performing machine learning technology, which
has the more human-like ability. With this goal in mind, we are developing a
machine-learning algorithm called BESOM (BidirEctional Self-Organizing Map),
a Bayesian network with a layer structure and each node has restricted CPT
(Conditional Probability Table) model[6]. Though our BESOM algorithm is un-
der development and lacks accuracy, it already has the ability to show the po-
tential applications in engineering and as a possible computational model of the
cerebral cortex[6, 8, 11].

Deep Learning using a Bayesian network is thought to be promising not only
because of its similarity to the human brain but also from a technical viewpoint,
particularly with respect to the following points:
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— Inference in Bayesian networks can sometime be executed with low compu-
tational complexity.

— Because Bayesian networks have top-down information flow in addition to
bottom-up, they may be more powerful than feed-forward neural networks.

— It is easy to build in prior knowledge about learning targets.

Despite these advantages, large-scale Bayesian networks like BESOM are not
widely used, probably because of their large computational complexity, overfit-
ting and local minima problems.

For the issue of computational complexity, efforts are being addressed by the
use of restricted CPTs[3,11].

The problems of overfitting and local minima are thought to arise from the
high expressiveness of large-scale Bayesian networks. Assigning an adequate prior
distribution to the parameters, this high expressiveness would be reasonably
lowered to solve these problems.

In this study, we describe two types of prior distribution: the win-rate penalty
and the lateral-inhibition penalty. We also introduce an approximate learning
rule for use with these penalties. The two mechanisms can be applied simulta-
neously. They add biases to the recognition results: the win-rate penalty ensures
that each value in the nodes is used evenly; the lateral-inhibition penalty ensures
that the nodes in the same layer are independent.

2 The Architecture of BESOM

Fig. 1. An example of a BESOM network. Ovals are nodes (random variables) and the
white circles inside are units (possible values for the random variables).

BESOM is a Bayesian network having a deep hierarchical structure similar to
Deep Learning(Figurel). Like many Deep Learning architectures, it has connec-
tions between layers forming local receptive fields, while there are no connections
in the same layer.

In BESOM, variables are called nodes and possible values for the variables
are called units. In general, nodes are multinomial variables. If a black and white
image is to be learned, the input pixel values are given as the observed binary
variables in the bottom layer.
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BESOM can be used in both unsupervised and supervised learning. When
used for unsupervised learning, all variables in BESOM are hidden, except those
in the bottom layer. In this case, acquired features are expressed in the upper lay-
ers. For supervised learning by BESOM, there are ways to assign the supervisory
signal. One of the way, for example, is to assign the supervisory signal to a single
node in the uppermost layer. In the test phase, the uppermost node becomes a
hidden variable, whose inference value (the maximum posterior probability) is
taken to be the recognition result.

Another significant feature of BESOM is the limitation placed on CPT, which
will be explained in Section 4.

3 The Objective Function for Learning

Let P(h,i|f) be a joint probability model with the a set of hidden variables h
and the set of input variables i, with given parameter 6. By i(¢), we give the
set of values of input variables at the time ¢. Under the assumption that the
input data sequence forms i.i.d. (independent and identical distributions) for
fixed parameter 6, the probability for the input data sequence i(1),i(2),--,i(t)
occurring under the parameter 6, which is likelihood of 6, is calculated like this:

P(i(1),...,i(t) | 8) = H P@(i) | 0) = [[D_ P(h,i() | ). (1)

i=1 h

The objective of learning is to obtain MAP (maximum a posteriori) estimate
of the parameter. In other words, the objective is to find maximizing parameter
of 0, say 6*:

P(0). (2)

i=1 h

= argmax [HZP (h,i(s

To estimate parameter 6, the online EM (Expectation-Maximization) algo-
rithm or its approximation is used. One method of approximation is given as
follows.

The approximation algorithm here is combination of two steps, one for recog-
nition and the other for learning. First, in the recognition step, based on current
parameter 6(t) and given the input values i(¢), the maximum posterior proba-
bility estimation values of the hidden variables h(t) (i.c., MPE, Most Probable
Explanation) are obtained as follows:

h(t) = argflnax P(hli(t),0(t)) = arghmax ((((igi())
= arghmax P(h,i(t)]0(t)). 3)

Approximate calculation of this formula can be efficiently executed by, for ex-
ample, loopy belief revision algorithm|8].
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Next, in the learning step, the marginalization of thq hidden variables in
Equation (2) is approximated using the estimated value h(i) and the result is
taken to be 8(t 4+ 1) .

t

[[ Phe).i@)e)

1=1

O(t + 1) = argmax

P(6). (4)

The prior distribution for parameter 6 is defined as the product of two factors,
as follows:

P(G) — PWinRatC(Q) PLatcral(e). (5)

The detailed explanation of the win-rate penalty PWinRate(9) and and lateral-
inhibition penalty PL#teral(g) are given in Section 5 and Section 6, respectively.

4 The Conditional Probability Table Model

One important characteristic of BESOM is in its CPT model. (Note that the
win-rate penalty and lateral-inhibition penalty mechanisms, which are the main
subject of this paper, are thought to work with the other types of CPT models.)

In a Bayesian network an O(2™) number of parameters is generally needed
with respect to m, the number of parent nodes, to express the CPT for each
node. This causes an explosive increase in computational complexity and memory
requirements as well as introducing the problem of overfitting and local minima.

To allow CPTs to be expressed with fewer parameters, we limited them in
the following manner:

P(z|uy, - um) = %Zw(x,uk) (6)
k=1

As the simplest form of w(x, uy), we currently use the following:
w(z,ug) = Px|ug). (7)

In this case, the conditional probability P(x|uy) is expressed by a single param-
eter wyy, -

When this restrictions are introduced, the belief propagation algorithm can
be optimized and computational complexity is dramatically reduced[11]. It has
also been shown that the information flow between the nodes closely matches
the characteristic anatomical structure of the cerebral cortex[6, 8].

5 Win-Rate Penalty

5.1 Purpose

If the BESOM network parameters are learned in a naive way, learning progresses
for only a small set of units and the other units tend to stay at their initial values.
In this case, learning is thought to fall into a local minimum.
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An effective way to address this problem is to set the prior distribution for
the parameter appropriately, and assign a bias so that the units in each node
are used evenly.

Our approach uses the Kullback-Leibler (KL) divergence between the win-
rate distribution that is targeted by each unit and the actual distribution. Penal-
ties are imposed when the divergence is large. Here, the win-rate refers to the
frequency with which units become the estimated values for the node.

In BESOM, the units are values of random variables, and the unit corre-
sponding to the estimated value in one node (a random variable) is called the
winner unit.

Using this penalties, it is expected that as learning progresses, the win-rate
of each unit will approach the target value. The mechanism is called the win-rate
penalty because units with larger win-rates are penalized.

5.2 The Problem of Complex Prior Distributions and its Solution

The maximum likelihood estimate for the parameters of a Bayesian network
with hidden variables can be estimated using an EM algorithm which can be
executed efficiently using the result of inference[7]. However, when the parameter
has a complex prior distribution, it is not obvious to perform the EM algorithm
efficiently.

If a Bayesian network with a prior distribution for its parameter can be
converted into an equivalent Bayesian network without a prior distribution, then
the EM algorithm will become easy to be executed.

Fortunately, a Bayesian network with a prior distribution describe below can
be converted into an approximately equivalent Bayesian network with no prior
distribution. In the converted Bayesian network, restriction nodes are added to
give bias to the recognition result.

5.3 Defining a Prior Distribution, and Deriving an Equivalent
Bayesian Network

The win-rate penalty PWVirRate(9) is defined as follows:

pWinRate gy _ H exp(—CWinRate D (Q(X)||P(X;6))). (8)
Xex

where X is the set of all nodes and CWinRate s 5 constant that determines the
strength of the win-rate penalty.

Q(X) is the distribution set as the target for the win-rate of node X and the
network architect decides the shape of this distribution. For example, if the goal
is to make the win-rate of the node units uniform, Q(X) is defined for all units
x; (1=1,2,---,8) as

QX =x;)=1/s 9)

where s represents the number of units in node X.
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The Kullback-Leibler divergence between distributions Q(X) and P(X;0) is
defined by the following equation:

(Jf)
z0)

DrsQUOIIPCX:0) = 32Q(a)

We define a function R(x;6) as follows: (*)See Errata

R(z;6) = P?f,cé) log Pcigigfé) (11)

We can expect the following approximation holds because x ~ P(x;6):

t
LR W

H—M—l

f(z(i);0). (12)

Therefore,

()
z:6)

Drs(QUOIIPCX:0) = 32Q(a)

~ 1 , <w<z’>>_t1 N
~Y PG <<z>>logW—Z;R<x<z>,e> (13)

i=1 i=1

holds. Then, PWVinRate(9) can then be rewritten as follows:

PWinRate(g) — H eXp(_CWinRateDKL (Q(X) | |P(X’ 9)))
XeX

IT exp(-C™™ete S 2 R(a(i: 6)
XeX 1=1

H H exp(— %CWinRateR(az(i); 0))

XeXi=1

=TT T exo(— ;™ Ria(i);0)) (14)

i=1 XeX

Q

Equation (4), which MAP estimates parameter 6 in the learning step, can be
rewritten as follows (for simplicity, P(§) = PWinRate(9) is assumed here):

Ot +1)= argznax {H P(h(i), i(i)|9)] pWinRate g
i=1

= argmax [lj 1;[ (i)|pa(z } [H [T exo(- CWiIIRateR(x(i);g)):|

=1 XeX

= argama HH[ ilpa(z )>;o>exp(—icWinR“eR(x@;0))] (15)
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where pa(z(i)) represents the values of the parent nodes of node X at time 4 .

The above equation can be interpreted as that each node X has a correspond-
ing restriction node Rx (Figure 2) whose conditional probability is defined as
follows:

1 o
P(Rx =1|X =x;0) = exp(—ngmRateR(a:;H)). (16)

(Node Rx always has a observed value 1 .) The Bayesian network with restric-
tion nodes no longer has prior, therefore, it is possible to conduct parameter
estimation using an EM algorithm.

Because CWinRate js multiplied with the regularization parameter 1/¢, the
penalty’s influence decreases as time progresses when online learning.

The value P(z;6) needed to calculate R(z;6) can be simply estimated using
statistics of values.

Fig. 2. Restriction nodes representing the win-rate penalty.

6 Lateral-Inhibition Penalty

6.1 Purpose

When the BESOM network parameters are learned in a naive way, nodes in
the same layer that receive inputs from the same child nodes tend to represent
similar feature. This phenomenon is also thought to relate to local minima or
overfitting problems. Each of the hidden layers in BESOM, similar to those in
Deep Learning, is expected to work as a feature extractor. When the same feature
are redundantly expressed in many nodes, it is not preferable for recognition in
the upper layers.

As in the previous section, this problem is addressed by defining a penalty as
a prior distribution, and then, an equivalent Bayesian network without a prior is
derived. In the prior distribution, a bias is applied in such a way that by assign-
ing penalties to cases in which two nodes express similar values. Because this
mechanism is thought to have a similar role to the lateral inhibition mechanism
in the cerebral cortex, we name it the lateral-inhibition penalty.
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6.2 Defining a Prior Distribution, and Deriving an Equivalent
Bayesian Network

The prior PLateral(g) corresponding to lateral inhibition is defined as

PLateral(a) — H exp(chateraII(U, V; 0)) (17)
(U,V)eL

where CTateral s the constant which determines the strength of the lateral-
inhibition penalty and L are the set of pairs of nodes conducting lateral inhibi-
tion. Usually, each pair of nodes in the same layer that share child nodes should
laterally inhibit each other.

I(U,V;6) is the mutual information between nodes U and V and is defined
as follows:

I(U,V;0) Zzpu v; 0)log Pl (Z)U(Z)H) (18)

Here, we define a function R(u,v;#) as follows(f has been omitted):

P(u,v) P(u,v) PO lon Pl P
Pl P(o) 8 Blu)plo) — (F(l)/P(w)log P(ulv)/P(u). (19)

R(u,v) =

Given these definitions and the approximate equation (12), the following
holds:

~+ | =

t
I(U,V;0)~ )

i=1

R(u(i), v(i); 0). (20)

Following the same logic as in Section 5, we can derive an equivalent Bayesian
network without the prior. In the network, for each node pair (U, V) € L that
displays lateral inhibition, there is a shared binary-valued child node Ry (Fig-
ure 3) whose conditional probability is defined as follows:

1
P(Ryy = 1|u,v;0) = exp(— C** ™ R(u, v; 0)). (21)

Thus, the maximum likelihood value of a parameter can be easily estimated
using an EM algorithm.

The values P(ul|v;6) and P(u; ) required to calculate the value of R(u,v;60)
can be simply estimated using statistics of values.

7 Evaluation

We evaluated the effectiveness of the proposed method using recognition rates
of an MNIST handwritten digit database’.

! http://yann.lecun.com/exdb/mnist/
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Fig. 3. Restriction nodes representing the lateral-inhibition penalty.

We used a four-layer BESOM network for this experiment. For the bottom
layer, we created a 28 x 28 layout of two-unit nodes to take binary pixel values
from a 28 x 28 input images. For the uppermost layer, we used a single 10-unit
node to provide the supervisory signal. There were two hidden layers: for the
layer immediately above the input layer we created a 5 x 5 array of 20-unit nodes
and for the layer above that, a 3 x 3 layout of 30-unit nodes.

We evaluated the recognition rate by having the network first randomly learn
10,000 pieces of training data from a possible 60,000 pieces and then randomly
recognize 1,000 pieces from 10,000 pieces of test data.

For learning, a very rough approximation of an online EM algorithm was
used. First, an optimized loopy belief propagation algorithm[11] was applied.
This was used to calculate the marginal posterior probabilities for each node.
For each node, the value with maximum posterior was taken to be its estimated
value, and the parameter was updated using the value.

Table 1 summarizes the results; each value is the average of 10 experiments.
For both penalties, the recognition rate was higher than when no penalties were
applied. This result also shows that two prior distribution can be applied simul-
taneously; however, it does not show the best accuracy in this case.

Table 1. Accuracy of recognition results of MNIST hand-written digits. (WR: Win-
Rate penaltiy, LI: Lateral-Inhibition penaltiy)

| [With WR[Without WR]

With LI 80.6 % 81.8 %
Without LI|| 82.2 % 63.6 %

8 Conclusion and Future Work

Two regularization methods for parameter learning of layered Bayesian networks
are proposed and an experiment shows that they are promising. We believe they
alleviate both overfitting and local minima problems; however, more detailed
evaluation and analysis may still be required.
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BESOM is beginning to be used as a machine-learning algorithm; however,
sufficient recognition precision has not been attained to enable its use in practi-
cal applications. The main reason for this is thought to be that the restrictions of
CPTs described in Section 4 are too strong. To address this problem, it is neces-
sary to develop a new CPT model and a suitable approximate belief propagation
algorithm. This is what we are currently working on.
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Errata (2017-02-15)

Equation (5): Normalization constant is required.

Equation (8),(11):
Our current implementation, which was used for the evaluation in Section 7, uses
Dy, (P(X; 0)]1Q(X) instead of Dy, (QEIIP(X; 6)).
When we use Dg; (P(X;0)]|Q(X)) for the definition of the equation (8), the equation (11)

becomes
R(x;8) = log - 0
x;0) = log——
5w
and it can be approximated as
P(x;0)
R(x;0) = 1
AN TEY)

The effect of this penalty is easy to understand intuitively. If P(x;0) is larger than the
target value Q(x), a larger penalty is given to the value x, making x less likely to be
chosen as the inference result.

Conversely, if we use the definition of the penalty based on Dy (Q(X)||P(X;0)) as
written in this paper, the difference in the win-rate will become more intense. Because
we do not understand why Dk (P(X;0)[|Q(X)) and Dk (Q(X)||P(X;8)) cause different

effect, we will continue to investigate this issue.

Equation (16),(21):
The values of these equations may exceed 1 because the values of R(x;60) and R(u,v;0)
may become minus values. We can avoid this formal problem by just multiply the right

hand sides of these equations by a sufficiently small constant value 8, for example:
1 .
PRy =1|X=x;0) = Sexp <—ECW”‘R““”R(x; 9)).

Because the § will disappear when normalizing messages, we can ignore it when

implementing this algorithm.
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