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Abstract. The authors have proposed a computational model of the
cerebral cortex, called the BESOM model, that combines a Bayesian
network and Self-Organizing Maps. In this paper, we add another model
of the cerebral cortex, called sparse coding, into our model in a biologi-
cally plausible way. In the BESOM model, hyper-columns in the cerebral
cortex are interpreted as random variables in a Bayesian network. We
extend our model so that random variables can become “inactive.” In
addition, we apply bias at the time of recognition so that almost all of the
random variables may become inactive. This mechanism realizes sparse
coding without breaking the theoretical framework of the model based
on the Bayesian networks.
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1 Background

Some computational neuroscientists have begun to understand that the Bayesian
network [2] is the essential mechanism of the cerebral cortex [6][8][9][11][12][13][14]
[15]. Bayesian networks are a technology for knowledge representation that can
efficiently express the causal relationships among many random variables. Mod-
els based on Bayesian networks can successfully explain the fundamental mecha-
nism of the cerebral cortex, namely, robust pattern recognition using prediction
based on context[8]. Furthermore, previous studies strongly suggest that the
cerebral cortex is a Bayesian network, according to models that reproduce elec-
trophysiological phenomena[9][15] and models that explain the roles of major
anatomical characteristics of the cerebral cortex[11][12]. Moreover, the mecha-
nism of the motor area is explained by using a combination of a Bayesian network
and a reinforcement learning mechanism[13]. Another study realizes probabilistic
reasoning at the Markov Random Field (a model similar to Bayesian networks)
with a biologically plausible neural circuit of spiking neurons[14].
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Although previous models explain only some parts of the mechanism of the
cerebral cortex functions, we believe that, in the not too distant future, these
models (maybe including [5]) will become integrated into one universal model
based on Bayesian networks.

The authors have also proposed a model of the cerebral cortex using a
Bayesian network, called the BESOM model [11][13]. This model inherits the
basic structure of Neocognitron and its successors[1], which are macroscopic
models of the visual area. Moreover, the mechanism of the Self-Organizing Maps
(SOM)[3], whose origin is the model of the orientation columns of the primary
visual area, is adopted as a learning algorithm. BESOM can also be regarded as
a novel machine-learning algorithm that uses multiple SOMs, like [10] and [17].

On the other hand, there is another model, called the sparse coding model
[4], of an aspect of the cerebral cortex. Sparse coding is a kind of unsupervised
learning whose goal is to acquire a basis on which to express an input vector by a
linear summation of a smaller number of basis vectors. It has been suggested that
sparse coding is performed in the primary visual area[4] and primary auditory
area[16] of the cerebral cortex. Sparse coding efficiently compresses information
and is supposed to conserve both the energy spent by neurons and the cost of
maintaining synapses.

In this paper, we propose a biologically plausible computational model that
unifies three mechanisms, a Bayesian network, SOM, and sparse coding. The
model is an extension of the previous BESOM model.

2 Overview of the Model

2.1 Bayesian Network and MPE

A Bayesian network[2] is a model of knowledge representation that expresses
causal relationships between random variables using a directed acyclic graph.
Random variables are expressed as nodes, and relationships between random
variables are expressed as edges. Each node has a table of conditional probability,
which denotes the degree to which nodes are related to the set of its parent nodes.

In a Bayesian network, an MPE (most probable explanation) is the set of
values of nodes that most likely explains given observed data. Let i be a set of
values of observed random variables and h be a set of values of hidden variables
(unobserved random variables). MPE ĥ is defined by the following equations.

ĥ = argmax
h

P (h|i) = argmax
h

P (h, i) (1)

where P (h, i) is the joint probability of h and i, which can be calculated by the
following formula if a Bayesian network is given:

P (h, i) =
∏

x∈h∪i

P (x|parents(x)) (2)

where parents(x) denotes the set of values of parent nodes of node X.



2.2 The Structure of Two-Layered BESOM

Figure 1 shows the neural circuit of the two-layered BESOM network used in this
paper. The ellipses are nodes (random variables), the small circles are units (val-
ues that random variables can take), and the straight lines are the connections
(conditional probabilities) between units.

Although every pair of units contained in the two layers (the hidden layer
and the input layer) has a connection, most connections are omitted in Fig.1.
There is no connection between units in the same layer.

At the time of learning, each node in the hidden layer plays the role of a
competitive layer of SOM, learns the weights of the connections (conditional
probabilities) between units, and compresses the input from its child nodes.

At the time of recognition, all nodes play the role of random variables in
a Bayesian network. At this time, all edges of the Bayesian network are from
all nodes of the hidden layer to all nodes of the input layer. There is no edge
between nodes in the same layer.

The number of nodes, the number of units, and the network structure of
nodes are given first, and are not changed by learning.

When BESOM is used as a cerebral cortex model, each node is a hyper-
column, each unit is a column (minicolumn), and each connection weight between
a pair of units is the weight of a synapse.

The correspondence of components in BESOM, SOM, a Bayesian network
and a cerebral cortex is summarized in Table 1.

Node

Unit

Hidden nodes

Input 
nodes

...

...

Fig. 1. The structure of two-layered BESOM network.

2.3 Recognition Steps and Learning Steps

When a set of values of input nodes (observed data) is given, BESOM executes
a recognition step and a learning step. By repeating this cycle, BESOM acquires
an approximated generative model of the outer world.

Let i(t) be the set of values of input nodes at time t. We assume that each
input is generated from i.i.d. (independent identical distribution). The objective
of the learning is to maximize the likelihood of the parameter θ (the vector of



Table 1. The correspondence of components in BESOM, SOM, a Bayesian network
and a cerebral cortex.

BESOM SOM Bayesian network Cerebral cortex

node competitive layer random variable hyper-column

unit element of input vector, value of column
unit of competitive layer random variables

parent node competitive layer parent node (cause) upper area

child node input layer child node (result) lower area

output of unit the winner of competition MPE response of column

weight of element of conditional weight of synapse
connection reference vector probability

all the elements of all conditional probability tables).

θ∗ = argmax
θ

(
t∏

i=1

P (i(i)|θ))P (θ) (3)

= argmax
θ

(
t∏

i=1

∑
h

P (h, i(i)|θ))P (θ) (4)

Although the algorithm described in this paper is somewhat complex, its
essence can be simply expressed by the following two equations.

At the recognition steps, the estimated values of hidden variables ĥ(t) (MPE)
based on the current parameter θ(t) are calculated by the following equation.

ĥ(t) = argmax
h

P (h, i(t)|θ(t)) (5)

At the following learning step, the parameter θ(t+1) is estimated by Eq. (4),
with an approximation that replaces the marginalization of h with the estimated
value ĥ(i).

θ(t + 1) = argmax
θ

(
t∏

i=1

P (ĥ(i), i(i)|θ))P (θ) (6)

The exact calculation of Eq. (5) and Eq. (6) requires enormous amounts of
computation. On the other hand, the actual brain should execute both recogni-
tion and learning very efficiently with some clever approximation. In addition,
the brain should perform online learning; that is, θ(t + 1) should be calculated
only by using i(t), ĥ(t) and θ(t). We think the algorithm described in this paper
satisfies these restrictions and is thus a plausible brain model.

2.4 Basic Idea of Sparse Coding for BESOM

We add the mechanism of sparse coding to BESOM by introducing an “inactive
state” into each random variable (i.e., a hyper-column). If the inactive state is



introduced to each random variable and large numbers of nodes become inactive
at each recognition step, sparse coding will be realized in BESOM. (See Fig. 2.)
Actually, the way in which inactive states are introduced into a Bayesian network
is not obvious. Moreover, in order for the mechanism to become an appropriate
model of the cerebral cortex, it should be implemented in a biologically plausible
way. Detailed recognition and learning algorithms that realize the idea of inactive
states are described in the next section.

Input 1 Input 2 Input 3

Active nodes Inactive nodes

Fig. 2. Basic idea of sparse coding using BESOM. Different sets of hidden nodes become
inactive depending on inputs.

3 Algorithm

3.1 Characteristics of the Acquired Bayesian Network

We restrict the Bayesian network acquired by the proposed algorithm to satisfy
the following conditions.

1. Let X be a node (a random variable). X’s value should be one of the following
s + 1 values.

X ∈ {xϕ, x1, x2, · · · , xs−1, xs} (7)

We call the value xϕ the “ϕ-value” and the values other than xϕ “non-ϕ-
values.” The value xϕ means the node X is inactive.

2. A conditional probability table P (xi|u1, · · · , um) (i = ϕ, 1, · · · , s) should sat-
isfy the following equation:

P (xi|u1, · · · , um) =
1
m

m∑
k=1

P (xi|uk) (8)

The constant 1/m normalizes so that
∑

i P (xi|u1, · · · , um) becomes 1.
3. Let U be a node and X be a child node of U . The ϕ-value of U , uϕ, should

not have a causal relation to X. That is, the following equation should hold.

P (xi|uϕ) = P (xi) (i = ϕ, 1, · · · , s) (9)

This condition will be satisfied when the learning converges because of the
learning rules described in Section 3.3 .



3.2 Recognition Step

In the original sparse coding algorithm[4], sparseness is realized by adding the
penalty term for activeness to the objective function. We apply this idea to
BESOM.

Eq. (2), which calculates the joint probability of an MPE candidate h and
an input i, is modified as follows, so that a penalty is given depending on the
number of activity nodes:

P (h, i) = e−βA(h)
∏

x∈h∪i

P (x|parents(x)) (10)

where β is the parameter that controls the sparseness, A(h) is the number of
active nodes in h.

The formula for this joint probability is used at the recognition steps that
calculate MPE. We do not calculate strict MPE in the present simulation. The
approximate MPE is calculated by the hill-climbing method. In the actual brain,
a variation of the belief revision algorithm[2], which seems biologically more
plausible[14], may be used.

If MPE is used as a learning step as it is, the learning will be likely to fall
into a local minimum. Then, to avoid the local minimums, we add a moderate
amount of noise to the recognition results in the early stages of the learning.

3.3 Learning Step

At each a learning step, the weights of connections between units will be updated
according to the MPE calculated at the preceding recognition step. In the nodes
at the hidden layer, the units that correspond to the values of MPE are regarded
as winners for competitive learning.

In this section, we clarify our explanation by explaining a simplified version
of the learning rule, which does not include neighborhood-learning rules.

Let us call the units corresponding to the value of MPE winner units. In the
input layer, winner units represent observed data. In the hidden layer, winner
units represent estimated values of hidden variables. Let X be a node at the
hidden layer and Yl (l = 1, · · · , n) be a child node of X at the input layer.

The connection weight wl
ij between the winner unit xi and unit yl

j is updated
by the following formulas:

1. When i = ϕ:

wl
ϕj =

{
ΦYl

(j = ϕ)
(1 − ΦYl

)/s (j ̸= ϕ) (11)

where ΦYl
is the frequency that Yl becomes a ϕ-value in MPE; these ΦYl

are
learned separately.

2. When i ̸= ϕ, j ̸= ϕ:
wl

ij ← wl
ij + α(vl

j − wl
ij) (12)

where α is the learning rate, vl
j is an input from the child node Yl, whose

value is 1 if unit yl
j is the winner unit, and is 0 otherwise.



3. When i ̸= ϕ, j = ϕ :

wl
iϕ = 1 −

s∑
j=1

wl
ij (13)

The connection weight wl
ij is learned by the above algorithm. When the

estimated values of the hidden variables are regarded as true observed values
and the learning rate α is appropriately scheduled, the connection weight wl

ij

becomes a maximum likelihood estimator of the conditional probability P (Yl =
yl

j |X = xi)[11].
The obtained conditional probabilities are used at the next recognition step

to calculate joint probability, defined as Eq. (10), assuming the constraints of
Eq. (8).

4 Experiment: Sparse Coding of Natural Images

We used images provided by Olshausen (the images filtered with whitening/low-
pass as described in [7]) and clipped to the range [0, 1]. The images are used as
input to a two-layered BESOM, with 4 nodes in the hidden layer and 49 in the
input layer. At each step, we extracted a image patch with 7x7=49 pixels from
a random position. Then, we gave the pixel intensities in the image patch to the
binary input nodes. The value of each input node is set to 1 according to the
pixel intensity taken as a probability. For example, for intensity 0.2, the value
was set to 1 with probability 0.2. The parameter that determines the sparseness
of node activity is set to β = 8.

Figure 3(a) shows a learning result. It shows the values of the conditional
probability tables of the ϕ-value units P (yl

1|xϕ) and non-ϕ-value unit P (yl
1|xi) (i =

1, · · · , 9, l = 1, · · · , 49) as the brightness of 7x7 pixels.
It is shown that the non-ϕ-value unit of each node obtained the conditional

probability table with orientation selectivity like V1 simple cells[4]. The ϕ-value
unit of each node learned the mean of input images. In this experiment, we found
that 0-3 nodes are activated according to the inputs.

Figure 3(b) shows a learning result with the sparseness parameter β = 0 . In
this case, every base image is close to the mean image of input because all nodes
tend to be active. The result shows weak orientation selectivity.

References

1. K. Fukushima, Neural network model for selective attention in visual-pattern recog-
nition and associative recall, APPLIED OPTICS 26 (23): 4985-4992 Dec 1 1987.

2. J. Pearl , Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann, 1988.

3. T. Kohonen, Self-Organizing Maps. Springer-Verlag, 1995.
4. Olshausen BA, Field DJ, Emergence of simple-cell receptive field properties by

learning a sparse code for natural images, NATURE 381 (6583): 607-609 JUN 13
1996.



(a)

x1

x9

xφ

X1 X2 X3 X4

(b)

x1

x9

xφ

X1 X2 X3 X4

Fig. 3. Learning result of sparse coding of natural images. The sparseness parameter
values are β = 8 (a) and β = 0 (b) .

5. Coward, L.A., The Recommendation Architecture: lessons from the design of large
scale electronic systems for cognitive science. Journal of Cognitive Systems Research
2(2), 111-156, 2001.

6. Lee, T.S., Mumford, D. , Hierarchical Bayesian inference in the visual cortex. Journal
of Optical Society of America, A. . 20(7): 1434-1448, 2003.

7. Bruno A. Olshausen and David J. Field, Sparse coding with an overcomplete basis
set: A strategy employed by V1? Vision Research, 37(23):3311.3325, 2003.

8. George, D. Hawkins, J., A hierarchical Bayesian model of invariant pattern recog-
nition in the visual cortex, In proc. of IJCNN 2005, vol. 3, pp.1812-1817, 2005.

9. R. Rao., Bayesian inference and attention in the visual cortex. Neuroreport 16(16),
1843-1848, 2005.

10. Oshiro N, Kurata K, Separating visual information into position and direction by
two inhibitory-connected SOMs. Artif Life and Robotics 9(2):86.89, 2005.

11. Yuuji ICHISUGI, The cerebral cortex model that self-organizes conditional prob-
ability tables and executes belief propagation, In Proc. of International Joint Con-
ference on Neural Networks (IJCNN2007), pp.1065–1070, Aug 2007.

12. Florian Roehrbein, Julian Eggert, and Edgar Koerner, Bayesian Columnar Net-
works for Grounded Cognitive Systems, In Proc. of the 30th Annual Conference of
the Cognitive Science Society, pp.1423–1428, 2008.

13. Haruo Hosoya: A motor learning neural model based on Bayesian network and
reinforcement learning, In Proceedings of International Joint Conference on Neural
Networks, 2009.

14. Shai Litvak, Shimon Ullman: Cortical Circuitry Implementing Graphical Models,
Neural Computation 21, 3010.3056, 2009.

15. Chikkerur, S., T. Serre, C. Tan and T. Poggio, What and Where: A Bayesian
Inference Theory of Attention, Vision Research, 2010.

16. Hiroki Terashima and Haruo Hosoya, Sparse codes of harmonic natural sounds and
their modulatory interactions. Network: Computation in Neural Systems, 20(4):253-
267, 2009.

17. Tetsuo Furukawa, SOM of SOMs, Neural Networks, Vol.22, Issue 4, pp.463-
478,May 2009.




