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ABSTRACT

Non-negative matrix factorization (NMF) is widely applied
to analyze pattern data in an unsupervised manner. It imposes
hard non-negativity constraints on factors to extract intrin-
sic characteristics from an input matrix, though demanding
complicated optimization techniques which hinder the gen-
eral applicability. Toward flexible formulation, we propose
weakly non-negative factorization. In contrast to the strict
non-negative approach, our method permits factors to con-
tain small amount of negative values. The relaxation theoreti-
cally leads to an efficient factorization formulation which can
be implemented by means of off-the-shelf techniques used in
a deep learning literature. Thus, the method is flexibly ap-
plicable to versatile factorization tasks, such as deep NMF
and structured NMF. In the experiments on the NMF-related
tasks, we demonstrate that the weak non-negativity produces
effective factors similarly to NMF and the method exhibits fa-
vorable performance in comparison to the other approaches.

Index Terms— factorization, weak non-negativity, regu-
larization, leaky ReLU

1. INTRODUCTION

Real-world pattern data, such as images and their feature vec-
tors, are described in a redundant form and thus mining their
intrinsic representation is useful for pattern analysis. It is
plausible to make a low-rank assumption that data are con-
structed on the basis of only a small number of factors, which
derives diverse factorization methods. While a naive factor-
ization is given by singular value decomposition (SVD) or
PCA, a non-negative matrix factorization (NMF) [1] has been
successfully applied in various fields such as signal process-
ing and computer vision [2]. Considering that real-world data
is frequently represented by non-negative physical quantities
(e.g., pixel intensities), NMF reveals from pattern matrices
inherent characteristics such as sparsity [1].

NMF is a general framework to optimize two non-
negative factors so that an input matrix is well approximated
by their product. It is formulated as an optimization problem
with non-negativity constraints as shown in the mathemat-
ical form (1). Thus, the problem is addressed by various
optimization approaches [2, 3] to cope with the constraints,

and one of the popular techniques is a multiplicative up-
dating [4, 5] which naturally involves non-negativity into
parameter updates. It is dependent on a cost function mea-
suring reconstruction errors; MSE [4] and β-divergence [5]
are favorable for the multiplicative updating. However, such
complicated optimization techniques and/or dependency on
loss functions would degrade general applicability of NMF
such as to a (deep) end-to-end framework [6].

In this paper, we propose a flexible non-negative factor-
ization such that it can be embedded in versatile frameworks
via end-to-end learning. The non-negativity constraint, which
is fundamental for NMF, requires careful treatment by the
optimization technique, making simple gradient descent use-
less. We formulate weakly non-negative factorization by
relaxing the hard constraint of non-negativity into regular-
ization through reformulation of NMF with re-parameterized
factors. It permits factors to contain small amount of nega-
tive elements while NMF imposes strictly non-negative con-
straints on the factors. The weakly non-negative factorization
is formulated as an unconstrained problem to which simple
optimization process, such as back-prop gradient descent, is
effectively applicable. It is thus noteworthy that the proposed
method can be implemented by using well-established deep
learning techniques including optimizers which are inten-
sively studied in recent years [7]. Our flexible formulation
is directly applicable to versatile factorization tasks such as
deep NMF [8] and structured NMF.

2. METHOD

We start with a constrained optimization problem for NMF
and then formulate an unconstrained problem to address
weakly non-negative factorization.

2.1. Optimization problem for NMF

Suppose an input matrix X ∈ Rm×n is decomposed into two
factors W ∈ Rm×r and H ∈ Rr×n as X ≈WH with rank
r. By introducing non-negativity constraints into factors [1],
we formulate the following optimization problem for NMF;

min
W ,H

`(X,WH), s.t.W ≥ 0, H ≥ 0, (1)



where an inequality A ≥ 0 indicates element-wise non-
negativity for all components in a matrix A. The loss function
` measures discrepancy between X and WH; for NMF, one
can usually employ Euclidean distance or β-divergence to
induce an efficient multiplicative updating [4, 5]. For robust
factorization, L2-norm regularization with a parameter λ is
imposed on the factors as

min
W ,H

`(X,WH)+λ(‖W ‖2F +‖H‖2F ), s.t.W ≥0, H≥0.

(2)

2.2. Weakly non-negative factorization

In order to be further aware of non-negativity, we disentangle
the factors into

W = W+ −W−, H = H+ −H−, (3)

where A+ and A− indicate non-negative matrices responsi-
ble for positive and negative parts of a matrix A, respectively.
By using this re-parameterization, similarly to (2), we formu-
late the following optimization problem;

min
W+,W−,H+,H−

`[X, (W+ −W−)(H+ −H−)] (4)

+ λ(‖W+‖2F + ‖H+‖2F ) + λ−(‖W−‖2F + ‖H−‖2F ),
s.t.W+ ≥ 0, W− ≥ 0, H+ ≥ 0, H− ≥ 0, (5)

where we additionally introduce a regularization parameter
λ− for the negative part of factors. It should be noted that
setting λ− →∞ enforces W− → 0 and H− → 0 to derive
the original NMF (2). In other words, the parameter λ− con-
trols non-negativity, which thereby motivates us to formulate
weakly non-negative matrix factorization by applying moder-
ately large λ− in comparison to λ. It should be noted that
unlike NMF, in a weakly non-negative matrix, each element
is not strictly non-negative but can take small negative value
if it falls into negative part. The amount of negativity on the
factors is suppressed by the large λ−, especially λ/λ− < 1.

We further rewrite the negative part matrices W− and H−
by using η =

√
λ/λ− as

W− =
√
λ/λ−Ŵ− = ηŴ−, H− = ηĤ−, (6)

to simplify (4) into

min
W+,Ŵ−,H+,Ĥ−

`[X, (W+ − ηŴ−)(H+ − ηĤ−)] (7)

+ λ(‖W+‖2F + ‖H+‖2F + ‖Ŵ−‖2F + ‖Ĥ−‖2F ),

s.t.W+ ≥ 0, Ŵ− ≥ 0, H+ ≥ 0, Ĥ− ≥ 0. (8)

In this optimization problem, Karush Kuhn–Tucker (KKT)
conditions [9] imply that W+�Ŵ− = 0 and H+�Ĥ− = 0,
meaning that each element either of W+ or Ŵ− is zero. We
can plug this relationship into (7) to provide

min
W ,H

`[X, φη(W )φη(H)] + λ(‖W ‖2F + ‖H‖2F ), (9)
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Fig. 1. Weakly non-negative matrix factorization. It is imple-
mented in an end-to-end mini-batch training with size b.

where W and H are real-valued matrices and a non-linear
function φη works on a matrix in an element-wise manner as

φη(Aij) =

{
Aij if Aij ≥ 0
ηAij if Aij < 0

= max[Aij , ηAij ], (10)

where η < 1 (⇔ λ/λ− < 1). The proposed formulation
(9, 10) is advantageous in the following two points.

First, the function φη is equivalent to leaky ReLU [10]
which is well established and frequently used in a deep learn-
ing literature. Due to η =

√
λ/λ−, the parameter η controls

non-negativity of factors. The original NMF (2) is obtained
simply by setting η = 0 which corresponds to λ− →∞ in
(4). In case of η = 0, however, the non-linear function φη=0

is reduced into ReLU [11], making the problem (9) harder to
optimize. Due to the ReLU function being flat on a nega-
tive part, once some elements fall into the negative part, they
hardly enjoy favorable loss gradients. It would accordingly
demand some optimization techniques, such as projected gra-
dients [3], which degrades the flexibility of the formulation
(9). Therefore, we simply derive small η � 1 from large
λ− � 1 for rendering weakly non-negative factorization. In
the another approach, it is conceivable to tune the parameter
η during training as in curriculum learning [12]; η is gradu-
ally decreased toward 0 so that φη eventually results in ReLU.
These approaches are compared in the experiments of Sec. 3.

Second, the formulation (9) addresses NMF (2) in a way
of unconstrained optimization. Together with the leaky ReLU
φη , it is implemented in a end-to-end framework as shown in
Fig. 1. In contrast to the standard end-to-end method [13],
the proposed method does not feed a pattern data, e.g., im-
ages, to the model but just samples a subset H(i) ∈ Rr×b
from the whole factor H ∈ Rr×n in an efficient mini-batch
learning with the mini-batch size b. Besides, off-the-shelf
deep learning techniques are directly applied to optimize it.
For example, we can flexibly employ various types of loss
function `, not limited to MSE and β-divergence, as well as
leverage sophisticated optimizers to minimize the loss; we ap-
ply AdamW [7] with a learning rate of 0.001 to an L1 loss
of `(x, y) = ‖x − y‖1. The proposed method is so general
that the weakly non-negative factorization can be embedded
in various tasks as presented in Sec. 3.



Table 1. Datasets.
# sample # dimension # class

ORL face 400 92× 112 pixels 40
AR face 2,600 120× 165× 3 pixels 100

multi-feature 2,000 585 features 10
ImageNet-CNN 50,000 2,048 features 1,000

3. EXPERIMENTAL RESULTS

We apply the proposed method to three types of non-negative
factorization; simple NMF (Sec. 3.1), deep NMF (Sec. 3.2)
and deconvolutional factorization (Sec. 3.3).
Dataset. Factorization methods are tested on four datasets
(Table 1). ORL face dataset [14] contains 400 images of
92 × 112 gray-scaled pixels captured from 40 subjects. AR
face dataset [15] is constructed by taking 2,600 images of
120× 165 RGB-color pixels from 100 subjects under various
conditions. Multiple-feature dataset [16] contains 2,000 sam-
ples of 585-dimensional non-negative features1 in 10 classes.
We built an ImageNet-CNN dataset by applying pre-trained
ResNet-50 [17] to ImageNet [18] validation set to provide
50,000 samples of 2,048-dimensional feature vectors; note
that ResNet-50 excluding the last FC layer intrinsically pro-
duces non-negative features due to ReLU activation.
Evaluation. For quantitatively evaluating the factorization
results, we apply k-means clustering to n latent samples of
H = {hi ∈ Rr}ni=1 and then measure normalized mutual
information (NMI) [19] between the clusters and class labels.

3.1. Non-negative matrix factorization (NMF)

The method (9) is straightforwardly applied to the task of
NMF as X ≈ φη(W )φη(H).
Ablation study. We first analyze the proposed method on
ORL face dataset [14]. As shown in (9), the method is distinc-
tive in terms of the non-linear function φη(x) = max[x, ηx]
and the regularization with λ. We evaluate performance of
the method in an ablation manner regarding those two as-
pects in Table 2 where the function φη provides three types
of activation, linear (η = 1), ReLU (η = 0) and leaky-ReLU
(η = 0.1), and we set λ = 0.1 to inject L2 regularization.

Without regularization (λ = 0), ReLU activation (η = 0)
significantly degrades performance. In this factorization,
the factors W and H are simply initialized by uniform
values including negatives according to the successful train-
ing recipe [20]. The ReLU activation provides no updating
with the initially negative parameters, thereby failing to op-
timize the factorization. Without regularization, leaky ReLU
(η = 0.1) poorly works in terms of both performance and
non-negativity; Fig. 2 indicates that it fails to produce non-
negative factors. Combining leaky ReLU (η = 0.1) with the

1We exclude 64 real-value components from whole 649 features.

Table 2. Ablation study. Performance score is 100× NMI.
k φη(x)= max[x, ηx]

20 30 40 50 η λ `

67.57 75.19 80.20 81.57 1 linear 0 ‖ · ‖1
52.17 58.76 57.71 59.82 0 ReLU 0 ‖ · ‖1
72.05 79.78 85.73 85.95 0.1 leaky-ReLU 0 ‖ · ‖1
76.64 83.35 88.71 87.90 1 linear 0.1 ‖ · ‖1
75.71 83.36 89.08 89.25 0 ReLU 0.1 ‖ · ‖1
78.12 86.67 89.80 91.26 0.1 leaky-ReLU 0.1 ‖ · ‖1
75.24 82.04 86.92 88.29 1 0 curriculum 0.1 ‖ · ‖1
75.36 79.28 84.27 87.27 0.1 leaky-ReLU 0.1 ‖ · ‖22

regularization (λ = 0.1) significantly improves performance.
Even though the method is based on weak non-negativity,

the learnt factors are almost non-negative. We show distribu-
tion of weakly non-negative factor components in Fig. 2. Both
factors, φη(W ) and φη(H), are favorably non-negative; ac-
tually, minW∈W φη(W ) = −0.008 and minH∈H φη(H) =
−0.03, meaning that factors are almost non-negative. The ba-
sis factor φη(W ) are visualized in Fig. 3a. Similarly to NMF
factors (Fig. 3b), it extracts sparse parts of face appearance
due to the (weak) non-negativity.

The parameter η is set to small η = 0.1 for weakly non-
negative factorization. We also evaluate the curriculum ap-
proach (Sec. 2.2) by gradually decreasing η as 1  0 to en-
sure strict non-negativity of factors in the end. As shown in
Table 2, it is inferior to η = 0.1 and even to η = 0, demon-
strating that the constant-η works well with the regularization
without tuning curriculum schedule of η.

The proposed formulation (9) can accept various types of
loss function ` and it is so far set to an L1 loss, `(x, y) = ‖x−
y‖1. We compare the L1 loss with L2 one which is widely
applied in an NMF framework [1, 4] and Table 2 shows supe-
riority of the L1 loss. Our framework is effectively flexible in
terms of designing loss functions for improving performance.
Performance comparison. The proposed method is com-
pared with the other NMF methods including the original
NMF [4] that applies multiplicative updating to non-negative
factors, and unfolding NMF [21] which unfolds such mul-
tiplicative updating in a deep framework. The performance
results in Table 3a demonstrate the efficacy of our method.

3.2. Deep non-negative matrix factorization

We apply the method in a framework of deep NMF [22]
by stacking non-negative factorization in multiple layers.
The proposed method is naturally applicable to stack L-
factorization as, given X ∈ Rm×n,

X ≈ φη(WL) · · ·φη(W1)φη(H1), (11)

where Wl ∈ Rrl+1×rl and H1 ∈ Rr1×n with rL+1 = m
and l ∈ {1, · · · , L}. The latent representation at the l-th
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Table 3. Performance comparison on tasks of NMF (a) and deep NMF (b). For deep NMF, two-layer ranks (r1, r2) are set to
(20, 40) on ORL, (50, 100) on AR, (10, 20) on multi-feature and (500, 1000) on ImageNet-CNN.

ORL AR multi-feature ImageNet-CNN
k 20 30 40 50 50 75 100 150 2 5 10 20 500 750 1000 1500

(a
)N

M
F NMF 67.12 75.36 82.51 84.79 33.08 39.37 43.19 48.59 29.21 43.73 65.78 63.72 75.63 78.89 80.12 80.57

Unfold [21] 66.03 70.46 73.84 74.54 33.17 37.34 40.81 44.74 26.64 51.23 61.95 63.91 57.63 59.38 60.76 62.82
Ours (9) 78.12 86.67 89.80 91.26 32.88 39.43 44.31 52.36 37.61 68.75 85.51 76.15 77.11 80.05 81.01 81.16

(b
)d

ee
p

N
M

F NMF l=1 74.19 77.99 82.06 84.82 32.10 38.83 43.14 49.22 33.95 55.98 62.73 64.59 35.51 39.60 42.23 45.68
NMF l=2 71.09 78.89 79.63 84.00 30.32 37.42 41.63 48.13 30.90 53.86 64.94 66.41 35.83 39.71 42.37 45.75
Ours l=1 74.45 82.59 84.20 86.11 30.64 39.18 42.84 49.72 37.39 66.85 84.11 76.99 76.84 79.88 80.94 81.03
Ours l=2 74.79 80.01 83.74 85.67 31.98 37.33 41.58 47.97 36.62 67.23 78.60 76.37 76.93 79.85 81.16 81.25

Table 4. Deconvolutional factorization on ORL dataset.
(a) Framework

deconv

stride

(b) Performance results

k 20 30 40 50

ra
w s=2 74.60 81.53 85.39 86.93

s=4 71.75 79.73 83.31 83.87

su
m s=2 76.40 84.34 88.98 89.31

s=4 79.08 82.72 87.12 89.50

layer is given by φη(Wl−1) · · ·φη(W1)φη(H1); the l = 1-
st layer provides simply φη(H1) as latent. While there are
some variants of deep NMF incorporating additional tech-
niques [8, 23, 24], for fair comparison, the proposed method
is compared with a deep NMF which updates factors in a mul-
tiplicative form with L2 regularization of factors. In this ex-
periment, we apply L = 2-layered NMF and report perfor-
mance in Table 3b; two ranks (r1, r2) on respective datasets
are shown in the caption. Our method favorably works on
decomposition of an input matrix into multiple factors.

3.3. Deconvolutional factorization

Finally, we leverage our flexible method to factorize images
in a deconvolutional manner. A standard NMF (Sec. 3.1) ex-
plores factor images W of the same resolution as input im-
ages. For further efficient representation, we extract smaller-
sized factor images which can reconstruct an input image by
means of deconvolution [25] equipped with step (upscaling)
size s and kernel filters of 2s×2s size to be optimized as well.
The deconvolutional factorization is described as

X(i) ≈ φη(W ) ∗Ts φη(H(i)), (12)

where ∗Ts indicates a deconvolutional operator with step size
s which means upscaling by a factor of s, the i-th image is
denoted by X(i) ∈ Rh×w, and two factors of rank r are given
as W ∈ Rh

s×
w
s ×r and H(i) ∈ R2s×2s×r. This factorization

contrasts with [26, 27] which address convolutional decompo-
sition of a single temporal sequence without upscaling. The
proposed deconvolutional factorization is evaluated on ORL
face dataset to report performance in Table 4 as well as show
factors in Fig. 3cd. The raw latent space is straightforwardly
given by flattening H(i) into 4s2r-dimensional feature vector.
The factor H(i), however, contains detailed upscaling filter
weights which are less relevant to latent representation. Thus,
for more favorable latent space, we measure significance of
factors at respective ranks by marginalizing out spatial filter
elements {

∑
x,yH

(i)
xyr′}rr′=1 to produce r-dimensional latent

vectors akin to the standard NMF latent ones (Sec. 3.1); the
approach is denoted by sum in Table 4. The factors (Fig. 3d)
are×16 smaller than those of NMF (Fig. 3a) while producing
favorable performance in comparison to Table 3a.

4. CONCLUSION

We have proposed a weakly non-negative factorization method.
The method is theoretically derived from an NMF optimiza-
tion formulation by relaxing non-negativity constraints into
regularization via re-parameterization of factors. It efficiently
provides almost non-negative factors by means of off-the-
shelf deep learning techniques in an end-to-end fashion. The
experimental results demonstrate that the proposed method is
flexibly applicable to versatile NMF-related frameworks and
produces favorable performance on those tasks.
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