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A. Bias in logits
We discuss how a bias in logits affects our loss function, which is mentioned in Sec. 3.1. The bias εP is added to positive-

class logits (positive logits in short) as
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and similarly the bias εN changes the hard negative-class logit (negative logit in short) into
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As a result, the loss function is slightly affected by the additive bias εP and εN as
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(iii)
In a case of constant bias, εP = εN , the bias term is canceled out to make the loss invariant against the logit-shift. It also
shows that a margin bias presented in [12] is simply reduced into a single parameter ε = εN − εP .

A.1. Comparison to margin bias [12]

Toward large-margin classification, the margin bias ε is introduced in [12] to produce a loss `ε by setting TP = TN = 1
in (iii). The loss gradients with respect to positive logits are given by
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The bias ε just modifies the first term to slightly increase the magnitude of the gradients by shifting the logits in the sigmoid
function.

On the other hand, our temperature-based loss `T (14) is constructed by setting TP = T, TN = 1 and ε = 0 in (iii). It
produces the loss gradient with respect to positive logits as
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Compared to a vanilla setting of T = 1, the temperature T > 1 touches the gradients not only by increasing the first term
of sigmoid but also by smoothing the second term of softmax on positives to favorably distribute the updating (gradient)
across all the positive logits {xp}p∈P . Thus, the proposed method is superior to the margin-bias approach (iv) [12] as shown
in Tab. 2.
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B. Linear evaluation on transfer learning
In Sec. 4.4 and Tab. 8, loss functions are evaluated in a framework of transfer learning. We first train ResNet-50 on an

ImageNet training set by using the loss and then apply it as frozen feature extractor to the downstream tasks listed in Tab. A.
The linear (FC) classifier is trained on the downstream dataset by using LBFGS with a L2 regularization weight for which
we sampled 45 values equally-spaced on log-scale range between [10−6, 105]; we report the best performance over those
regularization parameters.

Table A. Datasets for transfer learning.

Dataset # class # training # test

Aircraft [9] 100 6,667 3,333
Caltech101 [6] 102 3,060 6084

Car [8] 196 8,144 8,041
CUB [13] 200 5,994 5,794

DTD [5] 47 3,760 1,880
Flower [10] 102 2,040 6,149
Food101 [2] 101 75,750 25,250

Pets [11] 37 3,680 3,669
SUN [14] 397 19,850 19,850

C. Additional experimental results
C.1. Comparison to ranking losses

The proposed loss function (14) encourages the positive logits to be larger than the negative ones, maxp∈P xp > maxn∈N xn.
In other words, it increases rank of the positive logits, thus being connected to ranking losses [3,7]. We compare the proposed
loss with the ranking losses in Tab. B. From a viewpoint of ranking logits, WARP [7] enhances a margin between positive
and negative logits at each sample, with a similar motivation to our sample-wise approach (15). Our sample-wise loss dis-
criminates positive and negative classes naturally in a softmax-based formulation, producing superior performance to WARP.
While RML [3] incorporates a class-wise loss resembling BCE into the ranking loss, it is inferior to our two-way loss (17).

Table B. Performance comparison to ranking losses on MSCOCO using ResNet-50.

mAP@class mAP@sample

WARP [7] 62.54 84.22
Ours (sample-wise) (15) 67.18 86.07

RML [3] 71.37 85.58
Ours (two-way) (17) 74.11 86.66

C.2. NUSWIDE dataset

The methods are also evaluated on NUSWIDE dataset [4] as shown in Tab. Cb, exhibiting favorable performance. We
exclude samples which are not equipped with any class labels from provided training/test splits to form the dataset (Tab. Ca).

Table C. Performance results on NUSWIDE dataset [4] using ResNet-50.

(a) Dataset

Dataset NUSWIDE [4]

# classes 81
# training samples 125,448

# test samples 83,898
# label per sample 2.4

(b) Performance comparison

mAP@class mAP@sample

Softmax 49.85 82.77
ASL [1] 58.40 83.73

Ours 59.67 83.60
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