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Abstract

Domain adaptation effectively transfers a learner from a source domain to a target do-
main. Recent deep methods are based on detailed comparison between a pair of source
and target domains, which makes it less applicable to multiple domains. In this paper,
we address the domain adaptation on the basis of subspace which provides more robust
metric. We analyze the subspace methods in domain adaptation to theoretically derive
a subspace-based feature transformation in an efficient form of simple summation. It
intrinsically contributes to closing a gap between source and target subspaces in an end-
to-end deep framework. Besides, due to the robust representation of subspace and the
simple transformation, the proposed method naturally deals with multiple domains both
for source and target in contrast to previous approaches. Multi-target domain adaptation
especially provides efficient inference to process multiple target domains by only a sin-
gle model. In the experiments on visual domain adaptation tasks, the proposed method
exhibits favorable performance in a scenario of the multi-target domains.

1 Introduction
It is costly to annotate a huge number of samples required to train deep neural networks
(DNNs), which limits the annotation only to samples of a source domain, while test samples
can be drawn from a different target domain. Domain adaptation [26, 33] fills a gap between
the source and target domain so as to effectively transfer the learner.

Deep domain adaptation [26] based on end-to-end trainable DNNs has attracted keen
attention in recent years. It leverages DNN of favorable transferability [1, 29] to transfer
classifiers trained on a source domain into a target domain by means of regularization to
align the source distribution with the target one. The regularization losses are formulated,
for example, by adversarial techniques [5, 12, 13, 15, 23] for minimizing the discrepancy
between source and target domains. Statistical moment matching also contributes to regular-
ization through minimizing the discrepancy of mean (MMD) [14], content moment [31] and
higher-order moment [17, 20]. While they globally adapt the source domain to the target,
some works have recently addressed local sub-domain adaptation [25, 28, 32]. Class-related
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Principal component subspace enhanced

Domain
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Figure 1: Multiple domain subspaces {PPPsrc,PPPtarget1,PPPtarget2} are uniformly aggregated to
produce our transformation, which enhances the principal component subspace consistent
across domains. The principal component subspace is enlarged through end-to-end learning.

local distributions are useful for minutely aligning feature representation across the source
and target domains; diversity over class categories also enhances the adaptation [2].

While those approaches exploit detailed characteristics of feature distributions, we focus
on a subspace representation, a more general structure of features than the distributions;
distribution and its finer structures related to class discrimination are contained in a subspace.
Thus, the subspace is suitable for robustly describing a domain due to the following two
reasons. (1) Subspace is an unsupervised representation and less dependent on the details of
distributions, such as moments and local structures; for example, a subspace resorts only to
eigenvectors of a matrix ∑i xxxixxx>i , while moment-based statistics are additionally related to the
eigenvalues. (2) Subspace is estimated robustly against sampling-related issues particularly
found in mini-batches; the subspace computed from few samples, even drawn from a domain
in a biased way, is contained in the (inherent) subspace of that domain, while the detailed
characteristics of distribution are poorly estimated due to such sampling issues.

The subspace representation attracted attention in shallow adaptation approaches [7, 8,
10, 21, 22]. In [8], the Grassmann manifold is introduced to describe the domain shift
from the subspace viewpoint mathematically; a domain is shifted along a geodesic path on
the manifold from the source-domain subspace to the target subspace. It leads to geodesic
flow kernel (GFK) [7] by theoretically formulating the feature transformation in a closed
form. Those approaches provide transformation of input features by means of subspaces.
They, however, demand complex computation processes less suitable for end-to-end learn-
ing. Multiple subspaces per domain are dealt with in [22], though resorting to greedy sub-
space matching for a shallow domain adaptation in a scenario of single source and single
target.

In this paper, by analyzing the subspace method, we propose an effective feature trans-
formation method to reduce discrepancy between source and target subspaces in a deep
framework. The proposed method is theoretically derived from the geodesic flow kernel
(GFK) [7, 8] and is formulated in an efficient form simple enough to be differentiable. Our
feature transformation is capable of bridging a gap between source and target subspaces
intrinsically through end-to-end feature learning in a deep domain adaptation framework.
The method uniformly aggregates domain-specific subspaces, regardless of source or tar-
get, as shown in Fig. 1. Therefore, we can naturally address the adaptation for multiple
target domains which is a more generalized scenario than the standard setting of single-
target domain. The multi-target domain adaptation (DA) renders a single versatile model
applicable to classifications on multiple target domains without pre-identifying the target
domain of an input sample nor preparing multiple models tailored for respective domains in
a memory-consuming way. Thus, by the multi-target adaptation, we can enjoy a simple and
efficient inference. While multi-target DA is addressed in a shallow framework [30], some
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deep approaches are applied to this task by stacking multiple networks [6] and learning mul-
tiple teacher models [16] in less efficient ways. In contrast, our method is formulated in
a simple yet effective way through summation of subspaces, thus being applicable even to
multi-source and multi-target adaptation. Besides, by resorting to the subspace, the proposed
method is complementary to the other deep domain adaptation approaches based on regu-
larization of distributions, which are contained in subspaces. It is applicable in conjunction
with the regularization losses for further boosting performance.

2 Method
We first review the geodesic flow kernel (GFK) [7] which describes domain shifts from a
Grassmannian viewpoint, and then formulate the proposed feature transformation method.

2.1 Subspace-based domain adaptation

Training samples on a source domain S are equipped with class label yi ∈ {1, · · · ,C} and
feature representation xxxS

i ∈ Rd to build a labeled set of {xxxS
i ,yi}nS

i=1. Our objective is to con-
struct a classifier discriminating C classes on a target domain T which provides only sample
features {xxxT

j }
nT
j=1 without any annotation. The target domain contrasts with the source one

such as in terms of image styles (Fig. 3), thereby making it hard to directly transfer a classi-
fier optimized on the source domain. The domains are characterized by subspaces such that

xxxS
i ≈UUUSUUU>S xxxS

i = PPPSxxxS
i , xxxT

j ≈UUUT UUU>T xxxT
j = PPPT xxxT

j , ∀i, j, (1)

where UUUS ∈Rd×r and UUUT ∈Rd×r are orthonormal bases of rank r for the source- and target-
domain subspaces, respectively; they are practically computed by applying singular-value
decomposition (SVD) to XXXS = [xxxS

1 , · · · ,xxxS
nS ] and XXXT = [xxxT

1 , · · · ,xxxT
nT ]. From a geometric view-

point, those subspaces are represented by two points on a Grassmann manifold, which are
smoothly connected via a geodesic path on the manifold [8]. By using the complementary
subspace basis ŪUUS ∈ Rd×d−r s.t. UUU>S ŪUUS = 000, the geodesic flow [7] is formulated as

UUU (t) =UUUSSSSΓΓΓ(t)−ŪUUS S̄SSΣΣΣ(t), t ∈ [0,1], (2)

where SSS ∈ Rr×r and S̄SS ∈ Rd−r×r are orthonormal matrices given by the generalized SVD of

UUU>S UUUT = SSSΓΓΓTTT>, ŪUU>S UUUT =−S̄SSΣΣΣTTT>, (3)

which uses the orthonormal matrix TTT ∈ Rr×r. The diagonal matrix ΓΓΓ and ΣΣΣ are com-
posed of {cosθk}r

k=1 and {sinθk}r
k=1 based on the canonical angles {θk}r

k=1 between the
source UUUS and the target subspace UUUT . The parametric form (2) is thus given by ΓΓΓ(t) =
diag({cos(tθk)}r

k=1) and ΣΣΣ(t)=diag({sin(tθk)}r
k=1) to satisfy UUU (t=0)=UUUS and UUU (t=1) =UUUT .

The geodesic flow (2) provides spectral features between source and target domains
via projection UUU (t)UUU

>
(t)xxx. While uniform sampling on the geodesic path produces a fixed-

dimensional representation [8], geodesic flow kernel [7] is given by the integral on the path;

k(xxxi,xxx j) = xxx>i GGGxxx j, GGG =
∫ 1

t=0
UUU (t)UUU

>
(t) = [UUUSSSS,ŪUUS S̄SS]

[
ΛΛΛ1 ΛΛΛ2
ΛΛΛ2 ΛΛΛ3

]
[UUUSSSS,ŪUUS S̄SS]>, (4)
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where the diagonal matrices ΛΛΛ1 ∼ ΛΛΛ3 are

ΛΛΛ1=diag

({
1+

sin(2θk)

2θk

}r

k=1

)
,ΛΛΛ2=diag

({cos(2θk)−1
2θk

}r

k=1

)
,ΛΛΛ3=diag

({
1−sin(2θk)

2θk

}r

k=1

)
.

(5)
The matrix GGG

1
2 , square root of GGG, renders an explicit feature transform of GFK as x̂xx = GGG

1
2 xxx.

2.2 Domain-sum transformation based on subspace projection
The above approach leverages a geodesic path (2) to produce effective feature transforma-
tion in a Grassmannian manner. It, however, demands rather complicated computational
processes, especially in generalized SVD (3), to construct the geodesic flow, which hinders
us from incorporating the GFK into end-to-end learning. Thus, we propose a simpler formu-
lation exploiting the subspace approach with a theoretical connection to GFK. It also gives
interpretation and another formulation to GFK from a viewpoint of feature transformation.

We roughly discretize the integral (4) to a sum of two boundary points (source and target);

HHH = ∑
t∈{0,1}

UUU (t)UUU
>
(t) =UUU (t=0)UUU

>
(t=0)+UUU (t=1)UUU

>
(t=1) =UUUSUUU>S +UUUT UUU>T . (6)

In spite of the rough approximation, the domain-sum (DS) matrix HHH is closely related to the
GFK matrix GGG as follows; our propositions are proved in the supplementary material.

Proposition 1 GFK matrix GGG (4) and DS matrix HHH (6) are similarly eigen-decomposed as

GGG = [UUU+,UUU−]
[

ΨΨΨ+

ΨΨΨ−

]
[UUU+,UUU−]>, HHH = [UUU+,UUU−]

[
ΦΦΦ+

ΦΦΦ−

]
[UUU+,UUU−]>, (7)

where

UUU±=colnorm(UUUSSSS±UUUT TTT ),ΨΨΨ±=diag({1±sincθk}r
k=1),ΦΦΦ±=diag({1±cosθk}r

k=1), (8)

using column-wise normalization operator colnorm to ensure orthonormality and sinc(θ) =
sin(θ)

θ
. Difference between GGG and HHH is only in the functions of sinc and cos applied to the

canonical angles {θk}r
k=1 to construct eigenvalues ΨΨΨ and ΦΦΦ.

As shown in Fig. 2a, the eigenvectors UUU+ associated with the eigenvalues ΦΦΦ+ (and ΨΨΨ+)
are sum of canonical vectors UUUSSSS and UUUT TTT , indicating principal component subspaces con-
sistent across the source and target domains, while UUU− reflects the difference subspaces to
discriminate two subspaces UUUS and UUUT [3, 4]. Thus, the projection via UUU+ would extract
more effective features shared by two domains than UUU−. These analyses clarify that even
the simple form HHH in (6) provides similar transformation to GGG in GFK (4). Namely, they
both enhance the projection into the principal component subspace by the larger weights
(eigenvalues) of 1+ sincθ in GGG and 1+ cosθ in HHH while suppressing projection onto the
difference subspaces via the smaller weights of 1− sincθ and 1− cosθ . These eigenval-
ues are compared in Fig. 2b depicting that sinc function further emphasizes/suppresses the
principal/difference subspaces than cos. We can improve HHH based on cos by enhancing the
weights on UUU+/− as

ĤHH = HHH2 = (UUUSUUU>S +UUUT UUU>T )
2 = [UUU+,UUU−]

[
ΦΦΦ

2
+

ΦΦΦ
2
−

]
[UUU+,UUU−]>, (9)
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Figure 2: Eigen-decomposition of
DS matrix HHH (6) and GFK matrix GGG
(4). In (a), uuu±k,sssk and tttk are the k-th
column vector of the matrices UUU±, SSS
and TTT in (3).
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Figure 3: Proposed deep multi-domain adaptation.

of which eigenvalues ΦΦΦ
2
± = diag[{(1±cosθk)

2}r
k=1] are depicted in Fig. 2b compared to the

other weighting. Thus, we propose the feature transformation using ĤHH;

• k(xxxi,xxx j)= xxx>i ĤHHxxx j =(HHHxxxi)
>HHHxxx j leads to our domain-sum feature transformation (DSFT)

of
x̂xx = HHHxxx = (UUUSUUU>S +UUUT UUU>T )xxx (10)

without applying SVD (3) nor square root of matrix in contrast to GGG
1
2 in GFK.

• Weights ΦΦΦ
2
± enhance the principal component subspace UUU+ and suppress the difference

subspace UUU− more effectively than ΦΦΦ± due to (1+cosθ)2 ≥ 1+cosθ and (1−cosθ)2 <
1− cosθ .

• The domain-sum matrix HHH uniformly aggregates domain subspaces in disregard of domain
type, source or target. So, it is naturally extendable to multiple domains by

HHH =
M

∑
m=1

UUUmUUU>m , (11)

where M is the number of domains both for source and target, and UUUm indicates the m-th
domain subspace basis.

2.3 Deep multi-domain adaptation
The simple differentiable formulation (11) inspires us to embed the feature transformation
into an end-to-end framework of deep domain adaptation. We can naturally cope with mul-
tiple domains both for source and target, as shown in Fig. 3.

The proposed transformation is applied on top of the backbone feature extractor (Fig. 3).
The features produced by the backbone are normalized into unit L2-norm for better feature
representation learning [9, 11]. During training, we apply computationally stable SVD [27]
to mini-batch samples for extracting domain subspaces {UUUm}M

m=1, which are aggregated into
the domain-sum matrix HHH in (11); the details about computing subspaces is shown in sup-
plementary material. Input feature vector xxxS of source domain is transformed by x̂xxS = HHHxxxS

which is then fed into a classifier module to finally produce the classification loss of softmax
cross-entropy using class labels of the source samples. Domain subspaces are close to each
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other through the end-to-end learning as shown below, and thus at inference a target-domain
sample can be simply passed to the classifier without transformation.

The domain-sum transformation (10) endows the feature representation with high sim-
ilarity across source and target domains as described in Sec. 2.2. Besides, the following
proposition ensures that it contributes to closing a domain gap through end-to-end optimiz-
ing feature representation xxx.

Proposition 2 Suppose backbone DNN can flexibly produce a feature vector xxx which is nor-
malized as ‖xxx‖2 = 1; for a well separable classifier WWW = {wwwc}Cc=1, it can produce {xxxi}n

i=1
such that www>yi

(PPPS +PPPT )xxxi ≥ www>c (PPPS +PPPT )xxxi ∀c, where PPPS is a r-rank subspace projection
matrix for xxxi, i.e., xxxi = PPPSxxxi, and PPPT is an arbitrary subspace of rank r. We partition a fea-
ture space into S(θθθ ;PPPT ) = {xxx∈ span(PPPS)|‖xxx‖2 = 1,∠(PPPS ,PPPT ) = θθθ} where ∠ is an operator
to measure canonical angles. We define a softmax loss `CE optimized w.r.t xxx ∈ S(θθθ ;PPPT ) and
WWW, given θθθ and PPPT as

`CE(θθθ ;PPPT ) = min
{xxxi∈S(θθθ ;PPPT )}ni=1,WWW

−
n

∑
i=1

log
exp(www>yi

(PPPS +PPPT )xxxi)

exp(∑c www>c (PPPS +PPPT )xxxi)
. (12)

Then, we have the following relationship between the loss and the canonical angle θθθ ;

θθθ
∗ ≤ θθθ ⇒ `CE(θθθ

∗;PPPT )≤ `CE(θθθ ;PPPT ). (13)

This proposition shows that, if we learn the model with respect to θθθ of subspace angles, the
softmax loss `CE is reduced by closing the angular gap. In particular, at the global minimum
θθθ
∗ = argminθθθ `CE(θθθ ;PPPT ), we have θθθ

∗ = 000; if ∃k, θ ∗k > 0, we can further reduce the loss
by θ̂ ∗k < θ ∗k , which contradicts the global optimality of θθθ

∗ and induces θθθ
∗ = 000. Therefore,

the proposition indicates that the transformation via HHH = PPPS +PPPT intrinsically works for
matching subspaces across domains via simply minimizing a softmax loss in the end-to-end
learning. It is applicable to multiple source and target domains. Thus, the domain-sum
transformation is well compatible with our deep multiple domain adaptation in Fig. 3 .

We can further improve the proposed method in the following two points.
Regularization. As shown in Proposition 2, subspaces {PPPm = UUUmUUU>m}M

m=1 get close to
each other as end-to-end training proceeds. To further enhance the subspace matching, we
propose the following regularization loss;

`reg =−
‖HHH‖2

F
rM(M−1)

=
1

M−1
− 1

rM(M−1) ∑
i 6= j

r

∑
k=1

cos2
θ
(i, j)
k . (14)

By minimizing the regularization loss `reg together with the classification loss `CE via `CE +

η `reg, the subspaces are well aligned to minimize the canonical angles {θθθ (i, j)}M
i, j; we set the

balancing weight to η = 1.
Classifier subspace. Classification also considers matching between classifier vectors WWW
and a feature vector xxx. Thus, we can facilitate learning by increasing similarities not only
among domains but also between domains and classifier WWW . For that purpose, we can add
the classifier subspace UUUWUUU>W into the domain-sum matrix HHH (11) where UUUW = svd(WWW ) is
a classifier subspace basis; thereby, the domain-sum matrix is slightly modified to

HHH =UUUWUUU>W +
M

∑
m=1

UUUmUUU>m . (15)
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Table 1: Performance results (accuracy, %) of deep domain adaptation on Office-31 dataset
in a scenario of single source and single target; we report averaged accuracy across various
one-to-one adaptation. Detailed performances are shown in the supplementary material.

(a) Comparison

Method
Trans.
matrix Avg.

Raw III 81.94
Auto-Corr. (16) AAA

1
2 21.27

CORAL [21] CCC
1
2
T CCC
− 1

2
S 74.20

Principal component UUU+UUU>+ 80.81
GFK (7) GGG

1
2 84.58

Sum-of-subspaces (6) HHH
1
2 84.73

Ours (9) HHH 85.24

(b) Ablation study for extension methods (Sec. 2.3).

Trans. (10) Reg. (14) Cls. Sub. Avg.

- - - 81.94
- X - 84.45
X - - 85.24
X X - 85.56
X X(η = 2) - 84.59
X X X 86.47

Subspace similarity

Training epoch

Su
bs

pa
ce

 S
im

ila
rit

y

Transform + Regularization
Transform
Regularization
Raw

Transform + Regularization 
+ Classifier Subspace

50403020100

2.4 Discussion

In [10], GFK is simplified in a completely different way from ours by replacing the GFK
matrix GGG (4) with an auto-correlation matrix written as

AAA = XXXSXXX>S +XXXT XXX>T =UUUSΛΛΛ
2
SUUU>S +UUUT ΛΛΛ

2
T UUU>T , (16)

where ΛΛΛS/T is singular value of XXXS/T . In contrast to the domain-sum matrix HHH (6), the
matrix AAA contains statistics of the source and target distribution via ΛΛΛS and ΛΛΛT , thereby
highly biasing the feature transform to some principal directions. Besides, the dependency
on statistics degrades robustness of subspaces discussed in Sec. 1.

The second-order statistics is also employed in the method of CORAL [20, 21]. For shal-

low adaptation, CORAL [21] provides transformation of source features as CCC
1
2
T CCC
− 1

2
S xxxS using

covariance matrices CCCS/T . As in the above approach (16), it is based on the second-order
statistics, which are estimated less robustly than subspaces. CORAL is extended to deep
adaptation by reformulating the concept of covariance matching into a regularization loss
‖CCCS−CCCT ‖2

F without feature transformation. In contrast, our transformation works coopera-
tively with the regularization (14) in a deep framework.

It is noteworthy that Proposition 1 reformulates GFK matrix GGG (4) into a simpler form
based on eigen-decomposition of HHH in (7). The eigen-decomposition also provides us with a
projection UUU+UUU>+ onto the principal component subspace, which is the special case of HHH by
modifying cosθ → 1 on eigenvalues in (8). It completely ignores the difference subspaces
UUU−, while our HHH exploits all of them with proper weighting based on canonical angles
{θk}r

k=1; those transformations are empirically compared in the comparison experiment of
Table 1a.

3 Experimental results
We apply the proposed domain-sum feature transformation to visual domain adaptation tasks
in which images are drawn from multiple modalities (Fig. 3). The detailed experimental
settings and results are shown in the supplementary material.
Dataset. Methods are tested on Office-31 [19], Office-home [24], Adaptiope [18] and Do-
mainNet [17] datasets, which poses image classification across multiple domains.
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Table 2: Performance comparison (accuracy, %) in multi-target deep domain adaptation;
e.g., “A→D,W” indicates transfer from source of Amazon to targets of DSLR and Webcam.

Office-31 [19]
A→ D→ W→ Avg.D,W A,W A,D

D
om

ai
n

C
on

ca
t.

raw 80.96 82.00 82.87 81.94
DANN 81.59 80.03 82.67 81.43
BNM 86.62 78.34 80.70 81.89
SCDA 86.09 76.38 81.37 81.28
DSAN 88.17 80.94 81.75 83.62
Ours-c 88.38 84.89 85.67 86.31

M
ul

ti.

DANN 85.55 80.22 83.95 83.24
BNM 86.06 75.49 82.00 81.18
SCDA 86.81 76.18 82.05 81.68
DSAN 85.83 76.97 81.73 81.51
Ours 88.37 85.03 86.28 86.56

Jo
in

tm
et

ho
d +DANN 89.14 85.25 86.17 86.86

+BNM 92.81 86.33 87.38 88.84
+SCDA 89.95 85.19 86.01 87.05
+DSAN 90.95 85.41 86.55 87.64

Office-Home [24]
A→ C→ P→ R→ Avg. A,C→ P,R→ A,P→ C,R→ A,R→ C,P→ Avg.C,P,R A,P,R A,C,R A,C,P P,R A,C C,R A,P C,P A,R

56.44 58.25 58.37 65.62 59.67 62.59 57.14 64.22 67.12 59.28 61.64 62.00
47.04 50.39 54.99 63.60 54.00 60.08 59.58 64.63 65.22 57.54 58.60 60.94
39.70 48.45 52.46 63.38 51.00 58.11 59.39 61.63 64.83 53.90 61.16 59.84
44.72 49.67 52.58 62.80 52.44 59.92 57.85 63.46 65.53 57.60 60.61 60.83
45.88 49.19 53.12 62.84 52.76 60.08 58.47 64.00 65.00 57.76 60.75 61.01
67.50 67.04 63.22 68.62 66.59 77.72 63.55 70.80 75.94 71.12 73.47 72.10

47.30 51.87 53.80 63.83 54.20 50.84 57.27 53.21 67.14 62.73 53.92 57.52
41.59 48.60 51.73 63.25 51.29 50.51 58.28 53.67 69.59 62.41 56.03 58.41
46.29 51.02 53.19 64.47 53.74 51.19 57.83 54.87 69.65 62.70 57.01 58.87
37.43 46.03 50.66 62.58 49.17 39.16 56.00 51.74 68.86 61.26 53.20 55.04
67.83 67.65 64.00 69.73 67.30 76.94 64.94 71.11 75.97 71.08 73.40 72.24

66.82 68.90 65.49 71.61 68.21 77.39 66.59 73.20 77.61 71.34 72.04 73.03
69.17 70.93 66.74 71.18 69.51 78.91 66.90 72.37 77.48 72.51 75.33 73.92
67.90 67.93 64.32 69.84 67.50 77.13 65.28 71.25 76.28 71.25 73.72 72.49
68.23 68.66 65.01 70.01 67.98 78.09 65.28 71.15 76.40 71.45 73.61 72.66

Adaptiope [18]
P→ R→ S→ Avg.R,S P,S P,R

D
om

ai
n

C
on

ca
t.

raw 54.30 55.55 43.28 51.05
DANN [5] 58.75 56.13 45.02 53.30
BNM [2] 54.50 55.07 45.72 51.76
SCDA [13] 52.31 54.75 42.04 49.70
DSAN [32] 53.65 55.13 43.74 50.84
Ours-c 57.77 61.39 53.14 57.43

M
ul

ti. Ours 60.09 64.59 57.68 60.79

Jo
in

tm
et

ho
d +DANN 64.40 71.18 62.12 65.90

+BNM 62.24 65.89 59.63 62.59
+SCDA 60.54 64.61 57.21 60.78
+DSAN 61.38 65.23 58.42 61.68

DomainNet [17]
C,I,P→ Q,R,S→ Avg. C,I→ P,Q→ R,S→ Avg.Q,R,S C,I,P P,Q,R,S C,I,R,S C,I,P,Q

8.43 11.97 10.20 6.40 9.22 10.76 8.79
7.47 11.99 9.73 5.35 7.81 10.57 7.91
8.14 12.15 10.15 6.34 9.17 10.70 8.74
8.30 11.83 10.07 6.32 9.13 10.69 8.71
7.04 11.21 9.13 4.64 8.45 10.50 7.86
28.92 33.13 31.02 26.22 27.80 30.00 28.00

42.23 44.30 43.26 39.10 38.99 36.67 38.25

41.02 43.74 42.38 38.21 38.73 36.09 37.67
42.18 44.14 43.16 39.52 39.18 36.76 38.49
42.24 44.23 43.24 39.47 39.22 36.73 38.47
42.23 44.25 43.24 39.10 39.01 36.72 38.28

Evaluation. We evaluate methods in an unsupervised adaptation framework. A classifier
and backbone CNN are trained on source-domain samples equipped with annotation labels
and then the optimized classifier is transferred to classify samples on target domains; dur-
ing training, we are incapable of accessing labels of target-domain samples. Classification
accuracies (%) are measured on the test-domain samples.

3.1 Performance analysis
We analyze the proposed method on Office-31 dataset in a simple scenario of single-source
single-target domain adaptation for the ease of comparison. We apply the method in the
framework of end-to-end learning as shown in Fig. 3. A backbone ResNet-50 is combined
with projection head to produce 256-dimensional features which are followed by L2 nor-
malization; the ResNet-50 is pre-trained on ImageNet and is fine-tuned in the end-to-end
learning for domain adaptation. We use batch sizes of 32 with the subspace rank of r = 32.
• Transformation method. Our method of x̂xx = HHHxxx (10) is compared to the other types
of transformation methods discussed in Sec. 2.4. While the methods of CORAL [21] and
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auto-correlation [10] are straightforwardly applicable, we leverage Proposition 1 to embed
GFK [7] in this deep architecture. The performance comparison in Table 1a shows that
subspace-based transformation is superior to those containing second-order statistics of fea-
ture distribution, and the proposed method outperforms the others including GFK. In this
deep adaptation, CORAL [21] significantly degrades performance as eigenvalues embed-
ded in the transformation matrix would be less stably estimated in a mini-batch. Thus,
DeepCORAL [20] get rid of the CORAL transformation and reformulate it as regularization
of matching covariances to improve performance; in this case, the DeepCORAL produces
81.85% (Avg). On the other hand, subspaces are robustly estimated on a mini-batch to pro-
duce favorable performance. The proposed method requires less computation cost than the
others which additionally apply eigen-decomposition (7) to compute UUU+,GGG

1
2 and HHH

1
2 .

• Extension method. We then analyze the extension methods described in Sec. 2.3. Table 1b
reports performance results in an ablation manner. The raw approach excludes transforma-
tion and any extension methods, exploiting only source samples for training. In the other
approaches, target-domain samples participate in end-to-end learning through the subspace
PPPT = UUUT UUU>T which is embedded in the DS matrix HHH (6) for transformation (10) and/or
regularization (14). Table 1b demonstrates that both the transformation and the regulariza-
tion contribute to matching subspaces for improving performance. The subspace similarities
based on canonical angles for those approaches are also shown in Table 1b. Interestingly, the
raw approach align two subspaces to some extent even by processing source samples only.
Through the end-to-end training, feature representation is biased toward the object categories
which are shared among source and target domains, thereby increasing the similarity of those
subspaces. In accordance with Proposition 2, our domain-sum feature transformation im-
proves the subspace matching; it produces higher similarity than the raw approach. While
the regularization (14) enhances subspace matching in both the raw approach and our trans-
formation approach, it produces better classification performance in our framework; 84.45%
(raw+reg.) vs 85.56% (ours+reg.). Domain-sum transformation by HHH (6) naturally lets the
target subspace PPPT join in a classification loss and thus facilitates to learning discriminative
feature representation. Combination of the transformation and the regularization further im-
proves performance as well as provides favorable matching of subspaces. The performance,
however, is degraded by the larger regularization weight η = 2 than the standard setting of
η = 1. Considering that our feature transformation intrinsically induces subspace matching
as shown in Proposition 2, it is enough to set small weight of η = 1 to slightly inject the
regularization effect into training. By adding the classifier subspace into the transformation
matrix HHH, performance is further improved. It also augments subspace matching as shown
in Table 1b. Matching feature subspaces with a classifier subspace facilitates learning.

3.2 Multi-target deep domain adaption

The method is then compared to the other approaches on tasks of multi-target deep domain
adaptation. It is noteworthy that the multi-target adaptation provides efficient inference in
which the single model of classifier/feature representation learned on the source domain(s)
is applicable across multiple domains without identifying domain of an input sample nor
switching the model according to the target domain. We apply four types of regularization
methods based on adversarial technique (DANN) [5], diversity of classifiers (BNM) [2], ad-
versarial alignment of predictions (SCDA) [13] and local domain adaptation (DSAN) [32].
Our method is equipped with the extension techniques (Sec. 2.3, Table 1b). For fair com-
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parison, we apply the same training protocol to the same backbone and projection head
producing features (Fig. 3) which are subject to regularization and/or transformation for en-
hancing domain adaptation. Table 2 shows performance comparison where each column
shows performance averaged over the multiple target domains.

As those methods other than ours are not designed to cope with multiple target domains,
we concatenate multiple source/target domains in terms of mini-batch to mimic single-source
single-target adaptation; the approach is denoted by “Domain Concat” in Table 2. For com-
parison, the brute-force approach to consider all pairs of source and target domains is applied,
as denoted by “Multi” in Table 2, but there is less clear performance difference between those
two approaches. While the proposed method (“Ours-c” in Table 2) shows superior perfor-
mance to the others even in the concatenation scheme, our method works more effectively
in the multi-domain approach. It exploits characteristics of multiple domains by means of
respective domain subspaces and effectively aggregates them in the DS matrix (11).

Our method based on subspaces is compatible to the distribution-related regularization
losses of the other adaptation methods; as discussed in Sec. 1, the subspace matching facili-
tates to align distributions which are contained in the subspaces. In our framework (Fig. 3),
the regularization loss can be applied to raw feature representation xxx in a manner of domain
concatenation for computational efficiency. The performance is further improved by the joint
methods with ours as shown in Table 2.

4 Conclusion

We have proposed a simple yet effective feature transformation based on subspaces for re-
ducing the discrepancy among diverse domains. The method is theoretically derived from
GFK [7] and is formulated in an efficient form of domain-sum matrix HHH. The feature trans-
formation contributes to closing a gap between source and target subspaces in the framework
of end-to-end learning. The proposed method is so simple as to naturally deal with multiple
domains via aggregating domain subspaces in disregard of domain types, source or target,
therefore addressing a general domain adaptation for multiple target domains. The exper-
imental results on visual domain adaptation tasks demonstrate that the proposed method
favorably improves performance in a deep multi-target framework.

References
[1] Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, and Atsuto Maki. Factors

of transferability for a generic convnet representation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 38(9):1790–1802, 2016.

[2] Shuhao Cui, Shuhui Wang, Junbao Zhuo, Liang Li, Qingming Huang, and Qi Tian.
Towards discriminability and diversity: Batch nuclear-norm maximization under label
insufficient situations. In CVPR, pages 3941–3950, 2020.

[3] Kazuhiro Fukui and Atsuto Maki. Difference subspace and its generalization for
subspace-based methods. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 37(11):2164–2177, 2015.

Citation
Citation
{Gong, Shi, Sha, and Grauman} 2012



T. KOBAYASHI, L. SOUZA, K. FUKUI: DOMAIN-SUM FEATURE TRANSFORMATION 11

[4] Kazuhiro Fukui, Naoya Sogi, Takumi Kobayashi, Jing-Hao Xue, and Atsuto Maki.
Discriminant feature extraction by generalized difference subspace. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45(2):1618–1635, 2023.

[5] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. Journal of Machine Learning Research, 17(1):2096–2130,
2016.

[6] Behnam Gholami, Pritish Sahu, Ognjen Rudovic, Konstantinos Bousmalis, and
Vladimir Pavlovic. Multiple subspace alignment improves domain adaptation. IEEE
Transactions on Image Processing, 29:3993–4002, 2020.

[7] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for
unsupervised domain adaptation. In CVPR, pages 2066–2073, 2012.

[8] Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Domain adaptation for object
recognition: An unsupervised approach. In ICCV, pages 999–1006, 2011.

[9] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H.
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel
Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and
Michal Valko. Bootstrap your own latent: A new approach to self-supervised learning.
In NeurIPS, pages 21271–21284, 2020.

[10] Xifeng Guo, Wei Chen, and Jianping Yin. A simple approach for unsupervised domain
adaptation. In ICPR, pages 1566–1570, 2016.

[11] Elad Hoffer, Itay Hubara, and Daniel Soudry. Fix your classifier: The marginal value
of training the last weight layer. In ICLR, pages 5822–5830, 2018.

[12] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,
Alexei A. Efros, and Trevor Darrell. Cycada: Cycle-consistent adversarial domain
adaptation. In ICML, pages 1989–1998, 2018.

[13] Shuang Li, Mixue Xie, Fangrui Lv, Chi Harold Liu, Jian Liang, Chen Qin, and Wei Li.
Semantic concentration for domain adaptation. In ICCV, pages 9102–9111, 2021.

[14] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learning transfer-
able features with deep adaptation networks. In ICML, pages 97–105, 2015.

[15] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I. Jordan. Conditional
adversarial domain adaptation. In NeurIPS, pages 1647–1657, 2018.

[16] Le Thanh Nguyen-Meidine, Madhu Kiran, Jose Dolz, Eric Granger, Atif Bela, and
Louis-Antoine Blais-Morin. Unsupervised multi-target domain adaptation through
knowledge distillation. arXiv, 2007.07077, 2020.

[17] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang.
Moment matching for multi-source domain adaptation. In ICCV, pages 1406–1415,
2019.



12 T. KOBAYASHI, L. SOUZA, K. FUKUI: DOMAIN-SUM FEATURE TRANSFORMATION

[18] Tobias Ringwald and Rainer Stiefelhagen. Adaptiope: A modern benchmark for unsu-
pervised domain adaptation. In WACV, pages 101–110, 2021.

[19] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category
models to new domains. In ECCV, pages 213–226, 2010.

[20] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain
adaptation. In ECCV Workshop, pages 443–450, 2016.

[21] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adap-
tation. In AAAI, pages 2058–2065, 2016.

[22] Kowshik Thopalli, Rushil Anirudh, Jayaraman J. Thiagarajan, and Pavan Turaga. Mul-
tiple subspace alignment improves domain adaptation. In ICASSP, pages 3552–3556,
2019.

[23] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discrimina-
tive domain adaptation. In CVPR, pages 2962–2971, 2017.

[24] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Pan-
chanathan. Deep hashing network for unsupervised domain adaptation. In CVPR,
pages 5018–5027, 2017.

[25] Jindong Wang, Yiqiang Chen, Han Yu, Meiyu Huang, and Qiang Yang. Easy transfer
learning by exploiting intra-domain structures. In ICME, pages 1210–1215, 2019.

[26] Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey. Neurocom-
puting, 312:135–153, 2018.

[27] Wei Wang, Zheng Dang, Yinlin Hu, Pascal Fua, and Mathieu Salzmann. Robust differ-
entiable svd. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9):
5472–5487, 2021.

[28] Shaoan Xie, Zibin Zheng, Liang Chen, and Chuan Chena. Learning semantic repre-
sentations for unsupervised domain adaptation. In ICML, pages 5423–5432, 2018.

[29] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? In NeurIPS, pages 3320–3328, 2014.

[30] Huanhuan Yu, Menglei Hu, and Songcan Chen. Multi-target unsupervised domain
adaptation without exactly shared categories. arXiv, 1809.00852, 2018.

[31] Werner Zellinger, Edwin Lughofer, Susanne Saminger-Platz, Thomas Grubinger, and
Thomas Natschlager. Central moment discrepancy (cmd) for domain-invariant repre-
sentation learning. In ICLR, 2017.

[32] Yongchun Zhu, Fuzhen Zhuang, Jindong Wang, Guolin Ke, Jingwu Chen, Jiang Bian,
Hui Xiong, and Qing He. Deep subdomain adaptation network for image classifica-
tion. IEEE Transactions on Neural Networks and Learning Systems, 32(4):1713–1722,
2021.

[33] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu,
Hui Xiong, and Qing He. A comprehensive survey on transfer learning. Proceedings
of the IEEE, 109(1):43–76, 2021.


