

Contributions

- We propose novel metric, **t-vMF similarity**, beyond cosine.
- It *naturally* regularizes **feature distribution within class** for high generalization in a classification (softmax) loss.
- It is simply implemented by **only one-line code**, and improves performance of such as imbalanced and small-scale learning.

vMF Similarity Beyond Cosine

Cosine Similarity

Linear (FC) classifier is characterized by cosine similarity. $z = \boldsymbol{w}^T \boldsymbol{x} = \| \boldsymbol{w} \| \| \boldsymbol{x} \| \cos \theta$

vMF Similarity

We leverage **von Mises-Fisher distribution** to model the similarity.

 $\mathbf{p}(\tilde{\mathbf{x}}; \tilde{\mathbf{w}}, \kappa) = C_{\kappa} \exp(\kappa \tilde{\mathbf{w}}^{\top} \tilde{\mathbf{x}}) = C_{\kappa} \exp(\kappa \cos \theta) \quad \{\text{Gaussian on sphere}\}$

vMF Similarity:
$$2 \frac{\exp(\kappa \cos \theta) - \exp(-\kappa)}{\exp(\kappa) - \exp(-\kappa)} - 1$$

The parameter κ controls the support region.

Drawback

✓ Exponential function provides *light* tail which hinders learning.

t-vMF Similarity For Regularizing Intra-Class Feature Distribution Takumi Kobayashi National Institute of AIST, Japan

Cosine Similarity

t-vMF Similarity (<u>narrow</u> $\kappa = 4$) compact intra-class

t-vMF Similarity

Following the success of t-SNE, we can employ **Student's t distribution** of *compact support* and *heavy tail* function to improve vMF similarity.

- the feature distribution into **compact**.

l(x

$$(x, y) = -\log \frac{1}{\sum_{c=1}^{C} \exp\{s\phi\}}$$

 \checkmark Without introducing additional regularization term (such as center loss), feature distribution is implicitly regularized in the classification loss.

t-vMF $\kappa = 16$

VMF $\kappa = 16$

Performance on **Imbalanced**, **small-scale** and **noisy** datasets where *feature regularization would work* to avoid the issues such as over-fitting.

Error rates (%)	(a) Imbalanced		(b) Small-scale		(c) Noisy	
Dataset	ImageNet-LT [32]	iNat2018 [22]	iNat2019 [23]	ImageNet-S	ImageNet-SS	ImageNet-N
CNN	ResNet-10	ResNet-50	ResNet-50	ResNet-10	ResNet-10	ResNet-10
Softmax	61.32 38.44	35.95 17.28	27.23 7.95	55.53 31.58	70.52 48.47	82.34 67.61
L-Softmax [31]	60.27 37.13	35.32 16.77	26.70 7.89	53.41 29.60	65.83 41.74	77.42 58.87
ArcFace [11]	59.46 35.29	33.56 14.73	26.83 8.28	53.95 29.68	65.18 40.69	73.17 48.40
Center Loss [46]	60.82 37.79	35.17 16.94	27.53 7.82	55.11 31.24	70.03 47.72	81.80 66.17
Classifier Loss [20]	60.96 37.81	35.49 16.85	26.93 7.89	55.36 31.55	70.21 48.05	82.19 66.59
Virtual Softmax [7]	61.72 35.23	43.83 20.17	30.36 8.78	60.85 33.30	70.90 43.93	72.40 47.72
DropOut [40]	59.17 35.68	32.20 14.53	26.34 7.46	52.69 28.21	66.41 42.78	75.72 55.56
t-vMF (7) ($\kappa = 4$)	59.17 35.98	31.57 13.56	25.22 6.70	53.58 29.36	67.32 43.82	77.28 58.53
t-vMF (7) ($\kappa = 16$)	57.30 32.92	28.92 11.75	25.64 6.53	52.06 27.54	64.77 40.67	71.46 49.19
t-vMF (7) ($\kappa = 64$)	56.31 31.78	29.69 11.90	25.08 7.10	52.51 28.09	65.73 40.86	69.19 45.66

Performance analysis on ImageNet-LT (imbalance)

t-vMF Similarity (broad $\kappa = -0.3$) separate inter-class

$\frac{1}{\kappa d^2}$	where	$d = \ ilde{oldsymbol{x}}$ -	$- ilde{oldsymbol{w}} \ $
$\left(\frac{\theta}{\cos \theta} \right)$	$-1 \in$	[-1, 1]	

 $\left\{ \frac{oldsymbol{w}_c^{+}oldsymbol{x}}{\|oldsymbol{w}_c\|\|oldsymbol{x}\|};\kappa
ight\}
ight\}$

Experimental Results