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Abstract

Deep convolutional neural networks (CNNs) leverage
large-scale training dataset to produce remarkable perfor-
mance on various image classification tasks. It, however,
is difficult to effectively train the CNNs on some realis-
tic learning situations such as regarding class imbalance,
small-scale and label noises. Regularizing CNNs works
well on learning with such deteriorated training datasets
by mitigating overfitting issues. In this work, we propose a
method to effectively impose regularization on feature rep-
resentation learning. By focusing on the angle between a
feature and a classifier which is embedded in cosine similar-
ity at the classification layer, we formulate a novel similarity
beyond the cosine based on von Mises-Fisher distribution
of directional statistics. In contrast to the cosine similar-
ity, our similarity is compact while having heavy tail, which
contributes to regularizing intra-class feature distribution
to improve generalization performance. Through the exper-
iments on some realistic learning situations such as of im-
balance, small-scale and noisy labels, we demonstrate the
effectiveness of the proposed method for training CNNs, in
comparison to the other regularization methods. Codes are
available at https://github.com/tk1980/tvMF.

1. Introduction
Deep convolutional neural networks (CNNs) are fun-

damental methods to produce promising performance on
various computer vision tasks including visual recogni-
tion [16, 27]. A large amount of parameters in CNNs
are effectively optimized in an end-to-end manner on a
large-scale dataset which contains plenty of image samples
with detailed annotation; in other words, high-performance
CNNs demand such a healthy dataset of large-scale and
clean-labeled samples. For example, ImageNet [10], a stan-
dard benchmark dataset for image classification, is com-
posed of a large number of training samples, each of which
is assigned one of 1000 class labels, and those samples
are uniformly distributed across classes without severe bias
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Figure 1. t-vMF similarity (7) compared to cosine similarity cos θ.
The proposed t-vMF produces compact-support similarity func-
tion around the classifier weight w with the parameter κ to control
the compactness. It orients features x toward w as a implicit reg-
ularization to enhance compact intra-class distribution. Colored
line indicates similarity values in [−1,+1] over the angle θ.

toward specific class categories. Such a data-hunger na-
ture hinders CNNs from being applied to various real-world
tasks. Due to the laborious procedure of collecting and an-
notating data, real-world tasks are frequently equipped with
rather deteriorated training datasets which are subject to
such as class imbalance, small-scale and label noises. The
CNNs trained on those poor datasets degrade performance,
e.g., due to overfitting.

The bottleneck of CNNs could be alleviated by re-
ducing their parameter size from the architectural view-
point [19, 51] and data-augmentation techniques would
contribute to virtually enlarge the training data by means
of injecting perturbation into real image samples [12, 50].
On the other hand, as a rather general approach, some reg-
ularizations can be effectively introduced to CNNs for im-
proving generalization performance [40, 46, 20, 31, 11].

A crucial feature representation is found in the neuron
activations produced by the penultimate layer which are fed
into the final classifier. Thus, regularization on those fea-
tures contributes to enhancing feature representation learn-
ing even on the deteriorated datasets where training sam-
ples are too poorly collected to well model the intrinsic fea-
ture distribution. In the literature of deep learning, there
are some regularization techniques for feature representa-
tion such as center loss [46] to reduce within-class vari-
ance and DropOut [40, 29] to inject stochastic perturba-
tion. It is also possible to regularize features at a classifi-
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cation layer through end-to-end learning. A representative
approach would be large-margin loss [31, 30, 45, 11] by em-
bedding large-margin criterion into a softmax cross-entropy
loss. The large-margin criterion renders the classifier of
high generalization performance [43] as well as favorable
feature representation through the end-to-end learning. The
large-margin methods modify logits of ground-truth class
based on a cosine similarity between an input feature vector
and the classifier weight at the classification.

In this work, we focus on the cosine similarity, a funda-
mental metric in the classifier, to impose regularization on
features for improving performance especially on deterio-
rated training datasets. The cosine similarity is built on the
angle between two vectors which is geometrically depicted
on a unit hyper-sphere, and thus we leverage von Mises-
Fisher (vMF) distribution [35], one of directional statisti-
cal models, to propose a novel similarity beyond the cosine
similarity. The proposed similarity is a compact-support
function over angles which enables us to implicitly regu-
larize intra-class feature distribution (Fig. 1). While the
method can be related to the regularization loss [46] and
the large-margin methods [31, 11] which touch cosine sim-
ilarity, the proposed method exhibits clear difference from
those prior works in the following points: (1) the proposed
similarity regulates features without introducing additional
regularization loss, and (2) it is equally applied to all the
classes without paying special attention to the ground-truth
class. (3) It is also noteworthy that the proposed similarity
can simply substitute the cosine similarity in a computation-
ally efficient form implemented by only one-line code.

1.1. Related works

Regularization. We briefly review the regularization meth-
ods according to the simple neuron model, z = w>x where
the output z is computed by the inner product of the input
feature x and (filter) weight w.

CNN filter weights are usually subject to L2-norm regu-
larization, called weight decay [28]. This regularization is
extended into Weight-Normalization [38] which leads to co-
sine similarity in conjunction with normalizing features [1].

DropOut [40] is a representative method to introduce
stochastic perturbation into input features for regularizing
CNNs; the effect of DropOut at the last classification layer
is analyzed in [29]. Perturbation is also injected even to in-
put images in the framework of data augmentation [12, 50]
for classification and in denoising auto-encoder [44]. Fea-
ture distributions are regularized more directly by adding
regularization loss such as center loss [46] and classifier
loss [20] for improving within-class variance. The proposed
method also works on improving intra-class distribution and
it embeds regularization into logits (outputs) without modi-
fying loss nor adding the regularization loss term.

Regularization on the output is mainly found in large-

margin methods [31, 30, 45, 11] at the last classification
layer leading to loss. The classification output z is charac-
terized by cosine similarity between the input feature x and
the classifier weight w, and then the output for the ground-
truth class is degraded based on the cosine similarity for in-
ducing larger margin in classification. While the proposed
method also modifies the cosine similarity, there is clear dif-
ference between them. The proposed method fairly treats all
the classes without any bias toward the ground-truth class
and simply replaces cosine similarity without annotation
(label) information. Thereby, our method addresses regu-
larization for intra-class distribution, while the large-margin
methods focus on discrimination among classes; thus, the
two approaches would be complementary.
Cosine Similarity. The cosine similarity has been applied
in the framework of pair-wise matching such as for image
retrieval [3] and the metric learning that learns lower di-
mensional feature representation [47]; a pair of images is
generally processed through Siamese network to compute
cosine similarity as a matching score [5]. The cosine sim-
ilarity is also found in the classification of normalized fea-
tures which contributes to favorable feature representation
learning [30, 45, 11, 36, 18, 52, 15]. The proposed method
is formulated to replace the similarity so that it could be ap-
plicable to various models. In the other research lines, the
cosine similarity is embedded into CNNs such as for loss
function [4] instead of (softmax) cross-entropy loss and for
normalization [34] to replace Batch-/Layer-Norm [24, 1].
von Mises-Fisher Distribution. By regarding the cosine
similarity as a metric on a unit hyper-sphere, we can nat-
urally derive von Mises-Fisher (vMF) distribution [35] to
statistically model samples of unit norm. The vMF is ap-
plied in machine learning community [39], such as text min-
ing [2], user-behavior analysis [37] and clustering [14]. It is
also employed in the literature of deep learning such as in
semantic segmentation [21] and losses [52, 15]. The meth-
ods [52, 15] leverage the vMF model to formulate a loss
based on cosine similarity. In contrast, we consider the vMF
model in the process of producing logits to which the cosine
similarity has so far been applied; we simply apply the clas-
sification loss of the normalized classifier [36, 18] which is
almost the same as the vMF-based losses [52, 15].

2. vMF-based Similarity Beyond Cosine
The linear classifier in CNNs is formulated as an inner

product between a classifier weight w and a feature vector
x produced by the penultimate layer, as follows1:

zc = w>c x = ‖wc‖‖x‖ cos θ = sc(x) cos θ, (1)

where zc is a logit for the c-th class and the norms of wc and
x are reduced into a scaling factor sc(x) which could be a

1We can simply remove a bias term while keeping performance.
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Figure 2. Proposed vMF-based similarities.

trainable parameter as discussed in Sec. 2.4. From a geo-
metrical viewpoint, the classifier (1) is fundamentally char-
acterized by the angle θ and it applies cosine function cos to
measure a similarity based on θ; in this paper, it is referred
to as a (similarity) measuring function. The cosine mea-
suring function, however, has broad support region, which
accordingly permits features to be distributed with larger
within-class variance; as shown in Figs. 1a&2b, samples of
θ ∈ (−π2 ,+

π
2 ) exhibit positive similarity.

The features of larger within-class variance are known
to degrade generalization performance as classically men-
tioned in discriminant analysis [13]. Empirically, the larger
and imbalanced variances are observed in the learning on
the deteriorated dataset to lower performance [26, 49]. On
the other hand, small variance indicates that CNN produces
effective feature representation consistent within a class.
Compact intra-class feature distribution is equivalent to ex-
tracting class-intrinsic features shared among within-class
samples; it thereby enhances generalization performance by
mitigating overfitting. Thus, we formulate a method to in-
duce compact intra-class distribution through improving the
support region of cosine measuring function (Fig. 1). To
this end, we employ the directional statistical model, von
Mises-Fisher distribution [35], to deal with the angle θ.

2.1. Similarity by von Mises-Fisher Model

The angle θ between wc and x in (1) is a core met-
ric on a unit hyper-sphere. Samples on the sphere can be
statistically modeled by von Mises-Fisher (vMF) distribu-
tion [35, 2] which is formulated as

p(x̃; w̃, κ) = Cκ exp(κw̃>x̃) = Cκ exp(κ cos θ), (2)

where x̃ is a d-dimensional unit vector (‖x̃‖ = 1), w̃ is
a unit vector orienting the center of the distribution, κ is a
parameter to control the concentration of the distribution to
the vector w̃, and Cκ is a normalization constant.

The vMF model (2) renders similarity between x̃ and
w̃ in a probabilistic sense, and the form (2) is rewritten by
using a profile function fe(d;κ) = exp(− 1

2κd
2) into

p(x̃; w̃, κ) = Cκ exp(κ−1

2
κ‖x̃−w̃‖2) = C ′κfe(‖x̃−w̃‖;κ).

(3)
The vMF similarity is essentially characterized by fe(‖x̃−
w̃‖;κ) and thus we formally define the vMF similarity to

substitute for cos θ by

φe(cos θ;κ) = 2
fe(‖x̃− w̃‖;κ)− fe(2;κ)

fe(0;κ)− fe(2;κ)
− 1 (4)

= 2
exp(κ cos θ)− exp(−κ)

exp(κ)− exp(−κ)
− 1 ∈ [−1, 1], (5)

where we rescale fe(‖x̃−w̃‖;κ) on ‖x̃−w̃‖ ∈ [0, 2] so that
it is compatible with cos θ ∈ [−1,+1]. While the parameter
κ controls concentration in the original vMF model (2) by
κ > 0, the vMF measuring function (5) accepts various κ
even including negative values; κ ∈ (−∞, 0) ∪ (0,+∞).

As shown in Fig. 2a, by controlling the parameter κ, the
vMF similarity (5) exhibits distinctive properties in compar-
ison to the cosine similarity as follows. (1) Larger κ > 0
induces compact similarity function, sensitively measuring
similarity around θ = 0. (2) κ→ 0 reconstructs the original
cosine similarity, cos θ. (3) Smaller κ < 0 enlarges the sup-
port region of the measuring function beyond cosine. From
the classification perspective, the first property is effective
for improving intra-class compactness as a regularization.
Namely, the vMF similarity φe with κ > 0 would reduce
the within-class variance by orienting features x toward the
classifier wc to gain substantial similarity. It is noteworthy
that the similarity fairly works on all classes without special
treatment for the ground-truth class in contrast to the large-
margin methods [31, 30, 45, 11] and is directly embedded
in logits without additional regularization loss [46, 20]. We
will discuss the case of κ < 0 in Secs. 2.5&3.4.

2.2. t-vMF Similarity

Though the vMF measuring function (5) renders com-
pact similarity, the function contrarily has light tail where
the similarity score is rapidly approaching -1 even by a
bit larger angle θ as shown in Fig. 2bc. Such a too com-
pact measuring function might hamper training CNNs since
samples on the light tail hardly enjoy back-propagation
due to vanishing gradient (Fig. 2c). This bottleneck is
derived from the exponential profile function fe(d;κ) =
exp(− 1

2κd
2). Similar discussion can be found in the other

literature of t-SNE [42] which considers to match point-
wise probability distributions for embedding samples in the
lower-dimensional space. In that framework, the shape
of probabilistic density function is required to be compact
while having a heavy tail for well capturing the discrimina-
tive metrics in the original feature space, which is connected
with our situation to design similarities.

Thus, we follow the approach of t-SNE [42] that extends
SNE [17] by introducing heavy-tailed student-t distribution
as an alternative to Gaussian. Considering that the vMF
similarity (5) is built upon the exponential profile function
fe, it can be modified by replacing fe with the student-t



profile ft(d;κ) = 1
1+ 1

2κd
2 to formulate t-vMF similarity by

φt(cos θ;κ) = 2
ft(‖x̃− w̃‖;κ)− ft(2;κ)

ft(0;κ)− ft(2;κ)
− 1 (6)

= 2

1
1+κ(1−cos θ) −

1
1+2κ

1− 1
1+2κ

−1 =
1 + cos θ

1 + κ(1− cos θ)
−1, (7)

where κ ∈ (− 1
2 ,+∞) since 1

2κd
2 > −1 in ft on 0 ≤ d2 =

(2 − 2 cos θ) ≤ 4. As shown in Fig. 2b, while the t-vMF
similarity (7) is close to the vMF one (5) around θ = 0, it
additionally exhibits the following favorable properties. (1)
The t-vMF measuring function is heavy-tailed in compari-
son to vMF (Fig. 2c) so that training CNNs stably proceeds
even by larger κ. (2) The similarity (7) can be computed
only by simple operation (one-line code) as shown in Al-
gorithm 1 unlike the vMF (5) which depends on an expo-
nential function. (3) κ = 0 exactly reconstructs the original
cosine similarity, φt(θ;κ = 0) = cos θ without any careful
treatment about practical computation.

Algorithm 1 Pseudocode of t-vMF similarity
# w: classifier weight vector
# x: input feature vector
# k: kappa parameter
def tvMFsimilarity(w, x, k):

# Cosine similarity
# linear: compute inner product
# normalize: normalize by L2-norm
cosine = linear(normalize(x),normalize(w))
# One-line code for t-vMF (7)
phi = (1+cosine)/(1+k*(1-cosine))-1
return phi

2.3. q-vMF Similarity

These two similarities (5,7) can be viewed in a unified
way by means of q-exponential function [41], fq(d;κ) =

[1− (1− q) 1
2κd

2]
1

1−q . The q-exponential function contains
the exponential and student-t functions by q → 1 and q = 2,
respectively. Thus, we can define the q-vMF similarity as

φq(cos θ;κ) = 2
fq(‖x̃− w̃‖;κ)− fq(2;κ)

fq(0;κ)− fq(2;κ)
− 1 (8)

=2
[1−(1−q)κ(1−cos θ)]

1
1−q − [1−2(1−q)κ]

1
1−q

1− [1− 2(1− q)κ]
1

1−q

−1, (9)

where κ ∈ (− 1
2(q−1) ,+∞). In particular, due to the above-

mentioned property of the q-exponential function, q → 1
leads to φq → φe (5) and q = 2 produces t-vMF φe = φt
(7). Though the computation (9) is more complicated than
t-vMF (7), the measuring function is further flexibly con-
trolled by q in addition to κ; the q-vMF of larger q con-
structs the heavier-tailed similarity beyond t-vMF (Fig. 2b).

2.4. Classifier

The vMF-based similarity is embedded into the follow-
ing pseudo inner-product in stead of the cosine similarity:

〈x,w〉φ = ‖x‖‖w‖φ
( w>x

‖x‖‖w‖
;κ
)
, (10)

where φ(·;κ) indicates one of the vMF-based similarities
(5,7,9) parameterized by κ (and q for q-vMF).

In the experiments (Sec. 3), we employ a normalized
classification via L2-normalization of feature vectors and
classifier weights to formulate the cross-entropy loss of

l(x, y) = − log
exp
(
s
〈

x
‖x‖ ,

wy

‖wy‖
〉
φ

)∑C
c=1 exp

(
s
〈

x
‖x‖ ,

wc

‖wc‖
〉
φ

) (11)

= − log
exp
{
sφ
( w>y x

‖wy‖‖x‖ ;κ
)}

∑C
c=1 exp

{
sφ
( w>c x
‖wc‖‖x‖ ;κ

)} , (12)

where x and y are a feature vector produced by the penul-
timate layer and its ground-truth class label, respectively,
and we introduce the trainable scaling factor s2 for soft-
max [36, 18]; s is optimized in an end-to-end manner. The
scaling parameter s compensates the norms of wc and x via
s ≈ ‖wc‖‖x‖ in (1) on the assumption that the classifier
weights wc and the sample features x have consistent norm
magnitudes across classes and samples, respectively. Those
norm magnitudes are vulnerable to deterioration of the
training dataset, such as regarding class imbalance, and thus
normalized representation in (12) would be effective for
learning on the deteriorated datasets [26, 49]. The normal-
ized classifier (12) also renders favorable feature represen-
tation and is applied to various tasks [45, 11, 36, 18, 52, 15].
In the case of κ = 0, (12) is reduced to the softmax loss
based on cosine similarity which is also referred to as vMF
loss in [52, 15]; from this viewpoinnt, the proposed vMF
similarities (5,7,9) to produce logits in (12) are clearly dif-
ferent from the vMF-based losses [52, 15].

2.5. Discussion

In the end-to-end learning framework, the vMF-based
measuring functions (5,7,9) produce compact support sim-
ilarities (Fig. 2) to reduce within-class variance for effec-
tive feature representation; feature x is forced to be within
the compact support around the classifier wy for providing
sufficient logit value to minimize the loss (12). It is note-
worthy that such regularization is implicitly embedded in
the proposed similarity without introducing a regularization
term [46, 20] into a loss function. The regularization of the
proposed similarities contributes to extracting class-specific

2We further re-parameterize it by s = log(1 + exp(s′))+1 > 1 with
s′ ∈ R especially for stable training in large-margin methods.



Table 1. Datasets used in the experiments. Imbalance is defined by Nc/minc′ [Nc′ ] where Nc is the number of sample at the c-th class.

ImageNet-LT [32] iNat2018 [22] iNat2019 [23] ImageNet-S/N ImageNet-SS

# of class 1000 8142 1010 1000 1000
# of samples 115846 437513 265213 115000 50000

Max. Imbalance 256 500 31.25 1 1
Minority

class
Majority

class

Im
ba

la
nc

e

ImageNet-LT
iNaturalist2018
iNaturalist2019

features shared among intra-class samples for improving
generalization performance. The regularization would be
effective for training on some poor datasets where the stan-
dard approach fails to learn effective features.

The above-mentioned compactness of measuring func-
tion is endowed by positive parameter value of κ > 0 in
the three types of vMF-based similarities which are distin-
guished in terms of heaviness at tails (Fig. 2b). The vMF
similarity (5) contains light tail on which samples would
be less effectively optimized (Fig. 2c). The t-vMF (7) im-
proves it by incorporating the student-t form in a manner
similar to t-SNE [42] toward heavy-tail similarity. Those
two models are unified by means of the q-exponential into
the q-vMF (9) and it can provide further heavier-tailed simi-
larity through tuning the additional parameter q. These sim-
ilarities are empirically evaluated in Sec. 3.1.1.

We have discussed the effect of κ > 0 to improve intra-
class feature distribution. On the other hand, the model
with κ < 0 have diffrent impact on training CNNs. As
shown in Fig. 2a, κ < 0 enlarges the support angle region
in contrast to κ > 0. Through the competitive learning
among classes {w̃c}Cc=1 in the softmax loss (12), the sim-
ilarity of large support leads to enhancing inter-class dis-
crimination due to the heavy overlap among similarities of
different classes. In other words, κ < 0 reduces the clas-
sifier margins to enhance discriminativity in a similar way
to large-margin approach (Fig. 4). Thus, the vMF-based
similarities of κ < 0 would work on large-scale balanced
datasets which prefer the inter-class discriminativity for im-
proving performance than the regularization of intra-class
compactness, since intra-class characteristics could be well
modeled by plenty of samples even without regularization.
Such effect can be empirically validated in Sec. 3.4.

The t-vMF similarity is slightly connected to the (gen-
eralized) student-t kernel [48]. The proposed t-vMF (7),
however, results in a clearly different form than the kernel
function of student-t and it is favorably parameterized by κ
that is interpretable from the viewpoint of similarity com-
pactness; it naturally unifies the cosine similarity as a spe-
cial case of κ = 0. As to a kernel function, the Arc-kernel
is also proposed in [8] based on the angle θ. It, however, is
formulated in a computationally inefficient form while be-
ing inferior to ours in terms of compactness and tail.

3. Experimental Results
We apply the proposed method to training CNNs on

three types of deteriorated training datasets regarding im-

balanced classes, small-scale and noisy labels. It is gener-
ally difficult to effectively train deep CNNs in an end-to-end
manner on those datasets. The proposed vMF-based sim-
ilarities naturally impose regularization on the intra-class
feature distribution through the softmax cross-entropy loss
(12) for improving generalization performance.
Training procedure. We follow the training proto-
col of [25] by applying SGD optimizer with momentum
0.9, weight decay 10−4, mini-batch size 256 and cosine-
learning rate scheduling [33] (initial rate 0.2) over 90 train-
ing epochs; during training, the standard data augmenta-
tion [16] is applied to input images. The classification per-
formance is measured by top-1 and top-5 error rates (%)
through single center-crop evaluation protocol [27].

3.1. Learning on Imbalanced Dataset

While the standard benchmark datasets, such as Ima-
geNet [10], are well balanced in terms of training samples
per class category, real-world categories are occasionally
distributed by long-tailed distribution, producing imbal-
anced numbers of training samples across classes, as shown
in Tab. 1. The CNNs trained on such an imbalanced dataset
are accordingly biased toward majority classes while paying
less attention to the minorities.

In [25], simple two-stage learning is proposed for the
imbalanced learning; a CNN is first trained in the standard
way via uniformly sampling training images (mini-batches)
and then only the classifier is further finetuned by balanced
sampling across classes while freezing the feature extractor
of the CNN. We follow this simple approach by applying
the proposed similarities to the loss (12) of the first stage
to optimize feature representation. For fair comparison, at
the second stage of finetuning, the simple cosine similarity
(κ = 0) is used in the softmax loss (12) for all the meth-
ods that we used in this experiment; at the second stage,
the classifier is trained over 30 epochs while keeping the
other optimization parameters shown above. Thus, we can
evaluate how robust feature representation a method learns
against imbalanced datasets by introducing regularization.

3.1.1 Ablation study

We first analyze the proposed methods by training ResNet-
10 [16] on ImageNet-LT dataset [32] (Tab. 1).
Types of vMF. In Sec. 2, we proposed three types of vMF-
based measuring functions (5,7,9) which are distinguished
in terms of tail heaviness (Fig. 2b). To fairly compare the



Table 2. Performance comparison among vMF-based similarities with various κ on ImageNet-LT. We report top-1 error rate (%) with top-5.

κ 0 (cos) 2 4 8 16 32 64 128 256

vMF (5) 61.32 38.44 60.25 37.05 59.16 35.90 58.11 34.30 75.84 53.58 96.85 90.79 96.95 90.94 100.0 100.0 100.0 100.0

t-vMF (7) 61.32 38.44 60.40 37.01 59.17 35.98 58.18 34.47 57.30 32.92 56.49 31.97 56.31 31.78 57.22 32.03 58.66 33.32

q-vMF (9) 61.32 38.44 60.61 37.45 59.96 36.53 59.15 35.65 59.05 35.17 58.35 34.29 58.46 34.28 58.12 33.74 58.01 33.57

Table 3. Comparison to the other measuring function derived from the large-margin and kernel methods [31, 11, 8] on ImageNet-LT.

cos(kθ) [31] cos(θ +m) [11] Arc-kernel [8]

param. k = 2 4 8 m = π/8 π/4 π/2 n = 1 n = 2

Err. 59.67 36.05 61.02 38.00 61.54 38.45 60.93 37.67 60.81 37.45 57.83 34.14 61.63 38.32 60.80 37.75

+1

0

-1

cos(2   ) [31]

cos(   )

cos(   +   ) [11]
arc-kernel (n=2) [8]

Table 4. Trainable κ in t-vMF (7) on ImageNet-LT.

(a) Two-types of parameterization

single κ class-wise {κc}Cc=1

Err. 61.23 38.21 60.39 37.02

κ 0.37 1.58±0.19

(b) Plot of {κc}1000c=1
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Figure 3. Statistics of learned features.

tail, we control the parameter κ for respective models so that
they exhibit similar compactness around θ = 0; the same κ
is applied to both vMF (5) and t-vMF (7), while q-vMF (9)
applies half of κ and larger q to provide heavier tail; details
are described in the supplementary material.

Performance results are shown in Tab. 2 and we can find
the following. (1) Performance is improved by (moderately)
larger κ which produces compact shape around θ = 0. (2)
The vMF similarity (5) works only with κ < 16 while de-
grading performance by κ ≥ 16. The larger κ induces the
lighter tail of the measuring function φe, thereby making it
hard to proceed back-propagation on the samples outside of
the support of the function (Fig. 2c) as discussed in Sec. 2.2.
(3) On the other hand, q-vMF (9) that provides heavier tail
contributes to stable learning, though being inferior to t-
vMF (7). The heavier tail slightly harms compactness of
the measuring function around θ = 0 which is a key char-
acteristic to regularize feature representation. Thus, we can
conjecture that the t-vMF similarity (7) is favorable in terms
of compactness and heavy tail, stably producing better per-
formance at the larger κ without deteriorating the training
of CNN even at very large κ = 256.

Cosine-based measuring function. The form of cosine
similarity has been also discussed mainly in the framework
of large-margin methods [31, 30, 45, 11]; the cosine sim-

ilarity of the ground-truth class is degraded by modifying
the form of the similarity. So modified cosine similarity
is also applicable to φ in (12) for comparison to the pro-
posed t-vMF similarity (7) in our framework toward com-
pact intra-class representation. It should be noted that in this
case the cosine similarities are fairly modified on all classes
without taking special care of the ground-truth class; the
large-margin methods themselves are tested in Sec. 3.1.2.

Tab. 3 shows the performance results by the arc-
kernel [8] and the two forms of modified cosine similarities;
multiplicative [31, 30] and additive [11] ones. As in Tab. 2,
performance is improved by the measuring functions which
exhibit compactness around θ = 0. They, however, are less
compact in comparison to t-vMF. Arc-kernel [8] has similar
shape to ours but it is less compact and light-tailed similar-
ity compared to t-vMF. Therefore, they are inferior to ours.
It is also noteworthy that the t-vMF is more computationally
efficient (Algorithm 1) than those comparison methods. The
comparison result to these methods highlights effectiveness
of the proposed t-vMF model for regularization.

Trainable κ. The parameter κ in the t-vMF similarity (7)
is pre-fixed as shown in Tab. 2. According to the end-to-end
learning principle, it is also possible to optimize κ as in the
other CNN parameters. There are two conceivable ways of
parameterization for κ. One is to introduce single trainable
κ shared across all the classes, while the other way is to
assign κc to respective classes and optimize {κc}Cc=1. The
parameter κ in t-vMF (7) is optimized over κ ∈ [0,+∞)
based on the discussion in Sec. 2.5 by applying SGD in the
same way as the other CNN parameters.

The performance results and the optimized κ values are
also shown in Tab. 4a. Training single κ might be im-
peded by the high imbalance across the majority and mi-
nority classes, and thereby κ results in close to 0, push-
ing the t-vMF similarity toward the ordinary cosine simi-
larity. On the other hand, the class-wise parameterization
mitigates the imbalance in training κc, which is seperately
assigned to each class c, to slightly improves performance.
Nonetheless, the performances of the trainable t-vMF mod-
els are inferior to that of pre-fixed larger κ (Tab. 2). Train-



Table 5. Performance comparison (error rates %) on various datasets.

(a) Imbalanced (b) Small-scale (c) Noisy

Dataset ImageNet-LT [32] iNat2018 [22] iNat2019 [23] ImageNet-S ImageNet-SS ImageNet-N
CNN ResNet-10 ResNet-50 ResNet-50 ResNet-10 ResNet-10 ResNet-10

Softmax 61.32 38.44 35.95 17.28 27.23 7.95 55.53 31.58 70.52 48.47 82.34 67.61

L-Softmax [31] 60.27 37.13 35.32 16.77 26.70 7.89 53.41 29.60 65.83 41.74 77.42 58.87

ArcFace [11] 59.46 35.29 33.56 14.73 26.83 8.28 53.95 29.68 65.18 40.69 73.17 48.40

Center Loss [46] 60.82 37.79 35.17 16.94 27.53 7.82 55.11 31.24 70.03 47.72 81.80 66.17

Classifier Loss [20] 60.96 37.81 35.49 16.85 26.93 7.89 55.36 31.55 70.21 48.05 82.19 66.59

Virtual Softmax [7] 61.72 35.23 43.83 20.17 30.36 8.78 60.85 33.30 70.90 43.93 72.40 47.72

DropOut [40] 59.17 35.68 32.20 14.53 26.34 7.46 52.69 28.21 66.41 42.78 75.72 55.56

t-vMF (7) (κ= 4) 59.17 35.98 31.57 13.56 25.22 6.70 53.58 29.36 67.32 43.82 77.28 58.53

t-vMF (7) (κ=16) 57.30 32.92 28.92 11.75 25.64 6.53 52.06 27.54 64.77 40.67 71.46 49.19

t-vMF (7) (κ=64) 56.31 31.78 29.69 11.90 25.08 7.10 52.51 28.09 65.73 40.86 69.19 45.66

Table 6. Detailed performance on imbalanced learning. We follow
[25] to split classes into Many, Medium and Few categories.

ImageNet-LT iNaturalist2018

Many Medium Few Many Medium Few

Softmax 47.16 66.10 84.29 28.15 34.67 39.59
L-Softmax 46.23 64.85 83.66 28.82 33.70 39.06
ArcFace 46.06 63.96 81.28 27.51 32.25 36.78

CenterLoss 46.85 65.28 84.41 28.46 33.47 39.05
ClassifierLoss 47.40 65.02 84.76 28.35 34.00 39.23
VirtualSoftmax 50.25 65.58 80.35 35.11 43.34 46.71

DropOut 45.90 63.20 82.22 25.06 30.74 35.92
t-vMF (κ = 4) 45.23 63.41 83.43 25.53 30.20 34.85

t-vMF (κ = 16) 43.92 61.20 81.16 25.85 27.93 31.08
t-vMF (κ = 64) 44.83 59.36 77.74 28.35 29.33 30.46

ing κ proceeds in cooperation with feature representation
learning, and thus the trained κ reflects the characteristics
of feature distribution derived from imbalanced data distri-
bution; actually, we can see in Tab. 4b a slight trend that
the minor classes receives larger κ while the majority ones
are assigned smaller κ, which reflects the small variance
in the minority classes and the large variance in the ma-
jority classes (Fig. 3). From the regularization viewpoint,
however, κ should be assigned in a resistant manner against
the imbalanced distribution. Thus, to remove the statistics
derived from the imbalanced data, the parameter κ is pre-
fiexed by larger value.

Feature distribution. Fig. 3 shows the statistics of learned
features in comparison to those by cosine similarity. In
Fig. 3a, the mean angle θ̄c = Ei|yi=c[arccos(w̃>c x̃i)] be-
tween the classifier weight wc and features x is shown for
respective classes which are characterized by the number of
samples per class. The standard cosine similarity provides
larger angles due to the large support of measuring function
(Fig. 2); actually, they are 70 ∼ 80 degrees. On the other
hand, the t-vMF of κ = 64 contributes to orienting the fea-
tures toward the classifier in virtue of the compact support
measuring function φt (7). Accordingly, the within-class
variance is reduced as shown in Fig. 3b which depicts the
within-class standard deviation across classes.

3.1.2 Comparison to other methods

The proposed method is then compared with the other meth-
ods; we apply the regularization methods which are cate-
gorized into three groups, large-margin methods [31, 11],
additional regularization losses [46, 20] and the others in-
cluding DropOut [40] and virtual softmax loss [7]. These
comparison methods are incorporated into the two-stage
learning scheme [25] as in ours by modifying the loss
(12) based on cosine similarity (κ = 0); the large-margin
losses [31, 11] and virtual softmax [7] substitute for the
softmax loss, the regularization loss [46, 20] is added to
the softmax loss, and the DropOut is applied to feature x.
The hyper-parameters in those methods are determined so
as to produce the best performance, for fair comparison;
the set of hyper-parameters in those methods are detailed
in the supplementary material. These methods are evalu-
ated on ImageNet-LT [32], iNaturalist2018 [22] and iNatu-
ralist2019 [23] (Tab. 1).

Performance results in Tab. 5a demonstrate that by in-
troducing regularization into the feature representation, the
performance on imbalanced classification is favorably im-
proved. In particular, the comparison to classifier loss [20]
highlits the effectiveness of our method. The classifier
loss [20] is proposed to reduce the deviation around the clas-
sifier wc in the framework of center loss [46] as

lclsloss(x, y) = l(x, y) + λ‖x̃− w̃y‖22, (13)

where x̃ and w̃y are normalized feature and classifier
weight, respectively, and λ is a regularization parameter.
The method is closely related to ours which also reduces
such a deviation by compact measuring function φt (7) with
κ > 0. As shown in Tab. 5, the proposed t-vMF is superior
to the other regularization methods including the classifier
loss [20]. This result validates our approach to implicitly
embed the regularization into the similarity, especially com-
pared to the additional regularization loss [20]. The perfor-
mance by t-vMF is competitive to the reported ones; for



Table 7. Performance results of t-vMF on ImageNet dataset [10] by ResNet-50 [16].

κ -0.45 -0.3 -0.15 0 (cos) 2 4 8 16 32 ArcFace [11]

Err. 22.73 6.49 22.62 6.46 22.81 6.67 23.05 6.58 22.90 6.57 22.99 6.76 23.56 6.80 23.64 6.95 23.78 7.12 23.28 7.33

t-vMF
cos

  0.3

class class
margin

Figure 4. t-vMF of κ<0.

ImageNet-LT, 64.4 [32], 58.4 [26], 58.2 [25], and for iNat-
uralist2018, 38.88 [9], 32.00 [6], 34.1 (30.5 by 200-epoch
training) [25]; t-vMF also produces 28.46 by 200 epochs.

The t-vMF similarity of larger κ highly regularizes fea-
tures and thus effectively contributes to performance im-
provement in severely imbalanced learning of ImageNet-LT
and iNaturalist2018; the detailed performance comparison
is shown in Tab. 6. On the other hand, the rather smaller κ
which imposes weak regularization also works for iNatural-
ist2019 of marginal imbalance (Tab. 1). Thus, the proposed
method copes with various degrees of imbalance through κ.

3.2. Learning on Small-Scale Dataset

We then evaluate the proposed method on small-scale
training dataset. Two small-scale datasets are constructed
by sampling sub-set of ImageNet [10]; ImageNet-S is
built so as to be the same-scale as ImageNet-LT [32], and
ImageNet-SS is defined as smaller-scale by further halving
ImageNet-S, as shown in Tab. 1.

The small-scale issue could also be tackled such as by
data augmentation techniques [12, 50]. In this experiment,
we address the issue by regularizing the feature represen-
tation to improve generalization performance in the same
way as Sec. 3.1. Those two approaches are complementary
to each other and thus their combination could work; our
future work includes to explore the practical combination.

The performance results are shown in Tab. 5b. Simi-
larly to the imbalanced learning in Tab. 5a, the regulariza-
tion methods also improve performance on the small-scale
learning; especially, the t-vMF of κ = 16 performs well in
comparison to the others.

3.3. Learning on Noisy Annotation

The proposed method is tested on the deteriorated sit-
uation where annotations of samples are less correct, i.e.,
noisy labels. Annotating image samples in detail is such
a laborious process that wrong labels could be frequently
injected into the training samples in real-world situations.
Detecting the wrong label is the classification process itself
and thus it is hard to eliminate those label noise in advance.
Incorrectly labeled samples confuse CNNs thereby disturb-
ing the training. We here evaluate how much robustly the
regularization methods learn CNNs against the noisy labels;
note that image (content) quality is not degraded. For that
purpose, we inject label noise into ImageNet-S (Tab. 1) to
construct ImageNet-N by randomly switching the labels of
samples other than ImageNet-SS into wrong ones; only the
samples in the set of ImageNet-SS have correct labels.

The performance results are shown in Tab. 5c. By mix-
ing the noisy samples with clean ones, the performance is
degraded in comparison to those of ImageNet-SS in Tab. 5b
which contains the same number of correct training samples
as ImageNet-N. The proposed method enhances the con-
sistency among intra-class samples through regularization
imposed by larger κ to favorably improve performance; t-
vMF of κ = 64 produces superior performance being only 3
point reduction from ImageNet-SS, in contrast to the others
most of which degrade performance by about 10 points.

3.4. Learning on Healthy Dataset

We have so far discussed and analyzed the proposed
method with κ > 0 on the deteriorated training datasets.
Conversely, the method is here evaluated on healthy dataset
with κ < 0. Tab. 7 shows the performance results on Ima-
geNet dataset [10]. One can see that the normalized classi-
fier in (12) effectively improves performance in comparison
to the standard linear classifier (23.85 (top-1)/ 7.13 (top-5) re-
ported in [16]). In contrast to the deteriorated situation, the
larger κ > 0 slightly degrades performance since the regu-
larization on intra-class would be less effective for plenty
of samples which well model the intra-class structure. On
the other hand, the t-vMF of smaller κ < 0 improves the
performance of the original cosine similarity (κ = 0). As
shown in Fig. 4 and Sec. 2.5, the smaller κ<0 contributes to
enhance inter-class discrimination among large number of
samples; it is superior even to the large-margin method [11].

These results demonstrate the flexibility of the t-vMF
similarity (7) such that it can cope with various types of
training datasets from deteriorated to healthy one through
the parameter κ. Our thorough analysis about the effect of κ
would help to tune κ qualitatively based on the target learn-
ing situation or quantitatively such as via cross-validation.

4. Conclusion
We have proposed a novel similarity for improving intra-

class feature representation. In contrast to the standard co-
sine similarity which has broad support region, the proposed
method built on vMF model is formulated in a compact
similarity function parameterized by κ. By further incor-
porating the student-t model, the method is equipped with
compact support as well as heavy tail for effectively regu-
larizing intra-class feature distribution. In the experiments
on image classification using deteriorated training datasets,
the proposed method improves performance of CNNs, be-
ing superior to the other regularization methods.



References
[1] Jimmy Le Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton.

Layer normalization. arXiv, 1607.06450, 2016. 2
[2] Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, and

Suvrit Sra. Clustering on the unit hypersphere using von
mises-fisher distributions. Journal of Machine Learning Re-
search, 6(12):1345–1382, 2005. 2, 3

[3] Björn Barz and Joachim Denzler. Hierarchy-based image
embeddings for semantic image retrieval. In WACV, pages
638–647, 2019. 2

[4] Björn Barz and Joachim Denzler. Deep learning on small
datasets without pre-training using cosine loss. In WACV,
pages 1371–1380, 2020. 2

[5] Jane Bromley, Isabelle Guyon, Yann Lecun, Eduard
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