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ABSTRACT

As the field of deep learning has been rapidly growing, the
optimization methods (optimizers) gain keen attention for
efficiently training neural networks. While SGD exhibits
practically favorable performance on various tasks, adaptive
methods, such as ADAM, are also formulated to equip the
gradient-based updating with adaptive scaling in a sophisti-
cated way. In this paper, we propose a novel optimizer to
integrate those two approaches of the adaptive method and
SGD through assigning stochastic confidence weights to the
gradient-based updating. We define statistical uncertainty of
the gradients which is implicitly embedded in the adaptive
scaling of ADAM, and then based on the uncertainty, natu-
rally incorporate stochasticity into the optimizer as a bridge
between SGD and ADAM. Thereby, the proposed optimizer,
SCWSGD, endows the parameter updating with two types of
stochasticity regarding multiplicative scaling for the gradient
and mini-batch sampling to compute the gradient, for improv-
ing generalization performance. In the experiments on image
classification using various CNNs, the proposed optimizer
produces favorable performance in comparison to the other
optimizers.

Index Terms— Neural Network, Optimization, SGD,
Stochastic weighting

1. INTRODUCTION

Deep neural networks have made great progress in this decade
with promising performance on various fields including im-
age recognition and signal processing [1, 2]. While various
architectural improvements are applied to effectively train the
networks [3, 4], the optimization methods (optimizers) have
also attracted keen attention for addressing the issues to train
the large network models on large-scale training data. The op-
timizer of stochastic gradient descent (SGD) [5, 6] is arguably
one of the most successful approaches to optimize the net-
works. It is simply formulated by leveraging mini-batches to
update network parameters, while exhibiting intriguing prop-
erty regarding optimization [7, 8]. The simplicity of SGD
induces the more sophisticated optimizers which adaptively
scale the gradients, such as RMSPROP [9], ADADELTA [10]
and ADAM [11]. Those adaptive methods are advantageous

in terms of rapid training time and automatically adjusting the
learning rate. Some recent works [12, 13], however, pointed
out that the generalization and out-of-sample performance of
the adaptive methods are not fully understood and actually
inferior to that of the simple SGD on some practical tasks.
To mitigate the problem, in [13], the optimization process of
ADAM is theoretically analyzed to propose a novel optimizer
of AMSGRAD by manipulating ADAM process in a simple
yet effective way. While the AMSGRAD is endowed with
favorable theoretical property regarding convergence, it can
be empirically found that there is still a performance gap be-
tween SGD and AMSGRAD.

In the another line of research for improving the adaptive
methods, there are some works to integrate both approaches
of SGD and the adaptive method, especially ADAM. The
adaptive method consists of two factors of the gradient-based
updating and its scaling. ADABOUND [14] imposes the lower
and upper bounds on the scaling factor to make the optimizer
behave similarly to SGD at the later training epochs and suc-
cessfully boosts the performance of ADAM. In M-SVAG [15],
the adaptive scaling factor is applied to the SGD-based update
through carefully analyzing the variance of the gradients.

In this paper, we propose a novel optimizer by integrat-
ing SGD and ADAM through further embedding stochastic
characteristics into the optimizer. From the statistical view-
point, we define the uncertainty of gradients which is im-
plicitly embedded in the scaling factor of ADAM and fun-
damentally controls the adaptivity. The uncertainty is nat-
urally compatible with stochasticity and thus they are com-
bined to construct the stochastic confidence weight for effec-
tively scaling SGD-based update (gradient momentum), con-
necting SGD and ADAM in a stochastic manner, to estab-
lish our optimizer of stochastically confidence-weighted SGD
(SCWSGD). The SCWSGD is endowed with two types of
stochasticity regarding the mini-batch sampling of SGD and
the confidence weighting based on the uncertainty.

The proposed method is related to M-SVAG [15] which
applies the adaptive scaling derived from ADAM formula-
tion to the gradient momentum in a deterministic way. Our
method, however, exhibits clear difference from M-SVAG in
that the gradient momentum is scaled in a stochastic manner
according to its statistical uncertainty through the confidence
weighting for rendering stochastic perturbation toward robust
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Fig. 1. Uncertainty θ = arctan σ
|m| .

It reflects the reliability of the estimate m.
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Fig. 2. Mean and deviation of the
stochastic confidence weights St with
U = 1 in (9).

0

Additive noise (10) with R=1
Multiplicative noise (7) with U=1 

sign is changed

Fig. 3. Perturbation by two types of
noise injected into 2-D gradients (mt)
in case of |m̂t| = σ̂t.

parameter updating [7]. While it is also possible to realize the
perturbation in an additive form such as by injecting Gaussian
noise [16] into gradients, the proposed method embeds mul-
tiplicative perturbation such that the gradient (momentum)
sign is not changed; the sign direction of the gradient conveys
critical information to update parameters [11, 15].

2. MINI-BATCH BASED OPTIMIZATION

The neural network, e.g., CNN, equipped with parameters
Ψ ∈ R

D is generally trained in an iterative manner;

ψt+1 = ψt − αΔt, (1)

which updates one parameter ψ ∈ Ψ at the t-th iteration with
a learning rate α. Since it is computationally inefficient to
compute the full gradient over the whole training samples,
SGD [5] leverages mini-batch to produce Δt efficiently;

Δt =
1

|Bt|
∑

i∈Bt

∂

∂ψ
l(xi; Ψt) � gt, (2)

where B is the mini-batch (index) set, xi is the i-th training
sample and the loss function is denoted by l. In the SGD (2),
the gradient gt is stochastically given through sampling the
mini-batch Bt [7] from the whole training set. To stabilize the
update Δt, the momentum [6] can also be widely applied by

Δt = mt, (3)

mt = β1mt−1 + (1− β1)gt = (1− βt
1)

t−1∑

τ=0

β̂τgt−τ , (4)

where the momentum is computed by means of an exponen-
tial moving average (EMA)1 for gt, and m0 = 0, β̂τ =
1−β1

1−βt
1
βτ
1 , and

∑t−1
τ=0 β̂τ = 1. ADAM [11], the adaptive op-

timizer, further exploits the second order statistics of gt in the
form of

Δt =
m̂t√
v̂t + ε

, vt = β2vt−1 + (1− β2)g
2
t , (5)

where ε is a small constant, say ε = 10−8, and the normalized
statistics are given by m̂t =

mt

1−βt
1

and v̂t =
vt

1−βt
2

.

1In (4), our momentum multiplies the gradient gt by 1−β1, which affects
the learning rate α; in our setting with β1 = 0.9, α = 1 corresponds to the
learning rate of 0.1 in the standard SGD.

3. SCW-SGD

We first reformulate the ADAM updating (5) as in [15] to de-
fine the statistic uncertainty of gt, and then propose stochastic
confidence weight to scale the gradient momentum (4).

3.1. Uncertainty of Gradients

The ADAM updating (5) is rewritten by

m̂t(β1)√
v̂t(β2)

=
m̂t(β1)√

m̂2
t (β2) + σ̂2

t (β2)
=

1√
1 + tan2θt(β2)

m̂t(β1)

|m̂t(β2)| ,

σ̂2
t (β2) = v̂t(β2) − m̂2

t (β2), tan θt(β2) =
σ̂t(β2)

|m̂t(β2)| , (6)

where we omit ε and explicitly show the dependency on β1

and β2, and σ̂t indicates the standard deviation of gradient gt.
In case of β1 = β2, the ADAM optimizer is reduced to the sign
of gradient moment [15], m̂t(β1)

|m̂t(β2)| = sign(m̂t) ∈ {−1,+1}
which is scaled by 1√

1+tan2 θt
= cos θt.

We define the uncertainty of gradients by θt in (6) which
statistically measures the confidence of the gradient mean m̂t

estimated via EMA (4) in a robust manner to the scale of gra-
dients gt; it is connected to coefficient of variance [17] and
signal-to-noise-ratio. As shown in Fig. 1, the smaller θ indi-
cates that gradients gt are concentrated around the mean m̂t,
therefore suggesting that the update m̂t surely contributes to
optimizing the parameter φ by effectively decreasing the loss.
In contrast, the mean m̂t of the larger θ is not so reliable as to
be used for updating the parameter φ. Therefore, the measure
θt(β2) indicates the uncertainty of m̂t(β2), the mean of gra-
dients {gτ}tτ=1 via EMA with the rate β2; in this study, we
consider θt(β1) to measure the uncertainty of the momentum
m̂t(β1) used for the parameter updating in (3) and thus drop
the subscript (β1) for brevity in what follows.

3.2. Stochastic Confidence Weighting

The uncertainty θt contributes to ADAM [11] in the form of
cos θt (6) for scaling the update m̂t(β1)

|m̂t(β2)| which is close to
sign[mt(β1)], while in M-SVAG [15] it applies to the weight-
ing via cos2 θt through the sophisticated variance estimation
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of σ̂t. In contrast to those deterministic weighting, we pro-
pose stochastic weighting based on the uncertainty θt which
adaptively scales the momentum mt, leading to the method
of stochastically confidence-weighted SGD (SCWSGD).

The perturbation to the gradient is effective for robust
training [7, 16], and the stochastic perturbation is related to
the uncertainty θ; it would be natural to introduce the larger
perturbation to the less-confident mt of the larger uncertainty
θt. We thus formulate SCWSGD by

Δt=
mt√

1 + η tan2 θt + ε′
=

|m̂t|mt√
(1− η)m̂2

t + ηv̂t + ε
, (7)

where η ∼ U [0, U ], (8)

and ε is a small constant as in (5); say ε = 10−8. The random
noise η is uniformly drawn from [0, U ] in which U indicates
the upper bound of the uniform distribution. Note that the
statistics mt and vt are computed by EMA with the identi-
cal rate β1 in (4). In SCWSGD (7), the stochastic confidence
weight St scales mt, being statistically characterized by2

St=
1√

1 + η tan2 θt
, Eη[St]=

2√
1 + U tan2 θt + 1

, (9)

Varη[St] =
log(1 + U tan2 θt)

U tan2 θt
− 4

(
√

1 + U tan2 θt + 1)2
,

which are depicted in Fig. 2. The (moderately) larger uncer-
tainty θt increases the variance of the perturbation, while the
confident update of low uncertainty (θt ≈ 0) works in a man-
ner similar to the deterministic momentum-SGD (3). For the
extremely large uncertainty θt ≈ π

2 , the update is simply sup-
pressed by the small weight St ≈ 0 with low perturbation.

In contrast to the additive Gaussian noise [16], the pro-
posed SCWSGD introduces the uniform noise η into the
weighting to produce multiplicative perturbation which is
advantageous in the following two points: 1) The sign of
the updating direction mt is unchanged in (7), sign(Δt) =
sign(mt), and 2) the extreme cases of η = 0 and η = U lead
to the momentum-SGD (3) and the one close to ADAM (5),
respectively. As shown in [11, 15], the sign of gradient mo-
mentum mt is an important clue for updating the parameter φ.
As shown in Fig. 3, the additive noise might change the sign
by the large perturbation, while the multiplicative perturba-
tion surely maintain it. And, the proposed method stochasti-
cally combines the two approaches of SGD and ADAM-based
adaptive method through the stochastic confidence weight
(9). Note that SCWSGD endows the parameter updating with
two types of stochasticity; one is derived from mini-batch
sampling and the other is parametrically given by η in (9).

4. EXPERIMENTAL RESULTS

We apply the proposed optimizer SCWSGD to train various
CNNs on image classification tasks [18]; similarly to the other

2For simplicity, we omit ε.

optimizers, the proposed method is applicable to optimize
various parameterized models including neural networks.

4.1. Ablation Study

We evaluate SCWSGD from various aspect through training
the CNN of ResNet-34 [2] on Cifar-100 dataset [18]. Ac-
cording to the standard practice, the CNN is trained by the
optimizer with a batch size of 128, weight decay of 0.0005,
and the initial learning rate of α = 1 which is then divided
by 10 at the 150th epoch over 200 training epochs. We set
the hyper-parameters of SCWSGD to β1 = 0.9 and U = 0.5
which are analyzed in the following experiments. We evalu-
ate the classification performance on the test split provided in
Cifar-100 dataset and repeat the evaluation three times with
different initial random seeds for CNN parameters to report
the average and the standard deviation of error rates (%).
Stochastic vs deterministic. In SCW-SGD, the stochas-
ticity is embedded by means of the uniform random noise
η in (7) drawn from the uniform distribution U [0, U ], and
the stochasticity can be controlled by the upper bound
U ∈ {0.25, 0.5, 1}. Table 1a shows a comparison with the
deterministic optimizer that fixes η ∈ {0, 1} during the train-
ing. The stochastic method outperforms the deterministic
ones both of η = 0 and η = 1, validating the effectiveness of
the stochasticity by which the the proposed method combines
those two deterministic optimizers of η = 0 and η = U ; the
method of U = 0.5 produces the better performance.
Degree of stochasticity. As shown in (7), the uniform ran-
dom noise η is sampled at each parameter ψ ∈ Ψ in an i.i.d.
manner. In the alternative approach, the noise η is shared
across parameters at each layer to exhibit coherent (or corre-
lated) stochasticity; namely, we sample single random num-
ber η for each convolution filter, bias and so on. Those two
types of stochasticity are empirically compared in Table 1b.
The i.i.d. sampling of η is superior to the coherent one due to
the high stochasticity producing uncorrelated randomness for
respective parameter updating toward robust training.
Uncertainty. The uncertainty measure θt constructs the
confidence weighting in (7, 9) which is applied to scale the
momentum mt, and those θt and mt are built upon the same
statistic process via EMA (4); that is, β1 = β2 = 0.9 for
the momentum mt(β1) and the uncertainty θt(β2). On the
other hand, it could be possible to apply the different hyper-
parameters, β1 �= β2, as in ADAM [11]. In Table 1c, we
test those hyper-parameter settings on the two approaches of
stochastic (η ∼ U [0, 0.5]) and deterministic (η = 1) ones.
The performance comparison demonstrates the importance
of computing the uncertainty θt and the momentum mt in
the identical statistical process (EMA) for improving perfor-
mance; the ones produced by inconsistent process of β1 �= β2

significantly degrade performance. The importance of the
statistical consistency also indicates that the performance im-
provement by SCWSGD comes from not only the stochasticity
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Table 1. Ablation study on Cifar-100 [18] by ResNet-34 [2]. The performance is measured by classification error rate (%).
(a) Stochastic vs deterministic

Method Error (%)

Deterministic η = 1 22.35±0.11

Deterministic η = 0 (SGD) 23.00±0.42

Stochastic η ∼ U [0, 1] 21.83±0.24

Stochastic η ∼ U [0, 0.5] 21.40±0.26

Stochastic η ∼ U [0, 0.25] 21.84±0.05

(b) Degree of
Stochasticity

Sampling η Error (%)

i.i.d. 21.40±0.26

coherently 21.75±0.05

(c) Uncertainty θt(β2)

β1 β2 η Error (%)

0.9 0.9 U [0, 0.5] 21.40±0.26

0.9 0.999 U [0, 0.5] 25.63±0.40

0.9 0.999 1 28.41±0.76

(d) Perturbation type

Method Error (%)

Multiplicative (7) 21.40±0.26

Additive (10) R = 1 25.13±0.22

Additive (10) R = 0.1 22.73±0.16

Table 2. Performance comparison on various CNNs. The performance is measured by classification error rate (%).
Cifar-10 Cifar-100

Optimizer ResNet34 [2] DenseNet121 [19] WRN28-10 [20] ResNet34 [2] DenseNet121 [19] WRN28-10 [20]

SGD [6] 5.45±0.14 5.51±0.07 4.52±0.08 23.00±0.42 21.25±0.13 19.51±0.11

ADAM [11] 6.73±0.22 6.74±0.15 7.96±0.09 27.03±0.35 25.70±0.24 27.55±0.57

AMSGRAD [13] 6.28±0.04 6.41±0.07 7.70±0.22 26.70±0.48 25.72±0.16 27.97±0.32

ADABOUND [14] 5.27±0.05 5.13±0.15 4.33±0.12 23.64±0.30 22.96±0.37 20.86±0.24

M-SVAG [15] 4.90±0.10 4.52±0.19 4.15±0.06 22.57±0.24 20.49±0.16 20.45±0.21

SCWSGD 4.69±0.14 4.55±0.13 3.97±0.10 21.40±0.26 19.99±0.14 19.41±0.15

via η but also the uncertainty measure θt of mt; the uncer-
tainty should properly reflect the statistical characteristics of
the updating direction mt.
Perturbation The proposed stochastic form can be compared
with the Gaussian-based stochastic form [16] of

Δt = mt + η′, η′ ∼ N (0, Rσ̂t), (10)

where σ̂t is the standard deviation computed in (6) and R con-
trols the degree of perturbation. This stochastic optimizer (10)
adds Gaussian noise η′ with the scale Rσ̂t in a manner sim-
ilar to [16], while the proposed SCWSGD considers the mul-
tiplicative perturbation, as shown in Fig. 3. Table 1d shows
the performance comparison, demonstrating the effectiveness
of the multiplicative perturbation in SCWSGD. As described
in Sec. 3.2 and Fig. 3, the additive noise could change the
updating direction, sign(Δt) �= sign(mt), by some large de-
viation due to Rσ̂t, and it is hard to tune the noise scale (R)
for gradients of various scales. On the other hand, the pro-
posed multiplicative form (7) effectively scales mt accord-
ing to the statistical confidence (uncertainty) of the gradients
without affecting their signs.

4.2. Comparison to Other Optimizers

Finally, we compare the proposed SCWSGD with the other
optimizers; momentum-SGD [6], ADAM [11], AMSGRAD [13],
ADABOUND [14] and M-SVAG [15]. We follow the standard
practice to determine the hyper-parameters in those optimiz-
ers; in SGD and M-SVAG, momentum of β1 = 0.9, and
in ADAM and AMSGRAD, β1 = 0.9, β2 = 0.999, and in
ADABOUND, β1 = 0.9, β2 = 0.999, γ = 0.001; for detail
of the hyper-parameters, refer to the respective papers. The

initial learning rate is 1 for {SGD, M-SVAG}3 and 0.001 for
{ADAM, AMSGRAD, ADABOUND}, and then the learning
rate is divided by 10 at the 150th epoch as in our setting for
fair comparison. We apply these optimizers to train the deep
CNNs of ResNet34 [2], DenseNet121 [19] and wide-ResNet
(WRN28-10) [20] on Cifar-10/100 datasets [18]. The perfor-
mance results are shown in Table 2. The proposed SCWSGD
produces favorably competitive performance to the others,
outperforming them on most cases. From the viewpoint of
computation cost, SCWSGD is also comparable to the adap-
tive methods such as ADAM with a negligible extra cost for
sampling η since the method is based on just two moving
statistics of mt and vt.

5. CONCLUSION

In this paper, we have proposed a new optimizer of stochasti-
cally confidence-weighted SGD (SCWSGD) for training neu-
ral networks. The proposed method focuses on the statistical
uncertainty of the gradient mean (momentum) estimated via
exponential moving average over mini-batches. Based on the
uncertainty, we formulate a stochastic weighting scheme for
the gradients to provide the gradient-based parameter updat-
ing with multiplicative perturbation for improving generaliza-
tion performance. In the experiments on image classification
tasks using various CNNs, the proposed method exhibits fa-
vorable performance in comparison with the other optimizers
including SGD and ADAM.

3As described in Sec. 2, the momentum is defined as (4) multiplying gt
by 1 − β1, and thus it should be noted that the learning rate α = 1 with
β1 = 0.9 corresponds to the learning rate of 0.1 in the standard SGD setting.
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