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Contributions: New Pooling Module
✓We propose Parametric Probabilistic Pooling Module 
based on inverse-softplus Gaussian model. 

✓ It naturally combines two approaches of  
Stochastic Pooling [Zeiler+13] and Adaptive Pooling [Kobayashi19].

Probabilistic Pooling Function

Parametric Probabilistic Model Experimental Results
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✓Probabilistic model is formulated based on pooling functionality. ✓Ablation study by 13-layer Net (2 local pooling) on Cifar100.

Global Pooling?

Implementation 
@ResBlock

Stochastic Method

✓Performance comparison by local pooling.

[Kobayashi19] T. Kobayashi, “Global Feature Guided-Local Pooling”, ICCV2019
[Zeiler+13] M. Zeiler&R. Fergus, “Stochastic Pooling”, ICLR2013
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Parameters    are adaptively estimated by GFGP [Kobayashi19].

Gaussian Model

Half-Gaussian Model

inverse-Softplus (iSP) Gaussian Model

Table 1: Gaussian-based pooling methods. For comparison, the special cases (the deterministic
pooling by �0 = 0) of the half-Gaussian and iSP-Gaussian models are shown in the last two rows.
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where µ0 = fµ(X ) in Eq. 12 and we approximate the mean of the iSP-Gaussian distribution as
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The first approximation in Eq. 15 is given in a heuristic manner2 for �0  1 and the second one
in Eq. 16 is obtained by ignoring the residual error which is at most 0.115. In the preliminary
experiments, we confirmed that the approximation hardly degrades classification performance (at
most only 0.01% drop), and it is practically important that the approximation halves the GFGP
computation only for µ0 = fµ(X ) by omitting �0 in Eq. 16.

2.4 Discussion

Training The proposed Gaussian-based pooling methods are summarized in Table 1. These
methods leverage a random number ✏ simply drawn from a normal distribution N (0, 1) to the
stochastic training which is based on the following derivatives,
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While the pooling parameters {µc

0,�
c

0} are estimated by GFGP for channels c 2 {1, · · · , C}, the
random number ✏cq is generated at each position q and channel c, i.e., for each output Y c

q . To reduce
the memory consumption in the stochastic training process, it is possible to utilize random numbers
✏
c which are generated only along the channel c and shared among spatial positions q; this approach

is empirically evaluated in Section 3.1.

iSP-Gaussian model As an alternative to the iSP-Gaussian, the log-Gaussian model [4] is ap-
plicable in Eq. 11 with the analytic form of mean, exp(µ0 +

�
2
0
2 ). Nonetheless, the iSP-Gaussian

model is preferable for pooling in the following two points. First, the mean of iSP-Gaussian can
be approximated by using the single variable µ0 in Eq. 16 in order to effectively reduce computa-
tion cost at inference by omitting the estimation of �0 in the GFGP method. Second, the variance
of iSP-Gaussian is upper-bounded by �

2
0 for any µ0, while the log-Gaussian model exponentially

enlarges the variance as µ0 increases, leading to unstable training; in the preliminary experiment, we
confirmed that the log-Gaussian model fails to properly reduce the training loss.

Pooling model The proposed pooling forms in Table 1 are based on a linear combination of the
average and standard deviation pooling both of which have been practically applied to extract visual
characteristics [3, 31]. In the proposed method, those two statistics are fused through the probabilistic
model of which parameter(s) is estimated by GFGP [1] from an input feature map. Estimating
parameters of a probabilistic model by neural networks is found in the mixture density network
(MDN) [2] and partly in variational auto-encoder (VAE) [12]. The proposed method effectively
applies the approach to stochastic training of CNN in the framework of stochastic pooling.

2We manually tune the parametric form in Eq. 15 toward minimizing the residual error between
softplus(µ0) and

R
log[1 + exp(✏̃)]N (✏̃;µ0,�0)d✏̃ which is empirically computed by means of sampling.
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Table 3: Performance comparison on various CNNs.

Cifar100 [13]
(a) 13-layer Net (Table 2a)
Method Error (%)

skip 24.83±0.15

avg 24.78±0.18

max 24.74±0.08

Stochastic [33] 24.52±0.18

Mixed [15] 24.33±0.23

DPP [22] 24.59±0.15

Gated [15] 24.42±0.45

GFGP [1] 24.41±0.22

Half-Gauss 23.48±0.22

iSP-Gauss 23.52±0.37

(b) MobileNet [8]
Method Top-1 Top-5

skip 29.84 10.35
avg 28.94 10.00
max 29.23 10.02

Stochastic 30.26 10.64
Mixed 29.49 10.14

DPP 28.92 9.92
Gated 28.62 9.86
GFGP 27.68 9.27

Half-Gauss 27.96 9.38
iSP-Gauss 27.33 9.00

ImageNet [5]
(c) ResNet-50 [7]

Method Top-1 Top-5

skip 23.53 7.00
avg 22.61 6.52
max 22.99 6.71

stochastic 25.47 7.87
Mixed 22.81 6.53

DPP 22.52 6.63
Gated 22.27 6.33
GFGP 21.79 5.95

Half-Gauss 21.66 5.88
iSP-Gauss 21.37 5.68

(d) ResNeXt-50 [30]
Method Top-1 Top-5

skip 22.69 6.65
avg 22.14 6.35
max 22.20 6.24

stochastic 25.02 7.73
Mixed 21.83 6.09

DPP 21.84 5.98
Gated 21.63 5.99
GFGP 21.35 5.74

Half-Gauss 20.89 5.72
iSP-Gauss 20.66 5.60

pooling methods [33, 15], we apply the deterministic pooling methods including the simple average-
and max-pooling as well as the sophisticated ones [1, 15, 22] which are trainable in the end-to-end
learning. As to CNNs, besides the simple 13-layer network (Table 2a) on the Cifar100 dataset, we
train the deeper CNNs of MobileNet [8], ResNet-50 [7] and ResNeXt-50 [30] on the ImageNet
dataset [5]; for ResNet-based models, we apply the batch size of 256 to SGD with momentum of
0.9, weight decay of 0.0001 and the learning rate which starts from 0.1 and is divided by 10 every 30
epochs throughout 100 training epochs, while we apply the similar procedure to train the MobileNet
over 120 training epochs with the data augmentation of slightly less variation as suggested in [8].
Those deep CNNs contain five local pooling layers in total, including skip one implemented by strided
convolution, and they are replaced by the other local pooling methods as in [1]. The performance is
measured by top-1 and top-5 error rates via single crop testing [14] on the validation set.

The performance comparison in Table 3 shows that the proposed methods favorably improve perfor-
mance, being superior both to the stochastic pooling methods and to the sophisticated deterministic
methods. Thus, we can say that it is effective to fuse the effective deterministic approach via
GFGP [1] and the stochastic scheme through the probabilistic model on the local pooling. While
the half-Gaussian and iSP-Gaussian models are comparable in the smaller-scale case (Table 3a), the
iSP-Gaussian pooling produces superior performance on the larger-scale cases (Table 3b-d). The
iSP-Gaussian model that renders appropriate stochasticity through flexibly controlling �0 in Eq. 13
contributes effectively to improving performance of various CNNs.

3.3 Qualitative analysis

Finally, we show how the pooling parameters of the iSP-Gaussian model are estimated by GFGP. The
model contains two parameters of µc

0 and �
c

0 at each channel c which are estimated for each input
image sample. Fig. 2 visualizes as 2-D histograms the distributions of the parameter pairs {µ0,�0}
estimated on training samples. At the beginning of the training, the parameters are estimated less
informatively, being distributed broadly especially in �0. As the training proceeds, the probabilistic
model in the pooling is optimized, and the parameter �0 that controls the stochasticity in training is
adaptively tuned at respective layers; we can find some modes in the first two layers of ResNet-50
while in the third and fourth layers �0 slightly exhibits negative correlation with µ0, suppressing
stochasticity on the significant output of high µ0. By flexibly tuning the model parameters throughout
the training, the proposed iSP-Gaussian pooling effectively contributes to improving performance on
various CNNs.

4 Conclusion

In this paper, we have proposed a novel pooling method based on the Gaussian-based probabilistic
model over the local neuron activations. In contrast to the previous pooling model based on the convex
hull of local samples (activations), the proposed method is formulated by means of the probabilistic
model suitable for pooling functionality in CNNs; we propose the inverse softplus-Gaussian model for
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Table 2: Performance results by 13-layer network (a) on Cifar100 dataset [13].

(a) 13-layer network
input 32 ⇥ 32 RGB image

conv 1a 96 filters, 3 ⇥ 3, pad = 1, BatchNorm, ReLU
conv 1b 96 filters, 3 ⇥ 3, pad = 1, BatchNorm, ReLU
conv 1c 96 filters, 3 ⇥ 3, pad = 1, BatchNorm, ReLU
pool1 Pooling, 2 ⇥ 2, pad = 0

conv 2a 192 filters, 3 ⇥ 3, pad = 1, BatchNorm, ReLU
conv 2b 192 filters, 3 ⇥ 3, pad = 1, BatchNorm, ReLU
conv 2c 192 filters, 3 ⇥ 3, pad = 1, BatchNorm, ReLU
pool2 Pooling, 2 ⇥ 2, pad = 0

conv 3a 192 filters, 3 ⇥ 3, pad = 1, BatchNorm, ReLU
conv 3b 192 filters, 3 ⇥ 3, pad = 1, BatchNorm, ReLU
conv 3c 192 filters, 3 ⇥ 3, pad = 1, BatchNorm, ReLU

GAP Global average-pooling (GAP), 8 ⇥ 8 ! 1 ⇥ 1
dense Fully connected, 192 ! 100

output Softmax

(b) Probabilistic model
Method Error (%)

Gaussian 24.51±0.36

Half-Gauss (fixed) 24.25±0.25

Half-Gauss 23.48±0.22

iSP-Gauss 23.52±0.37

Average 24.78±0.18

iSP-Gauss (�0=0) 24.12±0.17

(c) Parametric model
Method Error (%)

NiN [17] 24.49±0.13

ResNiN [7, 17] 24.33±0.16

SE [9] 23.99±0.07

iSP-Gauss 23.52±0.37

(d) Stochastic method
Method Error (%)

Stochastic [33] 24.52±0.18

Mixed [15] 24.33±0.23

Half-Gauss 23.48±0.22

iSP-Gauss 23.52±0.37

S3 [34] + Stochastic [33] 24.01±0.20

S3 [34] + Mixed [15] 23.31±0.12

S3 [34] + Half-Gauss 23.12±0.17

S3 [34] + iSP-Gauss 22.98±0.02

(e) Global pooling
Method Error (%)

GAP 24.78±0.18

GAP + DropOut [16] 24.58±0.27

Half-Gauss 24.54±0.14

iSP-Gauss 23.83±0.18

(f) Stochasticity
Method Full (✏cq) Partial (✏c)

Half-Gauss 23.48±0.22 23.60±0.07

iSP-Gauss 23.52±0.37 23.68±0.06

the S3 pooling [34] favorably improve performance. The half-Gaussian model, however, enjoys the
smaller amount of improvement, compared to the iSP-Gaussian model. The half-Gaussian model
provides higher stochasticity by nature due to the large variance (Fig. 1c), which might make the
additional stochasticity by S3 less effective.
Global pooling While in this paper we focus on the operation of local pooling in CNNs, it is
possible to apply the proposed method to globally aggregate features after the last convolution layer
as the global average pooling (GAP) does. To evaluate the feasibility to global pooling, we replace
the GAP with the proposed pooling methods in the 13-layer network (Table 2a) which is equipped
with local average pooling. For comparison in terms of stochasticity, we also apply DropOut [24] to
GAP; as suggested in [16], the DropOut layer with the dropping ratio 0.2 is embedded just after the
GAP so as to achieve performance improvement for the batch-normalized CNNs. The performance
comparison is shown in Table 2e, and we can see that the iSP-Gaussian pooling effectively works
in the global pooling. On the other hand, the half-Gaussian model is less effective, maybe due to
its higher stochasticity as pointed out above; the global pooling would require small amount of
stochasticity as implied by the result that the DropOut with the ratio 0.2 works [16]. And, we can
note that the DropOut operating on the last layer [16] is compatible with the local pooling methods.
Stochasticity Full stochastic training is realized by performing stochastic sampling at each output
neuron Y

c

q individually, i.e., by drawing the random number ✏cq for each {q, c} (Table 1). Such a full
stochastic approach, however, requires considerable amount of memory and computation cost for ✏cq
especially on the larger-sized input images, as mentioned in Section 2.4. To increase computation
efficiency in training, we can apply partially stochastic training only along the channels c; that is, all
the neurons {Y c

q }q on the c-th channel map share the identical ✏c which is sampled from a normal
distribution in a channel-wise manner. It is noteworthy that even in this partially stochastic scheme
the output Y c

q is differently distributed based on µ
c

X,q and �
c

X,q computed at each q. These two types
of stochastic schemes are compared in Table 2f. The partially stochastic approach produces favorable
performance, though slightly degrading performance. Thus, we apply this computationally efficient
stochastic approach to the larger CNN models on ImageNet dataset in Section 3.2.

3.2 Comparison to the other pooling methods

Next, the proposed pooling methods of the half-Gaussian and iSP-Gaussian models are compared
to the other local pooling methods on various CNNs. For comparison, in addition to the stochastic
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iSP-Gauss 23.52±0.37

Average 24.78±0.18

iSP-Gauss (�0=0) 24.12±0.17

(c) Parametric model
Method Error (%)
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ResNiN [7, 17] 24.33±0.16

SE [9] 23.99±0.07

iSP-Gauss 23.52±0.37

(d) Stochastic method
Method Error (%)

Stochastic [33] 24.52±0.18

Mixed [15] 24.33±0.23

Half-Gauss 23.48±0.22

iSP-Gauss 23.52±0.37

S3 [34] + Stochastic [33] 24.01±0.20

S3 [34] + Mixed [15] 23.31±0.12

S3 [34] + Half-Gauss 23.12±0.17

S3 [34] + iSP-Gauss 22.98±0.02

(e) Global pooling
Method Error (%)

GAP 24.78±0.18

GAP + DropOut [16] 24.58±0.27

Half-Gauss 24.54±0.14

iSP-Gauss 23.83±0.18

(f) Stochasticity
Method Full (✏cq) Partial (✏c)

Half-Gauss 23.48±0.22 23.60±0.07

iSP-Gauss 23.52±0.37 23.68±0.06

the S3 pooling [34] favorably improve performance. The half-Gaussian model, however, enjoys the
smaller amount of improvement, compared to the iSP-Gaussian model. The half-Gaussian model
provides higher stochasticity by nature due to the large variance (Fig. 1c), which might make the
additional stochasticity by S3 less effective.
Global pooling While in this paper we focus on the operation of local pooling in CNNs, it is
possible to apply the proposed method to globally aggregate features after the last convolution layer
as the global average pooling (GAP) does. To evaluate the feasibility to global pooling, we replace
the GAP with the proposed pooling methods in the 13-layer network (Table 2a) which is equipped
with local average pooling. For comparison in terms of stochasticity, we also apply DropOut [24] to
GAP; as suggested in [16], the DropOut layer with the dropping ratio 0.2 is embedded just after the
GAP so as to achieve performance improvement for the batch-normalized CNNs. The performance
comparison is shown in Table 2e, and we can see that the iSP-Gaussian pooling effectively works
in the global pooling. On the other hand, the half-Gaussian model is less effective, maybe due to
its higher stochasticity as pointed out above; the global pooling would require small amount of
stochasticity as implied by the result that the DropOut with the ratio 0.2 works [16]. And, we can
note that the DropOut operating on the last layer [16] is compatible with the local pooling methods.
Stochasticity Full stochastic training is realized by performing stochastic sampling at each output
neuron Y

c

q individually, i.e., by drawing the random number ✏cq for each {q, c} (Table 1). Such a full
stochastic approach, however, requires considerable amount of memory and computation cost for ✏cq
especially on the larger-sized input images, as mentioned in Section 2.4. To increase computation
efficiency in training, we can apply partially stochastic training only along the channels c; that is, all
the neurons {Y c

q }q on the c-th channel map share the identical ✏c which is sampled from a normal
distribution in a channel-wise manner. It is noteworthy that even in this partially stochastic scheme
the output Y c

q is differently distributed based on µ
c

X,q and �
c

X,q computed at each q. These two types
of stochastic schemes are compared in Table 2f. The partially stochastic approach produces favorable
performance, though slightly degrading performance. Thus, we apply this computationally efficient
stochastic approach to the larger CNN models on ImageNet dataset in Section 3.2.

3.2 Comparison to the other pooling methods

Next, the proposed pooling methods of the half-Gaussian and iSP-Gaussian models are compared
to the other local pooling methods on various CNNs. For comparison, in addition to the stochastic
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smaller amount of improvement, compared to the iSP-Gaussian model. The half-Gaussian model
provides higher stochasticity by nature due to the large variance (Fig. 1c), which might make the
additional stochasticity by S3 less effective.
Global pooling While in this paper we focus on the operation of local pooling in CNNs, it is
possible to apply the proposed method to globally aggregate features after the last convolution layer
as the global average pooling (GAP) does. To evaluate the feasibility to global pooling, we replace
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with local average pooling. For comparison in terms of stochasticity, we also apply DropOut [24] to
GAP; as suggested in [16], the DropOut layer with the dropping ratio 0.2 is embedded just after the
GAP so as to achieve performance improvement for the batch-normalized CNNs. The performance
comparison is shown in Table 2e, and we can see that the iSP-Gaussian pooling effectively works
in the global pooling. On the other hand, the half-Gaussian model is less effective, maybe due to
its higher stochasticity as pointed out above; the global pooling would require small amount of
stochasticity as implied by the result that the DropOut with the ratio 0.2 works [16]. And, we can
note that the DropOut operating on the last layer [16] is compatible with the local pooling methods.
Stochasticity Full stochastic training is realized by performing stochastic sampling at each output
neuron Y
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q individually, i.e., by drawing the random number ✏cq for each {q, c} (Table 1). Such a full
stochastic approach, however, requires considerable amount of memory and computation cost for ✏cq
especially on the larger-sized input images, as mentioned in Section 2.4. To increase computation
efficiency in training, we can apply partially stochastic training only along the channels c; that is, all
the neurons {Y c

q }q on the c-th channel map share the identical ✏c which is sampled from a normal
distribution in a channel-wise manner. It is noteworthy that even in this partially stochastic scheme
the output Y c

q is differently distributed based on µ
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X,q and �
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X,q computed at each q. These two types
of stochastic schemes are compared in Table 2f. The partially stochastic approach produces favorable
performance, though slightly degrading performance. Thus, we apply this computationally efficient
stochastic approach to the larger CNN models on ImageNet dataset in Section 3.2.

3.2 Comparison to the other pooling methods

Next, the proposed pooling methods of the half-Gaussian and iSP-Gaussian models are compared
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Figure 2: Distribution of the estimated parameters µ0 and �0 in the iSP-Gaussian model. To construct
the 2-D histograms of which frequencies are depicted by pseudo colors, all the training samples of
Cifar100 dataset are fed into the 13-layer Net, while in the ResNet-50 we randomly draw 200,000
training samples from ImageNet. This figure is best viewed in color.

that purpose. The local neuron activations are aggregated into the local statistics of mean and standard
deviation of the Gaussian model which are then fed into the probabilistic model for performing
local pooling stochastically. For controlling the pooling form as well as the stochastic training, the
model contains variable parameters to be adaptively estimated by the GFGP method [1]. Thus the
proposed method naturally unifies the two schemes of stochastic pooling and trainable pooling. In
the experiments on image classification, the proposed method is applied to various CNNs, producing
favorable performance in comparison with the other pooling methods.

Appendix: Derivation of Inverse softplus-Gaussian Distribution Nisp

The probability distribution Nisp(x;µ0,�0) in Eq. 10 is derived through the following variable
transformation. Suppose y is a random variable whose probability density function is Gaussian,

q(y) =
1p
2⇡�0

exp

⇢
� 1

2�2
0

(y � µ0)
2

�
. (18)

The target random variable x is obtained via softplus transformation by

x = softplus(y) , y = softplus�1(x) = log[exp(x)� 1]. (19)

Then, we apply the relationship of

q(y)dy = p(x)dx,
dy

dx
=

exp(x)

exp(x)� 1
(20)

to provide p(x) = Nisp(x;µ0,�0) in Eq. 10.
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S3 [34] + Mixed [15] 23.31±0.12

S3 [34] + Half-Gauss 23.12±0.17

S3 [34] + iSP-Gauss 22.98±0.02

(e) Global pooling
Method Error (%)

GAP 24.78±0.18

GAP + DropOut [16] 24.58±0.27

Half-Gauss 24.54±0.14

iSP-Gauss 23.83±0.18

(f) Stochasticity
Method Full (✏cq) Partial (✏c)

Half-Gauss 23.48±0.22 23.60±0.07

iSP-Gauss 23.52±0.37 23.68±0.06

the S3 pooling [34] favorably improve performance. The half-Gaussian model, however, enjoys the
smaller amount of improvement, compared to the iSP-Gaussian model. The half-Gaussian model
provides higher stochasticity by nature due to the large variance (Fig. 1c), which might make the
additional stochasticity by S3 less effective.
Global pooling While in this paper we focus on the operation of local pooling in CNNs, it is
possible to apply the proposed method to globally aggregate features after the last convolution layer
as the global average pooling (GAP) does. To evaluate the feasibility to global pooling, we replace
the GAP with the proposed pooling methods in the 13-layer network (Table 2a) which is equipped
with local average pooling. For comparison in terms of stochasticity, we also apply DropOut [24] to
GAP; as suggested in [16], the DropOut layer with the dropping ratio 0.2 is embedded just after the
GAP so as to achieve performance improvement for the batch-normalized CNNs. The performance
comparison is shown in Table 2e, and we can see that the iSP-Gaussian pooling effectively works
in the global pooling. On the other hand, the half-Gaussian model is less effective, maybe due to
its higher stochasticity as pointed out above; the global pooling would require small amount of
stochasticity as implied by the result that the DropOut with the ratio 0.2 works [16]. And, we can
note that the DropOut operating on the last layer [16] is compatible with the local pooling methods.
Stochasticity Full stochastic training is realized by performing stochastic sampling at each output
neuron Y

c

q individually, i.e., by drawing the random number ✏cq for each {q, c} (Table 1). Such a full
stochastic approach, however, requires considerable amount of memory and computation cost for ✏cq
especially on the larger-sized input images, as mentioned in Section 2.4. To increase computation
efficiency in training, we can apply partially stochastic training only along the channels c; that is, all
the neurons {Y c

q }q on the c-th channel map share the identical ✏c which is sampled from a normal
distribution in a channel-wise manner. It is noteworthy that even in this partially stochastic scheme
the output Y c

q is differently distributed based on µ
c

X,q and �
c

X,q computed at each q. These two types
of stochastic schemes are compared in Table 2f. The partially stochastic approach produces favorable
performance, though slightly degrading performance. Thus, we apply this computationally efficient
stochastic approach to the larger CNN models on ImageNet dataset in Section 3.2.

3.2 Comparison to the other pooling methods

Next, the proposed pooling methods of the half-Gaussian and iSP-Gaussian models are compared
to the other local pooling methods on various CNNs. For comparison, in addition to the stochastic
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Figure 1: Local pooling operation in CNN. The pooling downsizes an input feature map through
locally aggregating activations (a). The previous pooling methods aggregate input neuron activations
X with convex weights w, thus restricting the output Y to the convex hull of X (b). On the other
hand, the proposed Gaussian-based pooling outputs Y according to the half-Gaussian distribution
(c) or inverse softplus (iSP)-Gaussian (d) which utilize the two statistics of mean µX and standard
deviation �X of the input local activations X .

stochastically outputs Y c

q = X
c

p according to the probability w
c

p in the training. As to the stochastic
scheme in local pooling, S3 pooling [34] embeds randomness into the selection of the receptive field
Rq for the output Y c

q .

2.2 Half-Gaussian pooling

The form of convex combination in Eq. 1 is effective for image downscaling while keeping image
quality, but is not necessarily a crucial factor for pooling to downsize feature maps in CNNs; for
better recognition by CNNs, we can freely produce Y

c

q beyond the convex hull of inputs {Xc

p}p2Rq .
Thus, we formulate Gaussian-based Pooling to describe the output by means of probabilistic models
beyond the sample-wise representation in Eq. 1. We hereafter omit the superscript c (channel) and
subscript q (output position) for simplicity; Table 1 summarizes the detailed forms of the methods.

First, the local neuron activations {Xp}p2R are modeled by a Gaussian distribution with the mean
µX and standard deviation �X ;

X̃ ⇠ N (µX ,�X) , X̃ = µX + ✏�X , (2)

where µX =
1

|R|
X

p2R
Xp, �

2
X =

1

|R|
X

p2R
(Xp � µX)

2
, ✏ ⇠ N (0, 1), ✏ 2 (�1,+1). (3)

This, however, provides just a model to probabilistically reproduce the local neuron activations.
We thus modify the Gaussian model in Eq. 2 into the ones suitable for local pooling in CNNs. As
empirically shown in [1] and suggested in [15, 22, 32], the pooling whose functionality is biased
toward min below average is less effective in providing discriminative feature representation since it
suppresses neuron activations, degrading performance. Based on the knowledge about local pooling,
we can modify Eq. 2 into, by prohibiting the output from falling below the mean µX ,

Y = µX + |✏|�X , ✏ ⇠ N (0, 1) , Y = µX + ⌘�X , ⌘ ⇠ Nh(1), ⌘ 2 [0,+1), (4)
where the half-Gaussian distribution Nh(�0) [19] (Fig. 1c) with �0 = 1 is naturally introduced as a
prior probabilistic model; note that E[⌘] = �0

p
2p
⇡

and Var[⌘] = �
2
0(1� 2

⇡
) for ⌘ ⇠ Nh(�0). Thereby,

the fixed half-Gaussian pooling is formulated in Eq. 4 to stochastically produce Y without using any
pooling parameter, and at an inference phase the pooling works in a deterministic way by utilizing
the mean of Nh(1) as Y = µX +

p
2p
⇡
�X .

Parametric pooling We then extend the fixed half-Gaussian pooling in Eq. 4 by introducing a
variable parameter �0, the standard deviation of the half-Gaussian, to flexibly describe the output;

Y = µX + ⌘�X , where ⌘ ⇠ Nh(�0), ⌘ 2 [0,+1), �0 = softplus � f(X ) (5)
, Y = µX + |✏|�0�X , where ✏ ⇠ N (0, 1), ✏ 2 (�1,+1), �0 = softplus � f(X ), (6)

where the parameter �0 is estimated from the input feature map X by the GFGP method [1];

�0 = softplus � f(X ) = softplus(b+ v>ReLU(a+U>GAP(X ))), (7)
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Figure 1: Local pooling operation in CNN. The pooling downsizes an input feature map through
locally aggregating activations (a). The previous pooling methods aggregate input neuron activations
X with convex weights w, thus restricting the output Y to the convex hull of X (b). On the other
hand, the proposed Gaussian-based pooling outputs Y according to the half-Gaussian distribution
(c) or inverse softplus (iSP)-Gaussian (d) which utilize the two statistics of mean µX and standard
deviation �X of the input local activations X .
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p according to the probability w
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p in the training. As to the stochastic
scheme in local pooling, S3 pooling [34] embeds randomness into the selection of the receptive field
Rq for the output Y c

q .

2.2 Half-Gaussian pooling

The form of convex combination in Eq. 1 is effective for image downscaling while keeping image
quality, but is not necessarily a crucial factor for pooling to downsize feature maps in CNNs; for
better recognition by CNNs, we can freely produce Y

c

q beyond the convex hull of inputs {Xc

p}p2Rq .
Thus, we formulate Gaussian-based Pooling to describe the output by means of probabilistic models
beyond the sample-wise representation in Eq. 1. We hereafter omit the superscript c (channel) and
subscript q (output position) for simplicity; Table 1 summarizes the detailed forms of the methods.

First, the local neuron activations {Xp}p2R are modeled by a Gaussian distribution with the mean
µX and standard deviation �X ;
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This, however, provides just a model to probabilistically reproduce the local neuron activations.
We thus modify the Gaussian model in Eq. 2 into the ones suitable for local pooling in CNNs. As
empirically shown in [1] and suggested in [15, 22, 32], the pooling whose functionality is biased
toward min below average is less effective in providing discriminative feature representation since it
suppresses neuron activations, degrading performance. Based on the knowledge about local pooling,
we can modify Eq. 2 into, by prohibiting the output from falling below the mean µX ,

Y = µX + |✏|�X , ✏ ⇠ N (0, 1) , Y = µX + ⌘�X , ⌘ ⇠ Nh(1), ⌘ 2 [0,+1), (4)
where the half-Gaussian distribution Nh(�0) [19] (Fig. 1c) with �0 = 1 is naturally introduced as a
prior probabilistic model; note that E[⌘] = �0

p
2p
⇡

and Var[⌘] = �
2
0(1� 2

⇡
) for ⌘ ⇠ Nh(�0). Thereby,

the fixed half-Gaussian pooling is formulated in Eq. 4 to stochastically produce Y without using any
pooling parameter, and at an inference phase the pooling works in a deterministic way by utilizing
the mean of Nh(1) as Y = µX +

p
2p
⇡
�X .

Parametric pooling We then extend the fixed half-Gaussian pooling in Eq. 4 by introducing a
variable parameter �0, the standard deviation of the half-Gaussian, to flexibly describe the output;

Y = µX + ⌘�X , where ⌘ ⇠ Nh(�0), ⌘ 2 [0,+1), �0 = softplus � f(X ) (5)
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(c) or inverse softplus (iSP)-Gaussian (d) which utilize the two statistics of mean µX and standard
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Rq for the output Y c
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The form of convex combination in Eq. 1 is effective for image downscaling while keeping image
quality, but is not necessarily a crucial factor for pooling to downsize feature maps in CNNs; for
better recognition by CNNs, we can freely produce Y
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Thus, we formulate Gaussian-based Pooling to describe the output by means of probabilistic models
beyond the sample-wise representation in Eq. 1. We hereafter omit the superscript c (channel) and
subscript q (output position) for simplicity; Table 1 summarizes the detailed forms of the methods.
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This, however, provides just a model to probabilistically reproduce the local neuron activations.
We thus modify the Gaussian model in Eq. 2 into the ones suitable for local pooling in CNNs. As
empirically shown in [1] and suggested in [15, 22, 32], the pooling whose functionality is biased
toward min below average is less effective in providing discriminative feature representation since it
suppresses neuron activations, degrading performance. Based on the knowledge about local pooling,
we can modify Eq. 2 into, by prohibiting the output from falling below the mean µX ,

Y = µX + |✏|�X , ✏ ⇠ N (0, 1) , Y = µX + ⌘�X , ⌘ ⇠ Nh(1), ⌘ 2 [0,+1), (4)
where the half-Gaussian distribution Nh(�0) [19] (Fig. 1c) with �0 = 1 is naturally introduced as a
prior probabilistic model; note that E[⌘] = �0

p
2p
⇡

and Var[⌘] = �
2
0(1� 2

⇡
) for ⌘ ⇠ Nh(�0). Thereby,

the fixed half-Gaussian pooling is formulated in Eq. 4 to stochastically produce Y without using any
pooling parameter, and at an inference phase the pooling works in a deterministic way by utilizing
the mean of Nh(1) as Y = µX +

p
2p
⇡
�X .

Parametric pooling We then extend the fixed half-Gaussian pooling in Eq. 4 by introducing a
variable parameter �0, the standard deviation of the half-Gaussian, to flexibly describe the output;

Y = µX + ⌘�X , where ⌘ ⇠ Nh(�0), ⌘ 2 [0,+1), �0 = softplus � f(X ) (5)
, Y = µX + |✏|�0�X , where ✏ ⇠ N (0, 1), ✏ 2 (�1,+1), �0 = softplus � f(X ), (6)

where the parameter �0 is estimated from the input feature map X by the GFGP method [1];

�0 = softplus � f(X ) = softplus(b+ v>ReLU(a+U>GAP(X ))), (7)
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Figure 1: Local pooling operation in CNN. The pooling downsizes an input feature map through
locally aggregating activations (a). The previous pooling methods aggregate input neuron activations
X with convex weights w, thus restricting the output Y to the convex hull of X (b). On the other
hand, the proposed Gaussian-based pooling outputs Y according to the half-Gaussian distribution
(c) or inverse softplus (iSP)-Gaussian (d) which utilize the two statistics of mean µX and standard
deviation �X of the input local activations X .

stochastically outputs Y c

q = X
c

p according to the probability w
c

p in the training. As to the stochastic
scheme in local pooling, S3 pooling [34] embeds randomness into the selection of the receptive field
Rq for the output Y c

q .

2.2 Half-Gaussian pooling

The form of convex combination in Eq. 1 is effective for image downscaling while keeping image
quality, but is not necessarily a crucial factor for pooling to downsize feature maps in CNNs; for
better recognition by CNNs, we can freely produce Y

c

q beyond the convex hull of inputs {Xc

p}p2Rq .
Thus, we formulate Gaussian-based Pooling to describe the output by means of probabilistic models
beyond the sample-wise representation in Eq. 1. We hereafter omit the superscript c (channel) and
subscript q (output position) for simplicity; Table 1 summarizes the detailed forms of the methods.

First, the local neuron activations {Xp}p2R are modeled by a Gaussian distribution with the mean
µX and standard deviation �X ;

X̃ ⇠ N (µX ,�X) , X̃ = µX + ✏�X , (2)

where µX =
1

|R|
X

p2R
Xp, �

2
X =

1

|R|
X

p2R
(Xp � µX)

2
, ✏ ⇠ N (0, 1), ✏ 2 (�1,+1). (3)

This, however, provides just a model to probabilistically reproduce the local neuron activations.
We thus modify the Gaussian model in Eq. 2 into the ones suitable for local pooling in CNNs. As
empirically shown in [1] and suggested in [15, 22, 32], the pooling whose functionality is biased
toward min below average is less effective in providing discriminative feature representation since it
suppresses neuron activations, degrading performance. Based on the knowledge about local pooling,
we can modify Eq. 2 into, by prohibiting the output from falling below the mean µX ,

Y = µX + |✏|�X , ✏ ⇠ N (0, 1) , Y = µX + ⌘�X , ⌘ ⇠ Nh(1), ⌘ 2 [0,+1), (4)
where the half-Gaussian distribution Nh(�0) [19] (Fig. 1c) with �0 = 1 is naturally introduced as a
prior probabilistic model; note that E[⌘] = �0

p
2p
⇡

and Var[⌘] = �
2
0(1� 2

⇡
) for ⌘ ⇠ Nh(�0). Thereby,

the fixed half-Gaussian pooling is formulated in Eq. 4 to stochastically produce Y without using any
pooling parameter, and at an inference phase the pooling works in a deterministic way by utilizing
the mean of Nh(1) as Y = µX +

p
2p
⇡
�X .

Parametric pooling We then extend the fixed half-Gaussian pooling in Eq. 4 by introducing a
variable parameter �0, the standard deviation of the half-Gaussian, to flexibly describe the output;

Y = µX + ⌘�X , where ⌘ ⇠ Nh(�0), ⌘ 2 [0,+1), �0 = softplus � f(X ) (5)
, Y = µX + |✏|�0�X , where ✏ ⇠ N (0, 1), ✏ 2 (�1,+1), �0 = softplus � f(X ), (6)

where the parameter �0 is estimated from the input feature map X by the GFGP method [1];

�0 = softplus � f(X ) = softplus(b+ v>ReLU(a+U>GAP(X ))), (7)
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Figure 1: Local pooling operation in CNN. The pooling downsizes an input feature map through
locally aggregating activations (a). The previous pooling methods aggregate input neuron activations
X with convex weights w, thus restricting the output Y to the convex hull of X (b). On the other
hand, the proposed Gaussian-based pooling outputs Y according to the half-Gaussian distribution
(c) or inverse softplus (iSP)-Gaussian (d) which utilize the two statistics of mean µX and standard
deviation �X of the input local activations X .

stochastically outputs Y c

q = X
c

p according to the probability w
c

p in the training. As to the stochastic
scheme in local pooling, S3 pooling [34] embeds randomness into the selection of the receptive field
Rq for the output Y c

q .

2.2 Half-Gaussian pooling

The form of convex combination in Eq. 1 is effective for image downscaling while keeping image
quality, but is not necessarily a crucial factor for pooling to downsize feature maps in CNNs; for
better recognition by CNNs, we can freely produce Y

c

q beyond the convex hull of inputs {Xc

p}p2Rq .
Thus, we formulate Gaussian-based Pooling to describe the output by means of probabilistic models
beyond the sample-wise representation in Eq. 1. We hereafter omit the superscript c (channel) and
subscript q (output position) for simplicity; Table 1 summarizes the detailed forms of the methods.

First, the local neuron activations {Xp}p2R are modeled by a Gaussian distribution with the mean
µX and standard deviation �X ;

X̃ ⇠ N (µX ,�X) , X̃ = µX + ✏�X , (2)

where µX =
1

|R|
X

p2R
Xp, �

2
X =

1

|R|
X

p2R
(Xp � µX)

2
, ✏ ⇠ N (0, 1), ✏ 2 (�1,+1). (3)

This, however, provides just a model to probabilistically reproduce the local neuron activations.
We thus modify the Gaussian model in Eq. 2 into the ones suitable for local pooling in CNNs. As
empirically shown in [1] and suggested in [15, 22, 32], the pooling whose functionality is biased
toward min below average is less effective in providing discriminative feature representation since it
suppresses neuron activations, degrading performance. Based on the knowledge about local pooling,
we can modify Eq. 2 into, by prohibiting the output from falling below the mean µX ,

Y = µX + |✏|�X , ✏ ⇠ N (0, 1) , Y = µX + ⌘�X , ⌘ ⇠ Nh(1), ⌘ 2 [0,+1), (4)
where the half-Gaussian distribution Nh(�0) [19] (Fig. 1c) with �0 = 1 is naturally introduced as a
prior probabilistic model; note that E[⌘] = �0

p
2p
⇡

and Var[⌘] = �
2
0(1� 2

⇡
) for ⌘ ⇠ Nh(�0). Thereby,

the fixed half-Gaussian pooling is formulated in Eq. 4 to stochastically produce Y without using any
pooling parameter, and at an inference phase the pooling works in a deterministic way by utilizing
the mean of Nh(1) as Y = µX +

p
2p
⇡
�X .

Parametric pooling We then extend the fixed half-Gaussian pooling in Eq. 4 by introducing a
variable parameter �0, the standard deviation of the half-Gaussian, to flexibly describe the output;

Y = µX + ⌘�X , where ⌘ ⇠ Nh(�0), ⌘ 2 [0,+1), �0 = softplus � f(X ) (5)
, Y = µX + |✏|�0�X , where ✏ ⇠ N (0, 1), ✏ 2 (�1,+1), �0 = softplus � f(X ), (6)

where the parameter �0 is estimated from the input feature map X by the GFGP method [1];

�0 = softplus � f(X ) = softplus(b+ v>ReLU(a+U>GAP(X ))), (7)
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Figure 1: Local pooling operation in CNN. The pooling downsizes an input feature map through
locally aggregating activations (a). The previous pooling methods aggregate input neuron activations
X with convex weights w, thus restricting the output Y to the convex hull of X (b). On the other
hand, the proposed Gaussian-based pooling outputs Y according to the half-Gaussian distribution
(c) or inverse softplus (iSP)-Gaussian (d) which utilize the two statistics of mean µX and standard
deviation �X of the input local activations X .

stochastically outputs Y c

q = X
c

p according to the probability w
c

p in the training. As to the stochastic
scheme in local pooling, S3 pooling [34] embeds randomness into the selection of the receptive field
Rq for the output Y c

q .

2.2 Half-Gaussian pooling

The form of convex combination in Eq. 1 is effective for image downscaling while keeping image
quality, but is not necessarily a crucial factor for pooling to downsize feature maps in CNNs; for
better recognition by CNNs, we can freely produce Y

c

q beyond the convex hull of inputs {Xc

p}p2Rq .
Thus, we formulate Gaussian-based Pooling to describe the output by means of probabilistic models
beyond the sample-wise representation in Eq. 1. We hereafter omit the superscript c (channel) and
subscript q (output position) for simplicity; Table 1 summarizes the detailed forms of the methods.

First, the local neuron activations {Xp}p2R are modeled by a Gaussian distribution with the mean
µX and standard deviation �X ;

X̃ ⇠ N (µX ,�X) , X̃ = µX + ✏�X , (2)

where µX =
1

|R|
X

p2R
Xp, �

2
X =

1

|R|
X

p2R
(Xp � µX)

2
, ✏ ⇠ N (0, 1), ✏ 2 (�1,+1). (3)

This, however, provides just a model to probabilistically reproduce the local neuron activations.
We thus modify the Gaussian model in Eq. 2 into the ones suitable for local pooling in CNNs. As
empirically shown in [1] and suggested in [15, 22, 32], the pooling whose functionality is biased
toward min below average is less effective in providing discriminative feature representation since it
suppresses neuron activations, degrading performance. Based on the knowledge about local pooling,
we can modify Eq. 2 into, by prohibiting the output from falling below the mean µX ,

Y = µX + |✏|�X , ✏ ⇠ N (0, 1) , Y = µX + ⌘�X , ⌘ ⇠ Nh(1), ⌘ 2 [0,+1), (4)
where the half-Gaussian distribution Nh(�0) [19] (Fig. 1c) with �0 = 1 is naturally introduced as a
prior probabilistic model; note that E[⌘] = �0

p
2p
⇡

and Var[⌘] = �
2
0(1� 2

⇡
) for ⌘ ⇠ Nh(�0). Thereby,

the fixed half-Gaussian pooling is formulated in Eq. 4 to stochastically produce Y without using any
pooling parameter, and at an inference phase the pooling works in a deterministic way by utilizing
the mean of Nh(1) as Y = µX +

p
2p
⇡
�X .

Parametric pooling We then extend the fixed half-Gaussian pooling in Eq. 4 by introducing a
variable parameter �0, the standard deviation of the half-Gaussian, to flexibly describe the output;

Y = µX + ⌘�X , where ⌘ ⇠ Nh(�0), ⌘ 2 [0,+1), �0 = softplus � f(X ) (5)
, Y = µX + |✏|�0�X , where ✏ ⇠ N (0, 1), ✏ 2 (�1,+1), �0 = softplus � f(X ), (6)

where the parameter �0 is estimated from the input feature map X by the GFGP method [1];

�0 = softplus � f(X ) = softplus(b+ v>ReLU(a+U>GAP(X ))), (7)
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Figure 1: Local pooling operation in CNN. The pooling downsizes an input feature map through
locally aggregating activations (a). The previous pooling methods aggregate input neuron activations
X with convex weights w, thus restricting the output Y to the convex hull of X (b). On the other
hand, the proposed Gaussian-based pooling outputs Y according to the half-Gaussian distribution
(c) or inverse softplus (iSP)-Gaussian (d) which utilize the two statistics of mean µX and standard
deviation �X of the input local activations X .

stochastically outputs Y c

q = X
c

p according to the probability w
c

p in the training. As to the stochastic
scheme in local pooling, S3 pooling [34] embeds randomness into the selection of the receptive field
Rq for the output Y c

q .

2.2 Half-Gaussian pooling

The form of convex combination in Eq. 1 is effective for image downscaling while keeping image
quality, but is not necessarily a crucial factor for pooling to downsize feature maps in CNNs; for
better recognition by CNNs, we can freely produce Y

c

q beyond the convex hull of inputs {Xc

p}p2Rq .
Thus, we formulate Gaussian-based Pooling to describe the output by means of probabilistic models
beyond the sample-wise representation in Eq. 1. We hereafter omit the superscript c (channel) and
subscript q (output position) for simplicity; Table 1 summarizes the detailed forms of the methods.

First, the local neuron activations {Xp}p2R are modeled by a Gaussian distribution with the mean
µX and standard deviation �X ;

X̃ ⇠ N (µX ,�X) , X̃ = µX + ✏�X , (2)

where µX =
1

|R|
X

p2R
Xp, �

2
X =

1

|R|
X

p2R
(Xp � µX)

2
, ✏ ⇠ N (0, 1), ✏ 2 (�1,+1). (3)

This, however, provides just a model to probabilistically reproduce the local neuron activations.
We thus modify the Gaussian model in Eq. 2 into the ones suitable for local pooling in CNNs. As
empirically shown in [1] and suggested in [15, 22, 32], the pooling whose functionality is biased
toward min below average is less effective in providing discriminative feature representation since it
suppresses neuron activations, degrading performance. Based on the knowledge about local pooling,
we can modify Eq. 2 into, by prohibiting the output from falling below the mean µX ,

Y = µX + |✏|�X , ✏ ⇠ N (0, 1) , Y = µX + ⌘�X , ⌘ ⇠ Nh(1), ⌘ 2 [0,+1), (4)
where the half-Gaussian distribution Nh(�0) [19] (Fig. 1c) with �0 = 1 is naturally introduced as a
prior probabilistic model; note that E[⌘] = �0

p
2p
⇡

and Var[⌘] = �
2
0(1� 2

⇡
) for ⌘ ⇠ Nh(�0). Thereby,

the fixed half-Gaussian pooling is formulated in Eq. 4 to stochastically produce Y without using any
pooling parameter, and at an inference phase the pooling works in a deterministic way by utilizing
the mean of Nh(1) as Y = µX +

p
2p
⇡
�X .

Parametric pooling We then extend the fixed half-Gaussian pooling in Eq. 4 by introducing a
variable parameter �0, the standard deviation of the half-Gaussian, to flexibly describe the output;

Y = µX + ⌘�X , where ⌘ ⇠ Nh(�0), ⌘ 2 [0,+1), �0 = softplus � f(X ) (5)
, Y = µX + |✏|�0�X , where ✏ ⇠ N (0, 1), ✏ 2 (�1,+1), �0 = softplus � f(X ), (6)

where the parameter �0 is estimated from the input feature map X by the GFGP method [1];

�0 = softplus � f(X ) = softplus(b+ v>ReLU(a+U>GAP(X ))), (7)
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Table 3: Performance comparison on various CNNs.

Cifar100 [13]
(a) 13-layer Net (Table 2a)
Method Error (%)

skip 24.83±0.15

avg 24.78±0.18

max 24.74±0.08

Stochastic [33] 24.52±0.18

Mixed [15] 24.33±0.23

DPP [22] 24.59±0.15

Gated [15] 24.42±0.45

GFGP [1] 24.41±0.22

Half-Gauss 23.48±0.22

iSP-Gauss 23.52±0.37

(b) MobileNet [8]
Method Top-1 Top-5

skip 29.84 10.35
avg 28.94 10.00
max 29.23 10.02

Stochastic 30.26 10.64
Mixed 29.49 10.14

DPP 28.92 9.92
Gated 28.62 9.86
GFGP 27.68 9.27

Half-Gauss 27.96 9.38
iSP-Gauss 27.33 9.00

ImageNet [5]
(c) ResNet-50 [7]

Method Top-1 Top-5

skip 23.53 7.00
avg 22.61 6.52
max 22.99 6.71

stochastic 25.47 7.87
Mixed 22.81 6.53

DPP 22.52 6.63
Gated 22.27 6.33
GFGP 21.79 5.95

Half-Gauss 21.66 5.88
iSP-Gauss 21.37 5.68

(d) ResNeXt-50 [30]
Method Top-1 Top-5

skip 22.69 6.65
avg 22.14 6.35
max 22.20 6.24

stochastic 25.02 7.73
Mixed 21.83 6.09

DPP 21.84 5.98
Gated 21.63 5.99
GFGP 21.35 5.74

Half-Gauss 20.89 5.72
iSP-Gauss 20.66 5.60

pooling methods [33, 15], we apply the deterministic pooling methods including the simple average-
and max-pooling as well as the sophisticated ones [1, 15, 22] which are trainable in the end-to-end
learning. As to CNNs, besides the simple 13-layer network (Table 2a) on the Cifar100 dataset, we
train the deeper CNNs of MobileNet [8], ResNet-50 [7] and ResNeXt-50 [30] on the ImageNet
dataset [5]; for ResNet-based models, we apply the batch size of 256 to SGD with momentum of
0.9, weight decay of 0.0001 and the learning rate which starts from 0.1 and is divided by 10 every 30
epochs throughout 100 training epochs, while we apply the similar procedure to train the MobileNet
over 120 training epochs with the data augmentation of slightly less variation as suggested in [8].
Those deep CNNs contain five local pooling layers in total, including skip one implemented by strided
convolution, and they are replaced by the other local pooling methods as in [1]. The performance is
measured by top-1 and top-5 error rates via single crop testing [14] on the validation set.

The performance comparison in Table 3 shows that the proposed methods favorably improve perfor-
mance, being superior both to the stochastic pooling methods and to the sophisticated deterministic
methods. Thus, we can say that it is effective to fuse the effective deterministic approach via
GFGP [1] and the stochastic scheme through the probabilistic model on the local pooling. While
the half-Gaussian and iSP-Gaussian models are comparable in the smaller-scale case (Table 3a), the
iSP-Gaussian pooling produces superior performance on the larger-scale cases (Table 3b-d). The
iSP-Gaussian model that renders appropriate stochasticity through flexibly controlling �0 in Eq. 13
contributes effectively to improving performance of various CNNs.

3.3 Qualitative analysis

Finally, we show how the pooling parameters of the iSP-Gaussian model are estimated by GFGP. The
model contains two parameters of µc

0 and �
c

0 at each channel c which are estimated for each input
image sample. Fig. 2 visualizes as 2-D histograms the distributions of the parameter pairs {µ0,�0}
estimated on training samples. At the beginning of the training, the parameters are estimated less
informatively, being distributed broadly especially in �0. As the training proceeds, the probabilistic
model in the pooling is optimized, and the parameter �0 that controls the stochasticity in training is
adaptively tuned at respective layers; we can find some modes in the first two layers of ResNet-50
while in the third and fourth layers �0 slightly exhibits negative correlation with µ0, suppressing
stochasticity on the significant output of high µ0. By flexibly tuning the model parameters throughout
the training, the proposed iSP-Gaussian pooling effectively contributes to improving performance on
various CNNs.

4 Conclusion

In this paper, we have proposed a novel pooling method based on the Gaussian-based probabilistic
model over the local neuron activations. In contrast to the previous pooling model based on the convex
hull of local samples (activations), the proposed method is formulated by means of the probabilistic
model suitable for pooling functionality in CNNs; we propose the inverse softplus-Gaussian model for
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