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Abstract. Deep convolutional neural network (ConvNet) is applied to
versatile image recognition tasks with great success, though demanding
high computation cost. Toward efficient computation, we propose a sim-
ple ConvNet architecture based on local descriptors in the bag-of-features
framework. The local descriptors are formulated in a simple form of MLP
and thus are efficiently computed on various ROI in a flexible manner.
The proposed method is effectively trained in an end-to-end manner by
reformulating the MLP descriptor into the form of deep ConvNet stacking
convolution layers linearly. Through projection-based visual word encod-
ing, the local descriptors are aggregated and fed into a classifier for image
recognition tasks, which enables us to compute the network forwarding
pass by matrix-vector multiplication. In the experiments on image classi-
fication, the proposedmethod is analyzed thoroughly, exhibiting favorable
generalization performance on various tasks.

1 Introduction

Hand-crafted local descriptors, such as SIFT [15], extracted from small image
patches have played a key role on various computer vision tasks; image classi-
fication was enthusiastically addressed by utilizing the descriptors in the bag-
of-features (BoF) framework [9,22]. In this decade, however, deep convolutional
neural networks (ConvNets) [11,26] defeat them with promising performance,
though the hand-crafted descriptor is practically useful due to the low compu-
tation cost [30]. While the ConvNet works on whole input image through deeply
stacked convolution operations, it is internally dependent on local image feature
extraction directed by the last convolution, e.g., at so-called conv5 layer.

The local descriptors embedded in the deep ConvNets can be exposed and then
combined with the traditional encoding schemes, such as Fisher kernel and bag of
visual words, for image retrieval [16] and texture recognition [5]. There are also
methods to leverage the ConvNet more directly to extract convolutional descrip-
tors from image patches mainly on the task of patch matching [18,25]. Those Con-
vNet based descriptors are built on stacked convolution operations with compu-
tational burden [25], thus demanding sophisticated devices such as GPUs, unlike
the hand-crafted SIFT. On the other hand, the hand-crafted descriptors are com-
bined with neural network classifier of MLP through the Fisher kernel encoding
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Fig. 1. Proposed network architecture based on MLP local descriptors.

Table 1. Baseline ConvNet architecture based on VGG16 [26].

Block Layers Channel
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pt

or
(L

=
1
8
1
) 1 {3 × 3 Conv. + BatchNorm} ×2 64

Down-sampling by 2-pixel stride
2 {3 × 3 Conv. + BatchNorm} ×2 128

Down-sampling by 2-pixel stride
3 {3 × 3 Conv. + BatchNorm} ×3 256

Down-sampling by 2-pixel stride
4 {3 × 3 Conv. + BatchNorm} ×3 512

Down-sampling by 2-pixel stride
5 {3 × 3 Conv. + BatchNorm} ×3 512

ReLU 512
MLP {1 × 1 Conv. + BatchNorm + ReLU}×0 512
BoW 1 × 1 Conv. + BatchNorm + ReLU 4096

Global Average Pooling 4096
FC1 FC + BatchNorm + ReLU 4096
FC2 0001CF

SoftMax 1000

in [19]. Themethod improves performance of the SVM classification approach [22],
though being slightly inferior to AlexNet [11], which reveals the less discrimina-
tivity of the hand-crafted descriptor than the learned one.

In this work, we formulate a simple ConvNet toward efficient computation by
explicitly considering the bag-of-features approach in the end-to-end framework.
In contrast to the hybrid method [19] incorporating the hand-crafted descriptors
with neural network classifier, we propose a simple form of local descriptor fol-
lowed by visual word encoding, all of which are trained in an end-to-end manner
as in the standard deep ConvNets. The simple architecture in descriptor design
is based on MLP which comprises a linear projection and a non-linear function,
i.e., ReLU [17]; as a result, our model only requires matrix-vector multiplication
efficiently computed by well established technique on various devices [8].

In the case that local patches are sampled at regular grids over an input
image, the computation of our local descriptors, especially at the first layer of
the MLP, can be regarded as convolution operation, thereby exhibiting similarity
to the deep ConvNets. From the architectural viewpoint of ConvNets, however,
the proposed model contrasts with the standard ConvNets as follows. The model
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based on the local descriptors contains only one convolution layer followed by
several matrix-vector multiplication in MLP; the spatial convolution operates
only on an input RGB image. Thus, from this viewpoint, our model is less
convolutional compared to the deep ConvNets [2]. Such a simple computational
procedure enables us to efficiently compute the forwarding pass of the model. In
addition, it is possible to efficiently compute the local descriptors at regular grids
by leveraging the convolution theorem [4] to perform the only one convolution
via FFT. The other research line toward lightweight ConvNet is found in recent
years [23,29]. While those works focus on slimming ConvNet still heavily relying
on convolutional operation, we simplify the form of local descriptor through
breaking dependence on the convolution to achieve computational efficiency as
well as generalization performance.

On the other hand, the proposed model based on local descriptors in the
BoF framework flexibly deals with any shape of ROI beyond simple regular
grids unlike the standard ConvNets usually working on the regular lattice. The
MLP-based feature extraction for local descriptors is also found in PointNet [20]
to cope with point cloud data for 3D recognition. In this work, we employ an
MLP model for computational efficiency and show favorable performance on
image recognition tasks in spite of the simple formulation.

2 MLP-Based BoF Network

We build the neural network based on bag of local descriptors which are com-
puted by applying multilayer perceptron (MLP) to local image patches, as shown
in Fig. 1. Thus, computation for this network is simply composed of ReLU [17]
and matrix-vector multiplication which is well-established operation on various
devices [8]. While the similar MLP architecture is found in small image classifi-
cation such as for MNIST [12], in this work, we leverage it to extract features
from local patches in the bag-of-feature framework. Following [10], the descriptor
x ∈ R512 is encoded into word representation y ∈ R4096 via linear projection by
the word vectors {wi}4096i=1 with ReLU;

yi = max[w⊤
i x − ρi, 0] = ReLU(w⊤

i x − ρi), (1)

where ρi is a threshold for assigning the i-th word weight yi to the descriptor
x on the basis of inner-product similarity. The word representation aggregated
across patches is then finally fed into the MLP classifier.

2.1 Training MLP Descriptor Through Linear ConvNet

The network (Fig. 1) can be trained end-to-end as in the deep ConvNets
[11,26]. It, however, would be problematic to directly train the MLP descriptor
which contains large projection matrix V ∈ R3L2×512 in the first fully-connected
layer; it depends on the patch size L × L, say L = 29, which is larger than
the standard convolution size, e.g., 3 × 3. Thus, we reformulate the first fully-
connected projection into a tractable form by means of ConvNet. It should be
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noted that our model is trained in a form of deep ConvNet but is deployed as
the MLP-based form which is equivalent to the deep ConvNet.

In the descriptor MLP, the first fully-connected linear projection is viewed
as convolution (without sliding) with the filters whose size corresponds to the
patch size L×L×3; this is just a transformation of the projection matrix V via
unfolding. The moderately large L × L spatial filters are difficult to adequately
learn due to the high degree of freedom (DoF). To mitigate it, we explicitly
impose decomposability into local convolutions on the L × L convolution filters.
This constraint is well validated by the Fractal structure, wavelet analysis and
recent advances in deep ConvNet for image recognition. Thereby, the L×L con-
volution is approximated by stacking smaller convolutions, which results in the
form of linear ConvNet (Fig. 1 & Table 1) without any non-linear functions, e.g.,
ReLUs; a linear deep model is not bad even from the optimization viewpoint [7].
The linearly stacked convolution layers are compressed into a single convolution
layer by enlarging the convolution filter as follows. Given two stacked convolu-
tions whose filters are F of lF × lF and G of lG × lG, we can describe the first
convolution layer followed by down-sampling with factor s as

Ĩ(p) =
∑

δ∈Z2

F (δ)I(p − δ), J(p) = Ĩ(sp), (2)

where I, Ĩ and J are input, intermediate and output feature maps, respectively,
where the pixel position is denoted by p. Then, the second convolution layer is

J̃(p) =
∑

ϵ∈Z2

G(ϵ)J(p − ϵ) =
∑

ϵ∈Z2

G(ϵ)Ĩ(sp − sϵ)

=
∑

ϵ∈Z2

Ĝ(ϵ)Ĩ(sp − ϵ) =
∑

δ ,ϵ∈Z2

Ĝ(ϵ)F (δ)I(sp − ϵ − δ)

=
∑

η∈Z2

∑

δ∈Z2

Ĝ(η − δ)F (δ)

︸ ︷︷ ︸
Compressed filterH(η)

I(sp − η), (3)

where J̃ is the output feature map, and we use the dilated filter of Ĝ(ϵ) = G( ϵ
s )

if ϵ
s ∈ Z2 otherwise 0, and transform the variable as η = δ + ϵ. The size lH of

the compressed filter H is lH = s(lG − 1) + lF . Thus, the patch size L, hyper-
parameter of the descriptor, is naturally determined according to the architecture
of the linear ConvNet.

This linear ConvNet is followed by the non-linear MLP to extract discrimi-
native descriptors. The MLP is implemented as NiN module [14] of 1× 1 convo-
lution + ReLU layers, and thus in the case of regularly sampling patches on an
input image during training, we implement our network (Fig. 1) by deep Con-
vNet (e.g., Table 1) to effectively train the local descriptors and BoW model in
an end-to-end approach. Once the network is trained, the linear ConvNet part is
compressed by (3) into the fully-connected layer to form MLP-based descriptors.
And, for densely computing descriptors on an image as in training, the descriptor
can be efficiently extracted by applying the convolution theorem [4] via FFT.
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3 Experimental Results

We evaluate various configurations of the MLP-based local descriptor in our
network by training the corresponding ConvNets on a ImageNet dataset of 1000
object classes. All the models are implemented by using MatConvNet [27] follow-
ing the good practice provided; the stochastic gradient descent is applied with
the learning rate decreasing in a log-scale from 0.1 to 0.0001 over 40 epochs,
the momentum of 0.9, the weight decay of 0.0005 and the mini-batch size of
64 samples. We measure the performance of top-5 error rate by single center
cropping [11] on the ImageNet validation set.

Table 2. Performance analysis on various configuration of the local descriptor. The
performance is evaluated by top-5 error rate (%) on ImageNet validation set. The
baseline architecture in Table 1 is sequentially updated by the one denoted in bold font
from (a) to (f).

(a) Convolutions per block
Architecture Error (%)

Table 1 [L=181] 31.18
{3 × 3 Conv. + BN}×2 [L=125] 29.31
{3 × 3 Conv. + BN}×1 [L=63] 29.17

(b) Down-sampling
Method Error (%)

striding [L=63] 29.17
avg.-pool [L=78] 30.79

(c) Convolution Filter size
Filter size Error (%)

3 × 3 [L=63] 29.17
5 × 5 [L=125] 27.59
7 × 7 [L=187] 28.12

(d) Depth of Linear ConvNet
# of block Error (%)
5 [L=125] 27.59
4 [L=61] 24.71
3 [L=29] 24.76
2 [L=13] 30.61

(e) Degree of non-linearity
Depth 4 block 3 block
in MLP[L=61] [L=29]

0 24.71 24.76
1 20.29 19.80
2 18.55 18.00

(f) Training form of descriptor
Form Error (%)

linear ConvNet [L=29] 18.00
29 × 29 Conv. [L=29] 22.24

3.1 Quantitative Ablation Study

We modify the baseline ConvNet (Table 1), according to the following analyses
with keeping the descriptor dimensionality as 512.

Number of Convolution. The baseline model (Table 1) contains 13 layers of
3× 3 convolution, 2 or 3 layers per block, across five blocks. Table 2a shows that
the performance is improved by decreasing the number of 3 × 3 convolutions
per block in contrast to the non-linear ConvNet containing ReLUs [26]; only one
3 × 3 convolution per block works well.

Local Pooling. In the linear ConvNet (Table 1), the feature maps are simply
down-sized by 2-pixel striding, since 2 × 2 local average pooling degrades per-
formance as shown in Table 2b. The local pooling is composed of 2 × 2 average
filtering and 2-pixel striding, which unfavorably increases the convolution layers
harming performance as implied in Table 2a.

Convolution Filter Size. On the other hand, by moderately enlarging the
convolution filter size, we can improve performance as shown in Table 2c; the
5 × 5 convolution produces the best performance. Note that at each block one
5×5 convolution is equivalent to two stacked 3×3 convolutions (Table 2a), which
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4 blocks & 2 MLP (size: 61 × 61) 3 blocks & 2 MLP (size: 29 × 29)

Fig. 2. The principal filters (columns of Ul) by applying SVD to the learned filters.

conveys the insight that the larger-sized convolution in the shallower net is more
effective than stacking smaller ones for a deep linear ConvNet.

Depth. Then, the number of blocks, depth, in the linear ConvNet stacking 5×5
convolutions is evaluated in Table 2d. The depth significantly affects the com-
pressed filter size, i.e., the patch size L. Compared to the larger patch descriptor,
the moderate-sized ones produce the better performance; both the three (L = 29)
and four (L = 61) blocks provide competitively good performance.

Non-linearity. The local descriptor is endowed with the non-linearity by the
latter MLP part (Fig. 1 & Table 1) following the linear ConvNet part. Thus, the
non-linearity is controlled by the depth of the MLP and Table 2e shows the
performance improvement due to the higher non-linearity of the deeper MLP.

Training Form. As shown in Table 2f for training local descriptors, the form of
linear ConvNet is superior to the naive MLP form, i.e., one L × L convolution,

Based on the above analyses, we build the effective descriptor by stacking
three 5 × 5 convolution blocks interlaced with the down-sampling of 2-pixel
striding and two-layer MLP, which operates on a 29 × 29 patch with 4-pixel
step for ImageNet classification. This configuration of the descriptor is closely
related to the good practice [22] of the hand-crafted descriptor which extracts
SIFT from 24× 24 patches every 4 pixels on an image for image classification.

3.2 Qualitative Analysis

We qualitatively analyze the L×L spatial filter learned by the linear ConvNet.
For mining the principal characteristics in the spatial filters, we apply SVD

to the (vectorized) filters V ∈ R3L2×512 as V = Uldiag(s)U⊤
r ; the filters are

decomposed into 512 components, the columns of Ul ∈ R3L2×512. As shown in
Fig. 2, the deeper linear ConvNet of 4 blocks activates the filter weights only
on a small spatial region due to the larger patch size, while the filter weights
by the shallower one are diversely distributed. Thus, we can conclude that for
constructing the effective linear convolutional features, it is necessary to design
moderately deep (linear) ConvNet to provide a proper receptive field, followed
by the highly non-linear MLP.

3.3 Generality

The proposed simple network exhibits superior performance (18.00%) to
AlexNet [11] which produces 19.29% on the ImageNet dataset. We further show
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Table 3. The performance comparison on various image classification tasks. The per-
formance is measured by classification accuracy (%).

Type Object Scene Other

Dataset VOC2007 [1] Caltech256 [6] SUN397 [28] MIT67 [21] FMD [24] Event8 [13]

Ours 78.22 66.71 50.78 66.48 79.23 95.14

AlexNet 77.87 73.79 48.36 63.96 72.75 95.07

Hand-craft [9] 63.83 57.4 46.1 63.4 57.3 92.6

the generality of the descriptor-based simple network across various image recog-
nition tasks. For that purpose, the model trained on the ImageNet dataset
(Sect. 3.1) is transferred to the other datasets. For simplicity, the pre-trained
network is applied to extract a 4096-dimensional image feature vector at FC1
(Table 1) which is followed by the linear SVM classifier. It is noteworthy that
in our model, the descriptors are computed on 29 × 29 local patches every 4
pixels and then encoded into the word representation in a quite similar manner
to the hand-crafted methods in the BoF framework [9,22]. For comparison, we
employ the same procedure for the pre-trained AlexNet and also show the per-
formances reported by the hand-crafted method [9] on the datasets of various
image recognition tasks.

Table 3 shows the performance results on various tasks of image classifi-
cation. As mentioned in [3], the AlexNet exhibits favorable transferability on
object recognition tasks which are closely related to ImageNet classification.
On the other hand, the proposed model produces superior performance even to
the AlexNet on the other types of tasks while working competitively with the
AlexNet on the object classification tasks. The network simply relying on the
MLP-based local descriptors is endowed with such a better generalization per-
formance. And, our method consistently outperforms the hand-crafted one [9]
based on the SIFT-based descriptors, demonstrating that our descriptor trained
end-to-end on ImageNet dataset is well discriminative with favorable generality.

4 Conclusion

We have proposed a simple network architecture for image recognition toward
efficient computation. The proposed method is explicitly built upon the bag-
of-features procedure which leverages local descriptors and visual word based
representation to extract image features. While the descriptor is formulated by
means of simple MLP for efficiency, it is effectively trained in an end-to-end man-
ner through transforming the MLP into a form of ConvNet, by utilizing stan-
dard techniques/procedures tailored for deep ConvNets on ImageNet dataset.
The proposed network mainly composed of simple MLP computation exhibits
favorable performance not only on the ImageNet classification task but also on
the other various image recognition tasks.
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