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Abstract

Deep convolutional neural networks (CNNs) are trained mostly based on the softmax
cross-entropy loss to produce promising performance on various image classification
tasks. While much research effort has been made to improve the building blocks of
CNNs, the classifier margin in the loss attracts less attention for optimizing CNNs in
contrast to the kernel-based methods, such as SVM. In this paper, we propose a novel
method to induce a large-margin CNN for improving the classification performance. By
analyzing the formulation of the softmax loss, we clarify the margin embedded in the loss
as well as its connection to the distribution of softmax logits. Based on this analysis, the
proposed method is formulated as regularization imposed on the logits to induce a large-
margin classifier in a compatible form with the softmax loss. The experimental results on
image classification using various CNNs demonstrate that the proposed method favorably
improves performance compared to the other large-margin losses.

1 Introduction
In recent years, convolutional neural networks (CNNs) are widely applied to various image
classification tasks with great success [15]. While much research effort has been made in
improving CNNs from the architectural viewpoint [10, 21, 28], there is a risk of over-fitting
in the deep CNNs due to the huge number of CNN parameters. To cope with the over-
fitting problem, the CNNs are trained on large-scale annotated image datasets [5, 32] with
data augmentation techniques [15]. In addition to the approach toward enlarging the training
data, some network layers such as BatchNormalization [12], DropOut [22] and stochastic
pooling [30] effectively contribute to properly training the CNNs.

The CNNs are generally optimized based on the softmax cross-entropy loss, softmax
loss in short. The softmax loss is arguably the most popular classification loss due to its
simple formulation and probabilistic interpretation [2, 6]. On the other hand, to address the
issue of over-fitting as well as promote the discriminative training, the contrastive loss is pro-
posed [9] to deal with pair-wise samples through Siamese networks. It is further extended to
the triplet loss [20] for levering triplet samples to the training. Those methods polynomially
increase the number of training pairs and triplets, thus requiring an efficient sample selection
scheme to cope with large-scale data. There are also large-margin approaches on the loss
function [3, 16, 26]. The classifier margin had been attracted keen attention in the framework
of kernel-based methods, such as SVM [1], for improving generalization performance [25]
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while mitigating the over-fitting. In the deep learning literature, the large-margin methods
focus on the forms of classifier, such as inner-product [3, 16] and distance-based GMM [26],
and then directly manipulate the classifier margin during training to provide large-margin
CNNs. Those methods, however, demand to carefully control the margins throughout the
end-to-end training since the larger margin poses the harder optimization problem; for prop-
erly training CNNs, the margin should be gradually increased as the training epoch proceeds.

In this paper, we propose a novel method to induce large-margin CNNs implicitly in com-
parison to the explicit large-margin methods [16, 26] mentioned above. Through analyzing
the softmax loss, we reveal that the margin is embedded in the loss in a form dependent on
the softmax logits; that is, even the softmax loss encourages a large-margin classifier to some
extent. Based on this analysis, we formulate the proposed method as regularization on the
logits to further enhance the large-margin effect in the softmax loss. The proposed method
indirectly affects the classifier margin via the regularization without touching margin; the
margin is adaptively controlled during the training in contrast to the large-margin methods
that directly manipulate the margins. Thus, by incorporating the proposed regularization
into the ordinary softmax loss, we can simply improve the performance of CNNs without
changing the other components of CNNs nor training procedures.

2 Toward Large-Margin Loss

2.1 General formulation of margin based loss
In multi-class classification of C classes, a CNN provides a logit vector fff ∈RC for softmax;
the logits are produced such as by the last fully-connected layer applying the linear classifier
fff =WWW>xxx+bbb to the feature vector xxx of the penultimate layer. Following [4], it is natural to re-
gard as a classification margin the difference between the target score (logit) fy and the other
maximum score fc∗ , where y indicates the ground truth class label and c∗ = argmaxc6=y fc.
Based on the margin fy− fc∗ , the classification loss function is generally defined as

l( fff ,y) = L(max
c 6=y

fc− fy +ρ) = L( fc∗ − fy +ρ), (1)

where L(ξ ) is a monotonically increasing function (Fig. 1a) to measure the loss based on
the biased margin ξ = fc∗ − fy + ρ . Here, the bias ρ > 0 operates like a lower bound1

of the classification margin so that fy−maxc6=y fc ≥ ρ; the larger bias would enlarge the
classification margin via the loss function. In [4], the multi-class SVM classifier is optimized
by employing the hinge loss L(ξ ) = max(0,ξ ) with the bias ρ = 1.

2.2 Softmax cross-entropy loss
We analyze the softmax cross-entropy loss (softmax loss) from the viewpoint of mathemati-
cal formulation. Given the logit vector fff ∈RC and the ground truth label y ∈ {1, · · · ,C}, the
softmax loss is formulated as the following cross entropy between the softmax posterior and
the ground truth one;

l( fff ,y) =− logpy( fff ) =− log
exp( fy)

∑
C
c=1 exp( fc)

= log
[ C

∑
c=1

exp( fc− fy)

]
, (2)

1ρ is strictly a lower bound in the hinge function producing zero loss for ξ ≤ 0. It works in a pseudo manner of
lower bound for the softplus function which exponentially approaches zero on ξ ≤ 0 as shown in Fig. 1a.
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Hinge

Softplus

(a) Hinge and softplus functions

Margin-based Loss: L(maxc 6=y fc− fy +ρ)

Hinge loss Softmax loss
loss function L(ξ ) max[0,ξ ] log[1+ exp(ξ )]

bias ρ 1 log[∑c6=y exp( fc− fc∗)]

(b) Comparison in the large-margin framework (see Sec. 2.2)

Figure 1: Comparison of hinge loss and softmax loss in the framework of margin-based loss.
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(a) Hinge loss [4] (b) Large-margin losses [16, 26] (c) Ours
Figure 2: Margins in various loss methods. The circles indicate the logits of corresponding
classes; fy is the ground truth one and fc∗ = maxc6=y fc. ξ is the biased margin to be finally
assessed by the function L(ξ ) for the classification loss (1); L(ξ ) = max(0,ξ ) in (a), while
L(ξ ) = softplus(ξ ) in (b,c). The methods are also characterized by the forms of bias ρ .

which can be rewritten by using softplus function [7], softplus(ξ ) = log{1+ exp(ξ )}, into

l( fff ,y) = log
[

1+ ∑
c6=y

exp( fc− fy)

]
= softplus

[
log
{

∑
c6=y

exp( fc)

}
︸ ︷︷ ︸

LSE({ fc}c6=y)

− fy

]
. (3)

This reformulation reveals that the softmax loss (2) measures the significance of the target
logit fy in comparison with the others { fc}c6=y by applying softplus to the loss function L in
(3), while the hinge function is employed in SVM [4] (Sec. 2.1). It is noteworthy that the
softplus and hinge functions are compared from the viewpoint of classification loss (Fig. 1a),
though those functions have been discussed in the framework of non-linear activation [8].
Then, to further analyze the softmax loss from the viewpoint of the margin-based loss (1),
we focus on the log-sum-exp (LSE) transformation that aggregates the logits of the non-
target classes c 6= y in (3), implicitly playing a key role for inducing a large-margin classifier
in the softmax loss.

The log-sum-exp (LSE) function, which is applied to the logits { fc}c 6=y in (3), holds the
following relationship [18];

max
c6=y

( fc) = fc∗ < LSE({ fc}c 6=y)≤ fc∗ + log(C−1), (4)

since the LSE implicitly contains the maximum logit fc∗ in the form of

LSE({ fc}c 6=y) = fc∗ + log
[
∑
c6=y

exp( fc− fc∗)

]
= fc∗ + log

[
1+ ∑

c/∈{c∗,y}
exp( fc− fc∗)

]
, (5)

where 0 < exp( fc− fc∗) ≤ 1. The LSE function is regarded as providing the smooth max-
imum due to the relationship (4) in which the second equality holds only for the uniform
logits fc = fc∗ ,∀c 6= y.
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By combining (3) and (5), the softmax loss (2) results in

l( fff ,y) = softplus
(

fc∗ − fy + log
[
∑
c6=y

exp( fc− fc∗)

])
, (6)

which is interpreted as the margin-based loss (1) by setting L(ξ ) = softplus(ξ ) and the bias
of

ρ̂({ fc}c6=y) = log
[
∑
c6=y

exp( fc− fc∗)

]
. (7)

Thus, the softmax loss induces a large-margin classifier due to this bias ρ̂ , though it is not
explicit in the original loss form (2). It should be noted that the bias (7) is a variable de-
pending on the logits { fc}c6=y, while the hinge loss employs a constant ρ = 1, as shown in
Fig. 1b.

2.3 Regularization for large margin
The bias ρ̂ (7), which is implicitly embedded in the softmax loss, depends on the distribution
of the non-target logits { fc}c6=y through the log-sum-exp (LSE) function. Based on the char-
acteristics of the LSE shown in (4), the bias approaches zero by isolating the maximum fc∗

from the others ( fc∗ � fc), while it becomes larger as the distribution of the logits { fc}c6=y
is close to uniform fc = fc∗ ,∀c 6= y. Thus, in order to derive the larger-margin classifier,
we propose a regularization method to enlarge the bias ρ̂ by increasing uniformity of those
logits. For that purpose, we measure the diversity of the logits { fc}c6=y by means of the
symmetric Kullback-Leibler divergence;

D̃(q) = 1
2
{D(q‖u)+D(u‖q)}= 1

2 ∑
c6=y

{
qc−

1
C−1

}
log(qc), (8)

where

Softmax posterior:
{
qc =

exp( fc)

∑c′ 6=y exp( fc′)

}
c 6=y

, Uniform probability:
{
uc =

1
C−1

}
c6=y

, (9)

KL divergences: D(q‖u)=∑
c6=y

qc log
[
(C−1)qc

]
, D(u‖q)=∑

c6=y

1
C−1

log
[ 1
(C−1)qc

]
. (10)

We leverage the symmetric KL divergence (8) to the regularization with the softmax loss (3)
for encouraging uniformity of the logits { fc}c6=y, thereby enlarging the bias ρ̂ in (7). Thus,
the proposed large-margin loss is finally described by

lours(xxx,y) =− log
exp( fy)

∑
C
c=1 exp( fc)

+
λ

2 ∑
c6=y

{
exp( fc)

∑c′ 6=y exp( fc′)
− 1

C−1

}
log
{

exp( fc)

∑c′ 6=y exp( fc′)

}
,

(11)

of which derivatives with respect to the logits fff are given by

∂lours

∂ fc
=

{
py−1 c = y
pc +

λ

2

[
qc(xc−∑d 6=y xdqd)+(qc− 1

C−1 )
]

c 6= y
, (12)
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where we use two types of softmax posteriors pc =
exp( fc)

∑
C
c′=1 exp( fc′ )

and qc =
exp( fc)

∑c′ 6=y exp( fc′ )
. The

proposed loss layer (11) is stacked on the top of the network in the same manner as an
ordinary loss, without changing any other components in the network nor training procedure.

As shown in Fig. 2, we compare the loss methods in terms of margin on the basis of the
general margin-based loss formulation (Sec. 2.1) as follows.
– The hinge loss [4] imposes a constant bias ρ = 1.
– The previous large-margin losses [16, 26] for training deep CNNs introduce the extra
bias ρ̌ in addition to the one ρ̂ (7) naturally embedded in the softmax loss; the bias ρ̌ is
formulated based on the target logit fy. Directly manipulating the margin via the extra bias
requires to be carefully controlled throughout the end-to-end learning since the larger margin
generally poses the more difficult classification problem; it is important to gradually enhance
the effect of margin as suggested by the authors [16, 26]. Practically speaking, however, it is
hard to properly design the optimization schedule regarding the margin besides the overall
learning parameters, such as learning rate, in a trial-and-error approach for deep neural net-
works on large-scale datasets.
– The proposed method indirectly enhances the bias ρ̂ through the regularization based on
the divergence of logits (8) without touching the margin itself. Thus, we can simply apply
the proposed loss (11) with a constant regularization parameter, say λ = 0.3 in this study,
following the standard training procedure of CNNs. Thus, in comparison to the other meth-
ods [16, 26], the proposed method is practically useful from this optimization viewpoint.

3 Discussion
Connection to Label Smoothing Regularization (LSR) [27]. The label smoothing regu-
larization is again attracting attention for training deep CNNs [23, 31]. The method slightly
degrades the ground truth by introducing uniform distribution over C classes. The softmax
cross-entropy loss with so polluted ground truth label results in

lLSR(xxx,y) =−(1−λ ) log(py)−
λ

C

C

∑
c=1

log(pc) =−(1−λ ) log(py)+λ{D(u‖p)+ log(C)},

(13)
where the regularization parameter λ is introduced to control the degree of degrading labels.
The regularization term corresponds to the KL divergenceD(u‖p) (10) between the uniform
distribution u and the softmax posterior p over C classes. Thus, from our viewpoint (Sec. 2),
LSR can be interpreted as regularization to suppress the diversity of { fc}c6=y to some extent
in a similar way to ours (11), which also enlarges the bias ρ̂ thereby contributing to a large-
margin classifier. It is noteworthy that the proposed framework theoretically reveals the
large-margin aspect of LSR, though it has been employed rather heuristically. And, our
method (11) is clearly different from LSR (13) in that our regularization (8) excludes the logit
fy of the ground truth class to straightforwardly enhance the bias ρ̂ (7) via the symmetric
KL divergence. It effectively encourages a large-margin classifier without impeding the
discriminative training based on ground truth labels. On the other hand, LSR pollutes the
ground truth information by multiplying 1−λ and thus requires the regularization parameter
to be carefully determined; λ = 0.1 in general [23].
Connection to Center Loss [27]. The proposed method could be slightly related to the cen-
ter loss [27] which minimizes the within-class variance as regularization combined with the
softmax loss. They, however, differ in the following three points regarding regularization
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functionality. First, the center loss contributes to discriminative feature representation while
our regularization works on enlarging classification margins for higher generalization per-
formance. Second, the center loss focuses on the feature distribution across samples and our
method considers the diversity of logits over classes at each sample. Third, the center loss
is applied to the penultimate layer that provides a feature vector xxx unlike our regularization
that operates at the last loss layer. Thus, the proposed method would be compatible with the
center loss by jointly working as complementary regularization to train CNNs.
Geometrical meaning of the regularization. Here, we consider the classifier fff =WWW>xxx that
minimizes the proposed regularization term (8), i.e., producing the logits { fc}c6=y close to
uniform. On the assumption that there is no correlation among classes, such a classifier holds
the super-symmetric form of www>c wwwc = ν , www>c wwwc′ =− ν

C−1 ,∀c 6= c′,∃ν > 0; for the detail, refer
to the supplementary material. The super-symmetric classifier is closely connected to the
optimal classifier on the simplex build upon the optimal Bayesian feature representation [19].
Thus, the proposed regularization pushes a classifier toward the super-symmetric one while
enlarging classifier margins as well as encouraging discriminative feature representation.
Margin by LSE. While the bias (7) is naturally derived from LSE in the softmax loss, it
is possible to apply the hard (constant) bias ρ = 1 to reformulate the softmax loss (3) into
softplus( fc∗ − fy + 1), analogous to the hinge loss [4] of max(0, fc∗ − fy + 1). In prelim-
inary experiments, however, we found that CNNs are not properly trained at all by both
this modified loss and the hinge loss. Those losses explicitly employ the maximum logit
fc∗ and thereby provide the updates (gradients) only for the two logits of fy and fc∗ which
are poorly back-propagated and too sparse to train the deep neural networks. On the other
hand, the LSE-based soft bias (7) works well to effectively provide the dense gradients (12)
compatible for the back-propagation.

4 Experimental Results
The proposed method (11) is generally applicable to training CNNs as a classification loss,
and we evaluate the performance of the method on image classification tasks.

4.1 Ablation study
We analyze the proposed method from various aspects by applying it to train the 13-layer
network [24] on Cifar100 dataset [14]; we train the network, whose detailed architecture is
shown in the supplementary material, by applying SGD with a batch size of 128, weight
decay of 0.0001, momentum of 0.9 and the learning rate monotonically decreasing in log
scale from 0.1 to 0.0001 over 50 epochs. We repeat the evaluation three times with different
initial random seeds to report the average and the standard deviation of error rates (%).

In Sec. 2, we considered the regularization to enhance uniformity of the logits, leading
to the large-margin classifier, and for that purpose there can be three types of divergence as
the regularization; the asymmetric onesD(q‖u) andD(u‖q) in (10), and the symmetric one
D̃(q) averaging those two in (8). Those three types of regularization forms are compared in
Table 1 on various regularization parameter values λ . We can see that D(u ‖q) and D̃(q)
are slightly superior toD(q‖u), since the divergenceD(u‖q) enhances the uniformity more
strongly than D(q ‖ u) as shown in Fig. 4. By combining those asymmetric divergences,
the symmetric D̃(q) stably contributes to the performance improvement. As to the regular-
ization parameter λ , the performance is sufficiently improved at λ = 0.3. Based on these
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Table 1: Performance results on three types of regularization forms with various regulariza-
tion parameter λ .

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
D(u‖q) 27.99±0.18 27.62±0.16 27.30±0.34 27.35±0.14 26.98±0.22 27.11±0.22 26.77±0.35 26.99±0.16 26.89±0.07

D(q‖u) 28.45±0.41 28.52±0.44 27.79±0.23 27.77±0.09 27.40±0.11 27.33±0.12 27.15±0.07 27.14±0.16 26.98±0.09

D̃(q) 28.21±0.32 27.92±0.12 27.27±0.15 27.38±0.10 27.13±0.17 26.73±0.15 26.98±0.09 27.13±0.08 26.87±0.08

Table 2: Comparison to the
methods discussed in Sec. 3.
Method Error rate (%)
Softmax loss 28.62±0.24

Super-symmetry 28.67±0.46

LSR (13) (λ = 0.01) 28.80±0.23

LSR (13) (λ = 0.05) 28.51±0.22

LSR (13) (λ = 0.1) 28.48±0.13

LSR (13) (λ = 0.3) 28.65±0.25

Ours (11) 27.27±0.15

Training Epoch

B
ia

s

Ours (train)

Softmax loss (train)
LSR (train)

Ours (test)

Softmax loss (test)
LSR (test)

Figure 3: Bias value ρ̂ (7)
during the training.

D
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er
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nc
e

Probability

Figure 4: Divergences in case
of two categories {q,1−q}.

experimental results, we use the regularization of D̃(q) in (11) with λ = 0.32.
Then, the proposed method is compared to the ones that are intrinsically related to ours

as discussed in Sec. 3; the super-symmetric classifier and the label smoothing regulariza-
tion (LSR) [23]. We implement the super-symmetric classifier by imposing the constraint of
super-symmetry on the classifier; the detailed form of the constraint is shown in the supple-
mentary material. For fair comparison, the LSR (13) is equipped with various λ s, including
λ = 0.1 suggested in [23]. As shown in Table 2, the proposed method outperforms those
comparison methods as well as the original softmax loss. The super-symmetric constraint
poorly works, even deteriorating the performance. Such a constraint on the classifier is too
strong to properly train the network from scratch and thus it might be necessary to gradually
enhance the effect of the constraint during the end-to-end learning. And, the actual class
categories would have some correlation which slightly violates the ideal super-symmetric
form.

The LSR rather favorably works since both regularizations of ours and LSR induces a
large-margin classifier through enlarging the bias ρ̂ in (7). Fig. 3 shows the bias value ρ̂

empirically measured during the training. As the training proceeds, the original softmax
loss decreases it monotonically while to the regularizations of ours and LSR work to first
decrease and then increase the bias. This experimental result also demonstrates that the
regularization adaptively controls the biased margin ξ (Fig. 2) according to the situation of
the trained network without manually designing the optimization schedule [16, 26]. And,
we can empirically validate the role of LSR for the large-margin classifier (Sec. 3), though
such an aspect of LSR has not been mentioned so far. Nonetheless, the LSR is inferior to
the proposed method, requiring the regularization parameter λ to be carefully tuned, due to
the degradation of the ground truth label. The proposed regularization form (8) excluding
the ground-truth class is compatible with the primary softmax loss without impeding the
discriminative training based on the ground truth. Actually, as shown in Table 1, our regular-
ization can work with even larger λ while LSR accepts the carefully tuned small λ , usually
λ = 0.1 as suggested in [23].

2While λ > 0.5 also works on some datasets as shown in the other experimental results, we find λ = 0.3
generally improves performance on various datasets and CNNs.
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Table 3: Performance results on the degenerated training set of Cifar100.
(a) Smaller-scale training samples

# of sample (×50,000) 0.9 0.8 0.7 0.6 0.5
Softmax loss 29.66±0.21 30.94±0.06 32.71±0.07 34.11±0.14 36.87±0.26

Ours (λ = 0.3) 28.62±0.12 29.95±0.09 31.35±0.47 33.49±0.22 36.06±0.06

Ours (λ = 0.5) 28.09±0.03 29.56±0.20 30.83±0.20 33.13±0.09 35.58±0.37

Ours (λ = 1) 27.88±0.23 29.21±0.13 30.83±0.15 33.11±0.46 35.49±0.15

(a) Noisy ground truth labels
Pollution rate 0.1 0.2 0.3 0.4 0.5
Softmax loss 33.97±0.21 37.17±0.34 40.54±0.35 43.65±0.81 48.37±0.19

Ours (λ = 0.3) 31.59±0.17 34.98±0.07 38.23±0.26 42.06±0.11 46.87±0.32

Ours (λ = 0.5) 31.00±0.19 34.38±0.19 37.91±0.17 41.53±0.31 46.41±0.09

Ours (λ = 1) 30.42±0.20 33.50±0.07 36.75±0.23 40.76±0.25 46.43±0.19

4.2 Degenerated training set
The large-margin inducing regularization would improve the generalization performance of
neural networks so as to effectively cope with a degenerated training set. In this experiment,
we evaluate such a generalization performance on two types of degradation regarding the
number of training samples and the correctness of the ground truth annotation over training
samples. These two situations are frequently found on the real-world recognition tasks in the
cases that collecting training samples is costly and manual annotation is poorly performed
by immatured annotators.

The proposed method is applied to train the 13-layer network on the smaller-scale train-
ing set of Cifar100; we sub-sample the training samples by the ratio from 0.9 (45,000 sam-
ples) to 0.5 (25,000 samples). On the other hand, in order to simulate the noisy ground truth
label, we switch the ground truth labels into the other incorrect ones only on the partial set
of the training samples; the ratio of the polluted training samples is from 0.1 (clean) to 0.5
(dirty). Table 3 shows the performance results on those degenerated training sets. In both
cases, the proposed method works well, outperforming the softmax loss, and we can see
that the stronger regularization with the larger λ clearly improves the performance, which
demonstrates the effectiveness of the larger-margin classifier on these training situations; in
the case of noisy annotation, the large-margin regularization helps the training to exploit the
consistently discriminative information that the correct labels exhibit.

4.3 Comparison to the other methods
Finally, the proposed method is compared with the other large-margin methods. As men-
tioned in Sec. 3, the multi-class hinge loss [4] in Fig. 1b does not work for training CNNs at
all due to the sparse gradients (updates). To mitigate the issue, we modify the hinge loss into

lhinge(xxx,y) =
1

C−1 ∑
c 6=y

max[0, fc− fy +1], (14)

so as to provide dense gradients over all the logits fff for properly optimizing the deep CNNs
via back-propagation. In addition, inspired by the hard bias ρ = 1 in the hinge loss (Fig. 2),
the softmax cross-entropy loss (3) can also be modified to

lmod(xxx,y) = softplus
[

log
{

∑
c6=y

exp(xc)

}
−xy+1

]
=− log

exp(xy−1)
exp(xy−1)+∑c 6=y exp(xc)

, (15)
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Table 4: Performance comparison on the deep CNNs.
Dataset Cifar10 [14] SVHN [17] ImageNet [5]
Network WResNet [29] WResNet [29] VGG-16 [21] VGG-16-mod [13] MobileNet [11]

Softmax loss 4.73±0.07 2.93±0.03 27.94 25.65 29.84
Hinge loss (14) 5.26±0.15 3.15±0.04 46.58 45.17 55.79

Modified loss (15) 4.68±0.07 2.89±0.05 27.65 24.92 29.15
LGM [26] 4.75±0.04 2.65±0.07 - - 34.12
LSM [16] 4.49±0.13 2.80±0.03 27.92 24.98 39.35

Ours (λ = 0.3) 4.60±0.05 2.67±0.03 27.27 24.53 28.94

Dataset ImageNet [5] Places-365 [32]
Network ResNeXt-50 [28] VGG-16-mod [13]

Softmax loss 22.69 45.02
Ours (λ = 0.3) 22.27 44.61

Dataset ImageNet [5]
Network VGG-16-mod [13] ResNeXt-50 [28]

Modified loss (15) 24.37 22.00+ Ours (λ = 0.3)

where the bias ρ̌ = 1 is added to ρ̂ (7) in our framework (Fig. 2). For comparison, we
also apply the large-margin methods of LGM [26] and LSM [16]. The large-margin effects
in the losses of LSM and LGM are dynamically controlled so as to gradually increase the
margin throughout the end-to-end training; the dynamic schedule is designed in the way that
the authors suggest [16, 26]. Note that while LGM [26] alters the linear classifier into the
distance-based one by means of Gaussian mixtures, the other methods including ours are
applied to the ordinary linear classifier fff =WWW>xxx+bbb.

These loss functions are applied to train the deep CNNs on image classification tasks;
WideResNet28-10 (WResNet) [29] on Cifar10 [14] and SVHN [17] datasets, and VGG-
16 [21], modified VGG-16 (VGG-16-mod) [13] and MobileNet [11] on ImageNet [5] dataset.
We train these CNNs from scratch and report (top-1) error rate (%) on the validation set pro-
vided in the respective datasets; the detailed training procedures for these CNNs are provided
in the supplementary material.

The performance results are shown in Table 4. The modified hinge loss (14) poorly
works, indicating that the hinge function providing rather sparse gradients is not suitable for
training CNNs. Though the LGM and LSM work relatively favorably on WResNet, they fail
to improve the performance of MobileNet. This result shows that it is necessary to carefully
tailor the the margin-controlling schedule in LGM and LSM for each network by considering
both the datasets and the training procedures, which imposes a heavy burden. In LGM, the
VGG models are not favorably trained, being collapsed, maybe due to the large dimensional-
ity (4096-dim.) of the feature vectors xxx at the penultimate layer; it might be difficult to train
the distance-based classifier (GMM) in such a large dimensional feature space. On the other
hand, the modified softmax loss (15), which is improved in our large-margin framework,
works fairly well in spite of the simple formulation, and in particular the proposed method
produces favorable performance on these various CNNs by consistently improving the per-
formance of the softmax loss. Note again that these two methods simply substitute for the
ordinary softmax loss without controlling the regularization parameter λ during the end-to-
end training. The proposed method is further applied to the deeper CNN of ResNeXt-50 [28]
on ImageNet and to the scene classification task on Places-365 dataset [32] using the CNN
of VGG-16-mod. As shown in Table 4, the method also renders the performance improve-
ment in these cases, demonstrating the general applicability to various classification. The
proposed method (8) works just as regularization so that it is applicable to the other softmax-
based losses. For example, we can apply the proposed method to the modified softmax loss
(15) which contains the hard bias ρ̌ = 1 producing favorable performance as shown above,
and find that the combination further improves performance as demonstrated in Table 4.
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5 Conclusion
In this paper, we have proposed a novel regularization method to enhance the classification
margin in the softmax loss. Through analyzing the softmax loss, we reveal the large-margin
effect in the loss which is dependent on the distribution of logits, and then formulate the
regularization on the logits by means of the symmetric KL divergence for inducing the large-
margin classifier. Our analysis of the softmax loss also theoretically clarifies the large-margin
aspect of the label smoothing regularization which has been applied rather heuristically. In
the experiments on various image classification using deep CNNs, the proposed method
produces favorable performance in comparison with the other large-margin methods.
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