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ABSTRACT

A deep neural network is one of the promising approach to
produce state-of-the-art performance on various fields such as
pattern recognition and signal processing. While the network
architecture is intensively studied, as to the network compo-
nents, non-linear activation functions are the main subject of
research in the literature. Most of the activation functions,
such as a rectified linear unit (ReLU), operate on each of fea-
ture channels in an element-wise manner and thus can be re-
garded as extracting occurrence characteristics from the input
feature map. In this paper, we propose a co-occurrence acti-
vation unit to work across feature channels by extending the
element-wise activation function. In contrast to the original
co-occurrence formulation applied to hand-crafted feature ex-
traction methods, the proposed co-occurrence unit is trainable
by a gradient-based optimization through back-propagation
learning and exploits the co-occurrence relationships among
the feature channels. The experimental results on image clas-
sification datasets show that the proposed co-occurrence acti-
vation unit embedded into various types of ConvNets favor-
ably improve classification performance.

Index Terms— Neural network, Non-linear activation
function, Co-occurrence

1. INTRODUCTION

Deep neural networks (DNN), such as deep convolutional
neural networks (ConvNets), have been making great impact
on pattern recognition and signal processing fields [1, 2, 3, 4].
The success of DNN lies in the end-to-end learning for the
network parameters, though the network architecture is manu-
ally determined, which highly contrasts with the hand-crafted
features, such as histogram of oriented gradients (HOG) [5].

The neural networks are basically built on several types
of layers, such as linear projection (convolution), non-linear
activation function and pooling. While the network architec-
ture is intensively studied and various types of networks are
proposed [6, 7], as to the network components, non-linear ac-
tivation functions would be the main research subject. The
legacy activation function is a sigmoid function, but it has
the problem of vanishing gradients. Therefore, to cope with
that problem, the rectified linear unit (ReLU) [8], which is

currently the most popular activation function, and its vari-
ants [9, 10, 11, 12, 13] are proposed.

Such an activation function operates on each of feature
channel, and it could be regarded as extracting the occurrence
(mono-activation) of the input feature channel; the ReLU ex-
ploits the occurrence of the feature channel whose value ex-
ceeds zero. The local response normalization unit [1] accepts
multiple feature channels, but it just normalizes the feature
channels. Therefore, there might be room to further extend
the activation function so as to work on multiple channels,
and from the perspective that ReLU is related to occurrence,
our goal is to extract co-occurrence across feature channels
by an activation function.

Turning back into the hand-crafted image feature extrac-
tion, the occurrence characteristics are measured in the form
of histogram such as by HOG [5], and the co-occurrence fea-
tures are also well studied [14, 15, 16, 17, 18]. In those meth-
ods, the co-occurrence patterns are hand-crafted, usually ex-
ploiting all the combinations of feature channels in a form
of rather higher dimensional features; the dimensionality is
polynomially increased according to the number of input fea-
ture channels. To remedy the high dimensionality, a feature
selection scheme is commonly adopted to reduce the feature
dimensionality such as via AdaBoost [17, 18]; in most cases,
the feature selection proceeds incrementally by picking up the
informative one from the hand-crafted patterns. Thus, we can
say that learning co-occurrence patterns from scratch, not se-
lecting, is difficult and challenging.

In this study, we propose a novel activation unit based
on co-occurrence across feature channels. In contrast to the
hand-crafted co-occurrence feature extraction, the proposed
co-occurrence unit is trainable in the framework of end-
to-end learning which is the primary factor for successful
DNNs; it is actually learned by a gradient-based optimiza-
tion in the back-propagation. Note that, on the other hand,
the feature selection approaches to learn the hand-crafted
co-occurrence features [17, 18] are not compatible with the
back-propagation in DNNs since the combinatorial selection
process is not differentiable. For realizing the trainability, we
rebuild the process to extract co-occurrence from the input
feature map through decomposing the original formulation
into three layers in a neural network manner and relaxing
them to obtain the pseudo co-occurrence extraction.
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2. TRAINABLE CO-OCCURRENCE UNIT

We first present a formulation to extract co-occurrence which
is applied to hand-crafted features, and then propose the co-
occurrence activation unit (CoOU) to be trainable and thus be
embedded in neural networks through end-to-end learning.

2.1. Co-occurrence feature extraction

Suppose we have a (primitive) non-negative feature map X ∈
RH×W×C+ extracted from an input image whereH andW are
height and width of the map and C indicates the number of
feature channels. The co-occurrence features are generally
computed on the map X by

Fh,w,k = βk
∏

(∆h,∆w,c)∈Pk

Xh+∆h,w+∆w,c, (1)

where βk (> 0) is the positive scaling parameter, Pk indi-
cates the k-th co-occurrence pattern consisting of the dis-
placement position (∆h,∆w) relative to the reference po-
sition (h,w) and the feature channel c to participate in the
co-occurrence; for example, the co-occurrence of the chan-
nels c and c′ at the same position is extracted by the pattern
P = {(0, 0, c), (0, 0, c′)}. The K-dimensional co-occurrence
features are produced by the K patterns {Pk}Kk=1 which
are defined manually in the hand-crafted feature extraction
methods [14, 15, 16] where local (small |∆h| and |∆w|) and
two-point co-occurrence (|Pk| = 2) are usually considered
for extracting all theC2 combinations of the feature channels.
A variety of co-occurrence features are extracted according
to the types of the feature map X [14, 15, 16], and the co-
occurrence feature is finally computed by pooling Fh,w,k over
the region of interest by fk =

∑
(h,w)∈DROI

Fh,w,k.

2.2. Decomposition of co-occurrence formulation

For inducing tractable co-occurrence formulations, we rewrite
(1) into the following form;

Fh,w,k = exp
[
log(βk) +

∑
(∆h,∆w,c)∈Pk

log(Xh+∆h,w+∆w,c)
]

= exp
[
bk +

∑
(∆h,∆w,c)∈N

wk∆h,∆w,c log(Xh+∆h,w+∆w,c)
]
,

s.t. Xh,w,c ≥ 0 ∀(h,w, c), (2)

where we regard log(0) = −∞ and exp(−∞) = 0, and in-
troduce the bias bk = log(βk) and the weight wk such that
wk∆h,∆w,c

= 1 for (∆h,∆w, c) ∈ Pk, otherwise wk∆h,∆w,c
=

0, and N indicates a set of neighborhood patterns, N ⊇
Pk ∀k, on which the weight wk is defined; for example, spa-
tially local co-occurrence of |∆h| = |∆w| = 1 shapes the
weight wk into 3 × 3 × C tensor, while that of no spatial
extent |∆h|= |∆w|=0 produces the weight of 1× 1× C.

The formulation (2) reveals that the co-occurrence feature
extraction is composed of the following three steps; the input

X is (i) non-linearly transformed via log, (ii) convolved with
the binary filter wk which encodes the co-occurrence pattern,
and finally (iii) non-linearly transformed via exp. Therefore,
this reformulation enables us to compute the co-occurrence
features by three layers all of which are standard in neural
networks, i.e., one convolution and two non-linear activation
layers, but note that it is only the case of feed-forward path.

2.3. Differentiable co-occurrence formulation

As shown in Sec. 2.2, learning co-occurrence features is re-
duced to an optimization of the binary filter wk ∈ {0, 1}|N |,
though having two difficulties. First, it results in a combina-
torial optimization to search which filter weights should be
activated, being regarded as an NP-hard problem. The second
difficulty is that log(x) function is not differentiable at x = 0,
making it hard to apply the gradient-based optimization which
is necessary in back-propagation to train the neural networks.
Therefore, for embedding the co-occurrence extraction into
the neural networks in the framework of end-to-end learning,
it is required to approximate the formulation (2) so as to cope
with the above-mentioned difficulties.

Our approximation is first applied to the filter wk through
relaxation into wk∈[0, 1]|N | s.t.1>wk = 1; the filter weight
is linearly relaxed and the unit-sum constraint is imposed for
avoiding the exponential explosion of the feature magnitude.
Second, the two non-linear functions log and exp are approx-
imated by their upper/lower-bound functions represented in
the following piece-wise linear forms:

log(x)≈l(x)=

{
x−1 x ≥ log(α)

α−1

αx−1−log(α) x< log(α)
α−1

, (3)

exp(x)≈e(x)=

{
x+1 x ≥ log(α)

α−1 − 1
1
αx+ 1+log(α)

α x < log(α)
α−1 − 1

, (4)

where α > 1 is the fixed parameter for the slope, say α = 10
in this study; these functions are depicted in Fig. 1a. Applying
these approximations to the co-occurrence extraction (2), we
obtain the pseudo co-occurrence activation function as

F̂k = e
[
wk ∗ l(X) + bk

]
, s.t. wk ≥ 0, 1>wk = 1, (5)

where the functions l and e operate elementwisely and ∗
is the convolution operator. Note that the proposed co-
occurrence formulation accepts any feature map X of which
value is even negative; due to the functionality of l, the neg-
ative input significantly brings down the output of w ∗ l(X),
which eventually results in the smaller output F̂ close to zero
as is the case with the co-occurrence containing zero input.
This formulation facilitates the end-to-end learning since the
input feature map X can also be optimized via ∂

∂X F̂ . The
constrained filter weights wk are updated via SGD as

w̃=wk+(I− 1

|N |
11>)∇, wk← max[w̃, 0]∑

∆h,∆w,c

max[w̃∆h,∆w,c, 0]
, (6)
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Fig. 1. The approximated functions l(x) and e(x) in (a) com-
pose the proposed co-occurrence unit (CoOU) in (b).

where I is an identity matrix, 1 is a vector whose elements
are all 1, and ∇k indicates the updating vector1 for wk pro-
duced such as by a SGD method based on the learning rate,
(back-propagated) gradient w.r.t wk, momentum and so on.
The above update formula ensures the constrained filter w
satisfying non-negativity and unit-sum.

As in the hand-crafted co-occurrence features [14, 15, 16],
it is preferable to take into account not only the (higher-order)
co-occurrence features but also the simple occurrence ones.
In the neural network of our interest, the occurrence features
are simply extracted by ReLU [8] and can be combined with
the proposed co-occurrence activation function (5) by means
of the residual model [7] (Fig. 1b), in which the number of the
co-occurrence patterns is the same as that of the input feature
channels, K = C. As discussed in [7], this co-occurrence
activation unit (CoOU) makes it possible to effectively ex-
tract the higher-order co-occurrence characteristics which are
residual compared to the occurrence based on ReLU.

For training CoOU, the co-occurrence function (5) is sim-
ply initialized as an identity mapping; wk∆h=0,∆w=0,k=1, oth-
erwise 0.

2.4. Connection to Related Works

The layers of pseudo log l(x) and pseudo exp e(x) are actu-
ally variants of leaky ReLU [11, 12]; l(x) uses significantly
leaky slope (α = 10) while e(x) employs similar leaky slope
(1/α = 0.1) to those used in [11, 12]. While those ReLUs
have been applied mainly for remedying the gradient vanish-
ing problem in the sigmoid-based activation unit and due to
the biological insights [19], we derive l(x) and e(x) from
a co-occurrence feature extraction process. Thus, the ReLU
can be interpreted from the viewpoint of the occurrence/co-
occurrence. Note that the whole CoOU (Fig. 1b) exhibits
clear difference from the ordinary ReLUs; the pair of large
(α) and small (1/α) leaky ReLUs have not been applied.

Our co-occurrence function is also related to MEX func-
tion implemented in SimNet [20] which consists of log and
exp functions. The main difference is the order of those non-
linear functions; in MEX, exp is first applied to the input fea-
ture map X and then log is finally applied to provide the func-
tionality similar to max [20]. It is far from the co-occurrence
characteristics and a different feature extraction process from

1Here, the tensor wight wk is unfolded into a vector of R|N|×1
+ .
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Fig. 2. ConvNet architectures used in the experiment.

ours. In addition, those non-linear functions are directly ap-
plied without any approximation like l(x) and e(x), inducing
unfavorable convergence in learning ConvNets which are dif-
ferent architectures from SimNets, as shown in Sec. 3.1.

3. EXPERIMENTAL RESULTS

The proposed CoOU is applied to ConvNets on image classi-
fication tasks. In the experiment, we apply the simplest CoOU
that has no spatial extent by {wk ∈ R1×1×C}Ck=1; the con-
volution layer in the CoOU (5) results in 1 × 1 convolution.
We implement all the ConvNets by using MatConvNet tool-
box [21] and basically follow the learning parameters pro-
vided in the toolbox for training the networks from scratch.

3.1. Performance analysis on NiN

We analyze the performance of the CoOU from various
aspects, by embedding it into Network-in-Network (NiN)
model [2] on Cifar100 dataset [22]. The performance is eval-
uated by the classification error rate averaged over 5 trials
with different random seeds for the initialization of NiN.
Depth (Table 1a). The CoOUs are embedded in the NiN
by replacing ReLUs at the end of blocks of various depths
(Fig. 2a) to exploit co-occurrence of diverse-leveled features.
The CoOU favorably improves the performance of NiN com-
pared to the baseline performance (i). And, the performance
improvement is affected by the depth at which the CoOU is
embedded. The CoOUs at the deeper blocks (iii,iv) exhibit
better performance than that of the first block (ii). This is
related to the abstract levels of the input features over which
the co-occurrence characteristics are extracted by CoOU. Co-
occurrence generally exhibits discriminative power on the
features of the moderately higher abstract levels as shown in
the hand-crafted features [15, 16]. While the first block in
NiN renders lower-level features, the deeper blocks can ex-
tract the more semantic features of high abstraction which are
favorably fed into the CoOU. The multiple CoOUs further
improve performance (v∼vii), and the best performance is
achieved by embedding CoOUs at three blocks (vii).
Comparison (Table 1b). The pseudo co-occurrence formula-
tion (5) is compared with the original formulation (2) directly
using log and exp functions; practically, log(max(0, x) +
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(a) Depth
CoOU is embedded at

block 1 block 2 block 3 Error rate (%)
i 35.42±0.31

ii X 35.14±0.24

iii X 34.69±0.27

iv X 34.63±0.27

v X X 34.37±0.16

vi X X 34.17±0.21

vii X X X 34.03±0.31

(b) Comparison
Unit type Error rate (%)

i CoOU (pseudo) 34.03±0.31

ii CoOU (original) 75.19±29.18

iii MEX [20] (pseudo) + ReLU 35.28±0.35

iv MEX [20] (original) + ReLU 99.00±0

v 1× 1 Convolution + ReLU 35.14±0.33

Table 1. Performance analysis using NiN [2] on Cifar100.

(a) Cifar100
ConvNet ResNet-38 ResNet-74 ResNet-110
original 28.76±0.13 27.51±0.22 27.31±0.54

with CoOU 28.24±0.11 26.75±0.14 26.40±0.27

(b) ImageNet
ConvNet AlexNet [1] VGG-M [23]
original 16.58 12.96

with CoOU 15.57 12.43

Table 2. Performance results on the other Con-
vNets.

1e−10) for log. These CoOUs are embedded in the three
blocks as in Table 1a(vii). As expected, the ConvNet con-
taining the CoOUs of the original formulation (ii) does not
favorably converge in the training. On the other hand, the
proposed CoOU using pseudo co-occurrence (5) works to fa-
cilitate the end-to-end learning while favorably extracting the
co-occurrence characteristics. The proposed CoOU is also
compared to the other types of units; MEX function [20] and
1 × 1 convolution followed by ReLU. For fair comparison,
those units are implemented in the residual path with ReLU
(Fig. 1b). As is the case with (i,ii), we apply the pseudo for-
mulation (4) to log and exp functions of the MEX unit in addi-
tion to the original formulation, and similarly observe that the
MEX of the original formulation hampers learning the Con-
vNet (iv), while the pseudo formulation remedies it (iii). The
MEX, however, is inferior to the proposed CoOU since the
MEX function is originally designed for the SimNet [20], not
for the ConvNet. It is noteworthy that CoOU can boost the
performance of ConvNets which are widely applied in an im-
age analysis. As to the 1×1 convolution, the performance (v)
is slightly improved from the baseline (35.42±0.31), but is still
inferior to that of CoOU. This comparison shows that the non-
linearity in CoOU is suitable for boosting the performance of
ConvNet as an activation unit.
Qualitative analysis. Fig. 3a shows the learned filter weights
{wk ∈ R96

+ }96
k=1 in the CoOU embedded at the first block of

NiN, representing the co-occurrence patterns. The k-th co-
occurrence pattern is learned so as to be compatible with the
k-th feature component due to the residual model (Fig. 1b),
and thus we can roughly observe the diagonal weight activa-
tion in Fig. 3a. Fig. 3b shows that the learned weights are
sparse due to the non-negativity and unit-sum constraints in
the co-occurrence activation function (5).

3.2. Application to other ConvNets

We apply the CoOU to the other ConvNets, ResNet [7] on
Cifar100 dataset, and AlexNet [1] and VGG-M [23] on Ima-
geNet dataset [24] for demonstrating its generality.

As in NiN, the ResNet that we use also contains three
blocks and the CoOUs are embedded at those three blocks.
The depth of the ResNet is simply controlled by changing
the number of building components called Bottleneck Unit in
Fig. 2c; for example, we show in Fig. 2b the ResNet-38 in
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Fig. 3. Learned co-occurrence filter weights.

which four units are stacked in each block. In this experi-
ment, we employ ResNet-38/74/110 which are constructed by
stacking 4/8/12 units, respectively. The classification perfor-
mance on Cifar100 dataset is measured in the same manner as
in Sec. 3.1. In the ConvNets of AlexNet [1] and VGG-M [23]
which are composed of five convolution blocks, the CoOUs
are embedded by replacing ReLU layers at those five blocks.
Since the fully-connected layers are regarded as a classifier
(multi-layered perceptron), we focus only on the feature ex-
tractors of convolution layers conv1∼5. The performance
on ImageNet dataset [24] is evaluated by top-5 error rate.

The performance results are shown in Table 2 demonstrat-
ing that the proposed CoOU favorably improves the perfor-
mance of those ConvNets. These results show that CoOU
works well in various types of ConvNets as an activation unit.

4. CONCLUSION

We have proposed a novel activation unit to extract co-
occurrence characteristics among the feature channels. The
original co-occurrence formulation employed in hand-crafted
feature extraction has difficulty in the optimization espe-
cially by a gradient-based approach (back-propagation). We
decompose the co-occurrence extraction process into three
layers and approximate them to make the co-occurrence
function trainable in the neural networks through the end-to-
end learning. Then, we propose the co-occurrence activation
unit (CoOU) by integrating the co-occurrence and occurrence
(ReLU) activation functions in the residual model. In the
experiments on Cifar100 and ImageNet datasets, it is shown
that the proposed CoOU is favorably learned, improving the
classification performance of various ConvNets. Our future
work includes applying the CoOU to the other DNNs than
ConvNets since the simple CoOU of no spatial extent accepts
various types of multi-channel input.
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