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Abstract. Deep convolutional neural network (ConvNet) is one of the
most promising approaches to produce state-of-the-art performance on
image recognition. The ConvNet exhibits excellent performance on the
task of the training target as well as favorable transferability to the other
datasets/tasks. It, however, is still dependent on the characteristics of the
training dataset and thus deteriorates performance on the other types
of task, such as by transferring the ConvNet pre-trained on ImageNet
from object classification to scene classification. In this paper, we pro-
pose a method to improve generalization performance of ConvNets. In
the proposed method, the ConvNet layers are partially shared across het-
erogeneous tasks (datasets) in end-to-end learning, while the remaining
layers are tailored to respective datasets. The method provides models of
various generality and specialty by controlling the degree of shared lay-
ers, which are effectively trained by introducing the diversity into mini-
batches. It is also applicable to fine-tuning the ConvNet especially on
a smaller-scale dataset. The experimental results on image classification
using ImageNet and Places-365 datasets show that our method improves
performance on those datasets as well as provides the pre-trained
ConvNet of higher generalization power with favorable transferability.

1 Introduction

Image recognition performance has been significantly improved by deep convo-
lutional neural network (ConvNet) [1,2] in the framework of deep learning; it is
applied with great success to such as object detection [3] and tracking [4]. The
deep ConvNet stacks many convolution layers in order to extract image features
of diverse levels and a huge number of parameters contained in those layers
are trained in an end-to-end manner through back-propagation. The problem of
over-fitting is remedied by leveraging large-scale annotated data [5,6] and some
techniques such as rectified linear unit (ReLU) [7], DropOut [8] and BatchNor-
malization [9].

The so-trained Deep ConvNets exhibit excellent classification performance
on the dataset/task of the training target, while being effectively transferable
to the other datasets and tasks [10–12]. For example, the ConvNet pre-trained
on ImageNet [5] can be applied as an image feature extractor to various image
recognition tasks on which hand-crafted features [13,14] have effectively worked;
the pre-trained (off-the-shelf) ConvNets produce state-of-the art performance
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the task-oriented part without carefully considering the overlaps among the label
sets; this is practically useful to free us from manually checking label contents.
Through learning on various datasets of heterogeneous tasks, we can enhance
the generality of the shared ConvNet, which facilitates classifying both objects
(ImageNet) and scenes (Places-365), by extracting fundamental features shared
across them.

The proposed model that shares the first l layers is trained as follows.

min
θ1:l
0 ,{θ̂l+1:L

d }D
d=1

D∑

d=1

∑

(I,y)∈Dd

l[y,F(I;θd = {θ1:l
0 , θ̂l+1:L

d })], (3)

where θ1:l
0 indicates the shared parameters of up to the l-th layer and θ̂l+1:L

d

is the remaining parameter set which is specific to the d-th dataset. In other
words, the ConvNet of F(I;θd = {θ1:l

0 , θ̂l+1:L
d }) is trained on the d-th dataset.

Note that the shared parameter θ1:l
0 sees all the data while θ̂l+1:L

d only looks at
the data appearing in the d-th dataset Dd. The degree of sharing ConvNet is
controlled by the depth l at which the ConvNet branches (Fig. 1). This unified
method (3) produces the separate model (1) by l = 0 and the hybrid model (2)
by l = L. We conduct thorough experiments in Sect. 3 by gradually changing
the depth l.

To properly learn the ConvNet (3) on heterogeneous datasets, we introduce
the diversity into a mini-batch in training as follows. The same number of samples
are drawn from respective datasets and packed into a mini-batch in order to fairly
take into account the heterogeneous characteristics derived from the datasets
at each updating step; for example, we sample 256 images from ImageNet and
Places-365, respectively, and concatenate them to construct the mini-batch of
512 samples. Then, as shown in Fig. 1, each sample in the mini-batch is passed
through the network differently according to which dataset it belongs to, and at
the shared layers the derivatives for those (heterogeneous) samples are merged
to update the network parameters {θd}Dd=1 via mini-batched SGD. Thereby,
the updating (derivative) is consistent throughout the end-to-end learning even
on the heterogeneous datasets. In contrast, the MTL method [15] fills a mini-
batch with homogeneous samples all of which are drawn from the randomly
selected dataset. This produces consistent updates only when all the tasks are
related, i.e., the training datasets are homogeneous. In the case of heterogeneous
datasets, however, the derivatives are inconsistent over the training steps since
the characteristics of the mini-batches differ at every step according to what type
of dataset is selected. This would hamper the learning, as empirically shown in
Sect. 3. Note that our mini-batches merging derivatives across heterogeneous
samples contribute to proper learning of ConvNet by effectively extracting the
common updating information across the heterogeneous datasets.

3 Experimental Results

We apply the proposed method (Sect. 2) to the AlexNet model [1] which is com-
posed of the five convolution and three fully-connected layers (L = 8) as shown
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in Fig. 1; hereafter, we follow the conventional naming of the layers, such as
conv1 for the first convolution layer. Note that since the batch normalization [9]
is embedded in the ConvNet (Fig. 1), we do not apply DropOut [8]. All the
networks are implemented by using MatConvNet toolbox [17].

3.1 Datasets

In this study, we train the ConvNets (3) on two large-scale datasets of ImageNet [5]
for object classification and Places-365 [6] for scene classification. The ImageNet

contains 1,329,405 training images of 1,000 object classes (ILSVRC2014) and the
Places-365 is composed of 1,839,960 images sampled from 365 scene categories.
For the hybrid model (2), we simply concatenate those two label sets into 1,365
class labels as in [6].

3.2 Mini-batch

For separately training ConvNets (1) (or (3) of l = 0), we apply the mini-batch
of 256 samples on the respective datasets. On the other hand, as described
in Sect. 2, we draw 256 samples from ImageNet and Places-365, respectively, to
construct the (heterogeneous) mini-batch of 512 samples, in a fair manner with
the training of the separate model (1). Note that the mini-batch of 512 samples
is split into two mini-batches of 256 samples at the branch in our ConvNets (3),
as shown in Fig. 1. Since the two datasets contain different numbers of images,
i.e. ImageNet is smaller than Places-365, we pad ImageNet dataset with images
randomly picked up from that dataset so that it has the same number of images
as Places-365. Thereby, we can draw the same number of samples from those
datasets in constructing the heterogeneous mini-batch.

The mini-batch is filled with images of 224 × 224 pixels cropped from the
original ones with random flipping and jittering in terms of position and pixel
values as in [1].

3.3 Learning

The ConvNets are trained by SGD in 20 epochs through decreasing learning
rate constantly on log-scale from 10−1 to 10−4; the learning rate is determined
as 10− 16+3t

19 , t ∈ {1, · · · , 20} where t indicates the epoch. We use the learn-
ing parameter of 0.9 for momentum and 0.0005 for weight decay. This training
scheme is applied to any ConvNets.

3.4 Performance on ImageNet and Places Datasets

We evaluate performance on the datasets used for training. According to the
standard evaluation protocols in ImageNet [5] and Places-365 [6], we measured the
top-5 classification error rates on a validation set by applying 10-crop testing
procedure to test images [1]. In the hybrid model of (2) (or (3) with l = 8),
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the last fully-connected layer is split so as to produce 1,000 class outputs on
ImageNet and 365 on Places-365 after learning, which results in the same archi-
tecture as the model of l= 7. Note that the separate model (1) corresponds to
the original AlexNet model.

Figure 2 shows the performance results. Though the performances are slightly
fluctuated due to only 1-shot evaluation, we can see that (1) the proposed model
sharing a part of ConvNet improves performance being superior even to the
hybrid model [6], and (2) the models sharing smaller part exhibit better per-
formance; the best result is achieved by the model of l = 1. The hybrid model
of l = 8 merges (concatenates) the label sets of ImageNet and Places-365 by
force, and thus might take into account the label correlation wrongly, degrading
performance, compared especially to our model of l = 7. Our method enjoys
larger performance improvement on ImageNet than on Places-365 since the sam-
ples from Places-365 compensate the smaller-scale ImageNet by favorably exploit-
ing the common characteristics across them. In contrast, the MTL method1 [15]
does not contribute to improvement but degrade the performance. The compari-
son between ours and the MTL highlights the effectiveness of our heterogeneous
mini-batch construction for leveraging the heterogeneous datasets to improve
performance. The MTL switches a dataset to produce mini-batches at each SGD
step, leading to poor results especially as the shared components increases due
to inconsistently updating the network at training steps. On the other hand,
our approach makes the update consistent throughout the learning by merging
the derivatives at each step to exploit the effective update information which is
common across the heterogeneous samples. The heavily shared model of larger l
imposes the same feature extractor on these heterogeneous tasks, which slightly
deteriorates the performance compared to those of smaller l. Such shared model,
however, would contribute to a general feature extractor as described in the next
section.

3.5 Transferability

Next, we evaluate the transferability of the above pre-trained ConvNets by apply-
ing them to the other datasets than ImageNet and Places-365. The pre-trained
ConvNets are tested on various datasets which are categorized into four types
in terms of classification targets (Table 1); VOC2007 [18] and Caltech256 [19] for
object classification, Indoor67 [20], Scene15 [21] and SUN397 [22] for scene classifica-
tion, and Bird200 [23], Flower102 [24] and Pet37 [25] for fine-grained classification,
and Event8 [26], Action40 [27] and FMD [28] for the others.

The image features are extracted by applying the pre-trained Convnet in a
convolution manner to a rescaled image of which the minimum side has 256 pix-
els, and then are max-pooled over the image region. The neuron activations at the
intermediate layer are employed to produce holistic image feature vector of fixed

1 In training by the MTL method, for fair comparison, we use the same number of
samples as in ours by padding ImageNet dataset.
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Fig. 2. Classification error rate (%) on a validation set of ImageNet/Places-365. The
top-5 error rates are measured by applying 10-crop testing procedure [1]. The ConvNets
(3) are trained by the MTL approach [15] and ours.

Table 1. Details of the datasets used for evaluating transferability. This table shows
the number of training samples, test samples and class categories from the top row to
the bottom.

Object Scene

VOC2007 Caltech256 Indoor67 Scene15 SUN397

Training samples 5011 15360 5360 1500 19850

Test samples 4952 9984 1340 2985 19850

Categories 20 objects 256 objects 67 scenes 15 scenes 397 scenes

Fine-grained Others

Bird200 Flower102 Pet37 Event8 Action40 FMD

Training samples 5994 2040 3680 560 4000 500

Test samples 5794 6149 3669 480 5532 500

Categories 200 species 102 species 37 species 8 sports 40 actions 10 materials

dimensionality. As shown in Fig. 3, the ConvNet pre-trained on ImageNet/Places-
365 exhibits dependency on the types of the training datasets. For achieving
general features, as in [10], we exploit the layers of fc72 both on ImageNet and
Places-365 (see Fig. 1b) and concatenate them into the 8,192-dimensional feature
vector for the models of l = 0, · · · , 6. On the other hand, we concatenate fc6
and fc7 to produce 8,192-dimensional features for l = 7, 8 since the layers of
fc6 and fc7 are both shared in those models (see Fig. 1c, d). The features are
finally classified by linear SVM [29] and the classification accuracy is measured
according to the standard protocol provided in the respective datasets; on Cal-

tech256, we draw 60 training samples on each class, and for the details, refer to
the respective papers.

The performance results are shown in Table 2. By combining two type
of pre-trained ConvNets for objects (ImageNet) and scenes (Places-365), the

2 fc7 outperforms fc6 as shown in Fig. 3.
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ConvNet features exhibit favorable transferability on various kinds of tasks
including both object and scene classifications. The heavily shared models of
larger l are superior to those of smaller l, which contrasts to Table 2. By shar-
ing larger part of ConvNet across the heterogeneous datasets, the pre-trained
ConvNet achieves better generalization power by exploiting common (general)
features. Especially, the model of l = 7 produces favorable performance on the
tasks of fine-grained and others. Comparing l = 7 with l = 8 (hybrid), one can
see that splitting fc8 layer is more effective than concatenating label sets for
enhancing generalization performance.

We can conclude that (1) the less shared ConvNet of l = 1 is effective for
improving performance on the task of training target (Fig. 2), and (2) the heav-
ily shared ConvNet of l = 7 provides a general feature extractor with better
transferability (Table 2).

Table 2. Classification accuracies (%) by the pre-trained ConvNets on various datasets.

Dataset Separate l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 Hybrid l = 8

VOC2007 79.97 80.50 80.20 80.52 80.59 80.38 80.15 79.96 80.05

Caltech256 74.27 74.85 75.07 74.39 74.88 74.19 74.78 74.59 74.91

avg. (object) 77.12 77.67 77.64 77.46 77.73 77.29 77.46 77.28 77.48

Indoor67 74.82 75.56 76.53 76.19 75.40 75.84 75.77 75.38 75.56

Scene15 93.11 93.39 93.47 93.35 93.65 93.31 93.05 93.03 93.06

SUN397 60.63 61.13 61.32 61.05 61.19 60.48 60.13 59.22 59.01

avg. (scene) 76.19 76.69 77.11 76.86 76.75 76.54 76.32 75.88 75.88

Bird200 63.35 62.82 62.87 62.68 62.34 63.05 63.45 65.29 64.72

Flower102 90.07 90.18 90.79 90.36 90.22 90.32 91.01 90.20 90.60

Pet37 81.92 82.33 82.41 82.10 81.62 81.55 81.66 82.37 81.68

avg. (fine-grained) 78.44 78.44 78.69 78.38 78.06 78.31 78.71 79.29 79.00

Event8 96.04 95.90 96.04 95.97 96.32 96.11 96.60 96.32 96.11

Action40 62.60 64.21 64.05 64.37 64.70 63.69 63.34 64.67 63.61

FMD 72.85 73.27 73.62 72.19 73.73 73.65 75.13 74.37 72.40

avg. (others) 77.16 77.80 77.90 77.51 78.25 77.81 78.35 78.45 77.37

3.6 Fine-Tuning

Fine-tuning is employed to further adapt the pre-trained ConvNet to the target
dataset, though requiring tedious learning parameter tuning. We fine-tune the
pre-trained ConvNet by decreasing the learning rate from 10−3 to 10−6 over 40
epochs (10− 114+3t

39 , t ∈ {1, · · · , 40}), with the mini-batch of 128 samples. Note
that the ConvNet is initialized as the optimized parameter values in Sect. 3.4
except for the last fc8 layer which is randomly initialized.

Based on the results in Table 2, we apply the model of l = 7 to the tasks
other than object and scene classifications which are the targets in the pre-
training. The performance results are shown in Table 3. By fine-tuning the model,
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Fig. 3. Performance comparison for fc6,
fc7 in the model of l = 1 and fc7 in
ConvNets pre-trained on ImageNet/Places-
365. The fc7 features exhibit superior per-
formance to fc6, and ImageNet-ConvNet
works only on the ImageNet-related tasks,
excluding scene classification.

Table 3. Classification accuracies (%) of
fine-tuned ConvNet of l = 7 pre-trained on
both ImageNet and Places-365 in Sect. 3.4.

Original Fine-tuned

Fine-grained Bird200 65.29 65.59

Flower102 90.20 91.53

Pet37 82.37 80.24

Others Event8 96.32 96.60

Action40 64.67 65.00

FMD 74.37 76.56

Table 4. Classification accuracies (%) of
the pre-trained ConvNets of l = 7 which
is fine-tuned by our method. All the three
datasets are used in our fine-tuning.

Others

Event8 Action40 FMD
Original 96.32 64.67 74.37

Standard fine-tuning 96.60 65.00 76.56

Our fine-tuning 96.81 65.13 78.03
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(Table 1). Through our fine-tuning, the ConvNet can see larger number of train-
ing samples and effectively exploit common characteristics across the multiple
datasets to improve performance on the small-scale dataset.

4 Conclusion

In this paper, we have proposed a method to train a ConvNet on heterogeneous
tasks (datasets) for improving performance. In the proposed method, the Con-
vNet layers are partially shared across the different datasets in the end-to-end
learning to enhance generalization power, while the remaining layers are tai-
lored to respective tasks (datasets). By controlling the degree of shared network
layers, the method provides various types of ConvNet of different generality.
To properly learn the ConvNet on the heterogeneous datasets, we construct
a mini-batch so as to fairly contain heterogeneous samples, producing consis-
tent updates (derivatives) throughout the training. The experimental results on
ImageNet and Places-365 datasets show that the ConvNet sharing less layers
favorably improves performance on those dataset, and that of heavily shared
layers exhibits better generalization performance with favorable transferability.
We have also demonstrated that the proposed method is applicable to fine-
tuning the ConvNet especially on small-scale datasets. Our future works include
to apply the method to various ConvNets.
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