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Abstract

In action recognition, local motion descriptors con-
tribute to effectively representing video sequences where
target actions appear in localized spatio-temporal regions.
For robust recognition, those fundamental descriptors are
required to be invariant against horizontal (mirror) flipping
in video frames which frequently occurs due to changes
of camera viewpoints and action directions, deteriorating
classification performance. In this paper, we propose meth-
ods to render flip invariance to the local motion descrip-
tors by two approaches. One method leverages local mo-
tion flows to ensure the invariance on input patches where
the descriptors are computed. The other derives a invariant
form theoretically from the flipping transformation applied
to hand-crafted descriptors. The method is also extended
so as to deal with ConvNet descriptors through learning
the invariant form based on data. The experimental re-
sults on human action classification show that the proposed
methods favorably improve performance both of the hand-
crafted and the ConvNet descriptors.

1. Introduction
There is an increasing amount of multimedia data con-

taining videos through security cameras in the real world

and web sites (such as YouTube) on the Internet. Thereby,

it creates an urgent demand for automatic action recogni-

tion in computer vision communities. The action recogni-

tion has been tackled over the last two decades [40, 28, 11].

The difficulty of the action recognition is first in extracting

effective motion features. An input video is formulated in

a spatio-temporal volume while the images are defined in a

two-dimensional space domain. Such higher dimensional-

ity of input data makes it harder to design motion features.

Along with the advances of image classification, the mo-

tion descriptors which extract motion characteristics are de-

veloped in the framework of bag-of-features over spatio-

temporal interest points and/or dense trajectories, exhibiting

successful performance in realistic videos [20, 6, 35, 36].

On the other hand, deep convolutional neural network (Con-

vNet) methods have been applied to various image recogni-

tion tasks with great success, and it is now being extended

to motion recognition fields together with the large-scale

video dataset [17, 16, 32]. The ConvNet methods can con-

struct spatio-temporal features to effectively describe the

motion patterns via end-to-end learning [32]. These two

approaches are comparable from the viewpoint of classifi-

cation accuracy, being different from the image classifica-

tion where the ConvNet significantly outperforms the hand-

crafted methods, which attracts enthusiastic research effort

to improve ConvNet methods in terms of architecture [29],

training scheme [38] and local descriptors [37].

An effective descriptor is required to be robust or invari-

ant against variations of input signal which are irrelevant

to recognition, and in action classification, it is necessary

to acquire the invariance to horizontal (mirror) flipping in

video sequences. Both video cameras and actors (humans)

are standing upright due to gravity on the Earth and thus

the rotation around the optical axis of the camera rarely oc-

curs. On the other hand, the horizontal flipping is frequently

observed such as due to changes of the camera viewpoint

(from the front or the back) and/or the action direction (left-

ward or rightward); through horizontal flipping, the video

frames capturing leftward walking correspond to those of

rightward walking captured from the opposite side, and vice

versa. Robust recognition can be built on the motion de-

scriptors that characterize motions while being invariant to

the horizontal flipping. Though some invariant descriptors

are proposed in the image domain (see a brief review in

Sec. 1.1), such flip invariance has not been well addressed

in the action recognition literature.

In this paper, we propose methods to improve perfor-

mance of action classification by taking into account the

invariance against the horizontal flipping. We focus on lo-

cal motion descriptors, including ConvNet ones [37], which

work well in the trajectory-based BoF framework [36] for

action classification. It is feasible to consider the invariance

on a local region of spatio-temporal volume, while global

invariance is hard to be treated in a holistic video descrip-
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tor containing backgrounds and roughly global locations of

the targets. In the proposed methods, the flip invariance is

achieved from two perspectives of patch level and descrip-

tor level. The first one considers the invariance on input

patches before extracting descriptors. The input patches

can be invariant to the flipping by means of local motion

flows so that the descriptors extracted from those patches

are invariant. In the second approach, we propose an invari-

ant form of the local motion descriptors themselves. The

flipping can be explicitly represented by linear transforma-

tion for the hand-crafted descriptors, such as HOF [20] and

MBH [6], and thereby the invariant form is analytically

derived from the explicit transformation. In contrast, the

ConvNet local descriptors [37] of deep non-linearity do not

provide such explicit representation for the flipping. Thus,

the method is extended so as to efficiently learn the invari-

ant form based on data for that kind of descriptors whose

transformation is not known a priori. The proposed method

transforms the descriptors into the effective form of invari-

ance against the flipping with a low computational cost. In

addition to those methods toward flip invariance, we also

present a simple yet efficient hand-crafted motion descrip-

tor which is not based on histogram features, and show that

the proposed flip-invariant methods work on various types

of motion descriptors including it.

1.1. Related works

For action recognition, view-invariance has been ad-

dressed via 3D (XYZ) representation [41, 24, 39] beyond

(2D) image sequences and it is also discussed from the bi-

ological viewpoint [14]. Flip invariance, however, has not

been discussed so well for the video descriptors. On the

other hand, in the image domain, some methods are pro-

posed to embed flip invariance into image descriptors, e.g.,

SIFT [21], mainly for robust image matching [45, 42, 9, 43,

10, 22]. Those methods can be categorized into two groups

from the viewpoint of whether the invariance is achieved

before or after computing descriptors.

One approach is to make an input patch flip-invariant by

normalizing it; that is, the patch is ‘flipped’ when the flip-

ping transformation is observed. The image descriptor ex-

tracted on such an invariant patch is thus invariant against

the flipping. The key issue is how to determine whether a

patch should be flipped or not, and in the image domain, a

criterion for the determination is based on image gradients.

Max-SIFT [42] utilizes one component of SIFT features,

and in MIFT [10] and FIND [9], some of orientation bins

related to horizontal direction contribute to determining the

path direction. FIND [9] further arranges spatial bins in a

more efficient manner to produce effective feature ordering

suitable for the flipping. F-SIFT [45] is proposed by lever-

aging curl [26] operator to enforce that the gradient flow

in a patch follows the pre-defined direction, and RIDE [43]

simply employs sum of the horizontal image gradients.

While most methods toward flip invariance are formu-

lated by the above approach, there is the other way to

achieve the invariance after computing the descriptors. MI-

SIFT [22] directly transforms the SIFT descriptors by ap-

plying component-wise operation, such as averaging, to two

descriptors extracted on the original and flipped patches; the

one on the flipped patch can be computed in an efficient

manner by swapping original SIFT components.

Those methods in the image domain are intended for

keypoint matching by means of local descriptors and val-

idated in the matching task except for [43]. In this study,

we propose methods to achieve the flip invariance of mo-

tion descriptors for action classification.

The above-mentioned approaches are computationally

efficient only for hand-crafted descriptors, such as SIFT,

whose flipped counterparts can be analytically computed.

It does not hold for the more complicated descriptor, such

as by ConvNet [37], whose flipped one is obtained only by

re-computation on the flipped patches, which doubles the

computational cost; even though the first approach works

before computing descriptors, from a practical viewpoint,

it is more efficient to apply a holistic method, such as con-

volution, to videos twice for obtaining the flipped descrip-

tors than to apply a patch-wise computation (with flipping).

Therefore, we theoretically derive an invariance method and

extend it to efficiently deal with the ConvNet descriptors.

In the other way, flip invariance is naively treated

by augmenting datasets through actually flipping im-

ages/videos [3, 2], though doubling the computational cost

and memory consumption both in training and test phases.

2. Local motion descriptor
We first show the local motion descriptors that are em-

ployed in this study as ingredients to represent a video se-

quence in the BoF framework [36].

Optical flow is fundamental to characterize motions in a

video sequence, and thus we convert the video frames into

flow field images composed of two components, horizon-

tal and vertical flow velocities denoted by fx(p) and fy(p)
at pixel p, respectively. As in [35, 36, 15, 44], we employ

HOF [20] and MBH [6] to extract features from the flows

and their derivatives, respectively, in addition to HOG [5]

for describing appearance. From the viewpoint of extract-

ing features on the multi-channeled images, the motion de-

scriptors resemble those of colors which are also extracted

from colored images of three (RGB) channels. Table 1 sum-

marizes the relationships between the descriptors proposed

in those two domains and makes us realize that in the mo-

tion domain there is a missing counterpart to LCS [4] which

is based on local statistics of raw color signals. Thus, in

this study we present a local motion descriptor based on

local motion statistics (LMS) in accordance with the LCS
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Table 1. Relationships between color and motion descriptors.
histogram on
raw channels

histogram on
derivatives

local
statistics

Color Color-histogram [31] RGB-SIFT [33] LCS [4]

Motion HOF [20] MBH [6] (LMS)

color descriptor. LMS is simply built on the mean and

standard deviation of the flow components {fx, fy} to form

four-dimensional features {μx, μy, σx, σy} in each grid on a

spatio-temporal patch; we divide the spatio-temporal patch

extracted along the trajectory [35, 36] into 2(X)×2(Y )×3(T )

for HOG, HOF and MBH, and 3(X)× 3(Y )× 3(T ) for LMS

so as to produce descriptors of the similar dimensionality

(Fig. 1). Though both LMS and HOF are based on the raw

flow velocities, LMS describes them by using the statistics

without orientation coding, and therefore it has the advan-

tage of compensating the other histogram-based descriptors

as well as fast computation.

In addition to the above hand-crafted descriptors, we em-

ploy the learning-based descriptors [37] which leverages

spatial and temporal ConvNets [29] to extract local features;

for details of the ConvNets and feature extraction process,

refer to the paper [37].

2.1. Flipped local descriptor

Next, we explain how the hand-crafted local descriptors

are transformed by flipping an input video. The horizon-

tal flipping in videos changes flow as well as appearance,

which is slightly complicated compared to flipping images.

The flipping affects the processes of computing descriptors

in the following three points. First, spatio-temporal grids

in a patch are horizontally swapped. Second, the deriva-

tive along the horizontal axis is negated with sign inver-

sion; ∂xÎ(p̂)=−∂xI(p) where Î and p̂ indicate the flipped

image frame and position of I and p, respectively. Third,

the flow orientations are horizontally flipped, inverting the

sign of the horizontal flow velocity, f̂x(p̂)=−fx(p), while

keeping the vertical flow velocity the same, f̂y(p̂)=fy(p).
In addition, the derivatives of flows are also transformed by[

∂xf̂x(p̂) ∂xf̂y(p̂)

∂y f̂x(p̂) ∂y f̂y(p̂)

]
=

[
∂xfx(p) −∂xfy(p)

−∂yfx(p) ∂yfy(p)

]
, (1)

where for example ∂yfx(p) indicates the vertical derivative

(∂y) of the horizontal flow component fx at the position p.

On the basis of the above analysis, we can explicitly de-

rive the flip transformation for the hand-crafted descriptors

as follows (Fig. 1). For the descriptors based on orienta-

tion histograms, HOG, HOF and MBH, the flip transforma-

tion is defined as swapping feature components according

to the flipping of grid positions and the orientation bins. As

to LMS, the transformation is composed of swapping the

components of μx, μy, σx and σy according to the grid flip-

ping with inverting the sign of μx which is the only statistics
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Figure 1. Transformation of the hand-crafted descriptors by flip-

ping an input video. The spatio-temporal grids on a patch are indi-

cated by A∼I . We employ 8 orientation bins for histogram-based

descriptors and additionally 1 bin for null flow in HOF. The colors

show the correspondence of feature components. Note that MBHx

descriptor components are vertically swapped due to the relation-

ship (1) and the feature component μx in LMS is negated.

Table 2. Summary of the proposed methods.
Invariance

level
Feature

type
Transformation

procedure
Comp.

overhead

Desc.-level hand-craft Eq.5 with sparse wi (Eq.8, 10) O(m)
Desc.-level ConvNet Eq.5 with dense wi learned by Alg.1 O(m2)
Patch-level hand-craft Flip by Fig. 1 based on sign{∑ fx(p)} O(m)

Patch-level ConvNet
Recompute feature on a flipped video

and use it based on sign{∑ fx(p)} Recomp.

affected by horizontal flipping.

On the other hand, it is difficult to explicitly derive

the transformation of the ConvNet descriptors [37] since

the input patch is processed in a highly non-linear man-

ner through the ConvNet. In that case, it is inevitable to

re-compute the ConvNet descriptors on the flipped input

videos for obtaining the flipped descriptors.

3. Flip-invariant representation
We propose methods to render invariance against hori-

zontal flipping for the local motion descriptors. The meth-

ods are formulated in two ways of patch level and descrip-

tor level, considering the invariance before or after comput-

ing descriptors. As a result, there are 4 types of methods:

{patch-level invariance (Sec. 3.1), descriptor-level invari-

ance (Sec. 3.2)} × {hand-crafted, ConvNet}-descriptors, as

summarized in Table 2.

3.1. Patch-level invariance

Before descriptor computation, it is possible to achieve

invariance by making the input patch invariant to flipping.

The key issue is how to determine the leftward/rightward

orientation of the patch; once the patch orientation is de-

termined, we can flip the input patch such that its ori-

entation is aligned, e.g., to be rightward. The previous

works [45, 42, 9, 43, 10] on the image domain estimate

the orientation based on image gradients over the patch

region D, e.g., mean of the horizontal gradient compo-

nent, sign{∑p∈D ∂xI(p)} [43], to provide flip invari-

ance in terms of shape. We propose a method to lever-
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age motion flows for estimating the horizontal direction

of the patch. The method directly utilizes the horizon-

tal flow velocity in the patch and thereby the patch direc-

tion is determined by its sign, sign{∑p∈D fx(p)}; the

proposed method achieves flip invariance regarding mo-
tion flow in contrast to the previous ones. We call this

method by ‘Flip-by-Flow’. As an alternative, considering

that the spatio-temporal patch is extracted along the trajec-

tory [35], the dominant direction is also estimated by fit-

ting a line into a sequence of x-position of the trajectory;

sign{argα minα,β
∑

t(xt − αt− β)2} (line fitting) where

xt is the x-coordinate of trajectory at time t, and we call this

‘Flip-by-Trajectory’.

Both methods based on gradients and flows achieve in-

variance against flipping in local descriptors. However, the

flow-based patch direction estimation is advantageous in

the following two points. First, it reduces false positives.

The image gradient orientation sign(∂xI) is vulnerable to

changes of illumination and local contrast which occur in-

dependently of flipping. This causes false-positive deci-

sion on sign{∑ ∂xI(p)}. Second point is that the dom-

inant flow is stably estimated on the local spatio-temporal

patch. The motion flows are not significantly fluctuated but

smoothly distributed in local patches especially due to hu-

man kinematics. In contrast, the image gradients are di-

versely distributed due to the object of complex shape, mak-

ing the patch direction estimation unstable.

Although these methods work before computing descrip-

tors in essence, it practically requires re-computation for

the flipped descriptors in the case that an efficient holistic

approach is applied to compute descriptors, such as Con-

vNet [37]; the patch-wise computation with flipping is even

slower than the (doubled) holistic process. On the other

hand, it is computationally efficient to compute the hand-

crafted descriptors on the flipped patches since only swap-

ping components (Fig. 1) is applied to the pre-computed

descriptors with negligible computation cost.

3.2. Descriptor-level invariance

The horizontal flipping of our interest is simpler than the

other variations such as sift and rotation. It is formulated

as 1-bit (on/off) transformation without continuous param-

eters, e.g., shift displacement and the degree of rotation, as

described in Sec. 2.1, and is mathematically represented by

d̂ = T�d, (2)

where d ∈ R
m and d̂ indicate a descriptor and its flipped

one, respectively, and T ∈ R
m×m is the transformation

matrix subject to TT = I indicating T is an involutory

matrix [12]. From the transformation (2), the invariant form

can be derived as linear operation with the vector w ∈ R
m

which satisfies

w�d̂ = w�T�d = w�d. (3)

This should hold for any descriptors d, and thus the condi-

tion is simplified into

Tw = λw, s.t. λ = 1, (4)

which states that w is the eigenvector of the eigenvalue λ =
1; this is the special case of invariant subspace [1].

In general, however, the flipping transformation matrix

T contains the other eigenvalue than λ = 1; theoretically

speaking, the eigenvalues of λ = ±1 exist in T . The eigen-

vectors associated with the negative eigenvalue (λ = −1)

do not exhibit any invariance, but discarding them leads

to deteriorating descriptive power of the descriptors since

the matrix T of full rank is constructed by the whole set of

the eigenvectors including them. Thus, we leverage all the

eigenvectors {wi}mi=1 to construct the invariant form as

gi(d) =

{
w�

i d λi ≥ 0
|w�

i d| λi < 0
, i ∈ {1, · · · ,m}, (5)

where | · | produces the absolute value. Obviously, the latter

form for λi = −1 < 0 is invariant against the flipping by

gi(T
�d) = |w�

i T
�d| = |−w�

i d| = |w�
i d| = gi(d). (6)

The proposed invariant form employing all the eigenvectors

loses only sign information of the projection by the eigen-

vectors {wi}i|λi<0. Note again that the flip transformation

matrix T contains only eigenvalues of either λ = ±1 and

thus the method realizes complete invariance, g(d̂) = g(d).
We show the specific invariant forms for the hand-crafted

motion descriptors (Sec. 2) as follows.

As described in Sec. 2.1, the flip transformation for the

hand-crafted descriptors of HOG, HOF, MBHx/y and LMS

excluding μx swaps a pair of feature components {di, dj}
of flip-correspondence, which is represented by

T(i,j) =

[
0 1
1 0

]
, (7)

whose eigenvectors and eigenvalues are

w1=
1√
2
[1, 1]�, λ1=1, w2=

1√
2
[1,−1]�, λ2=−1. (8)

The eigenvector w1 of λ1 = 1 operates as averaging, like

the previous method [22], while w2 of λ2 = −1 extracts

the difference between the feature components |di − dj |.
As to LMS, the components related to μx are not only

swapped but also negated by the transformation matrix of

T̃(i,j) =

[
0 −1
−1 0

]
, (9)

whose eigenvectors and eigenvalues are

w̃1=
1√
2
[1, 1]�, λ̃1=−1, w̃2=

1√
2
[1,−1]�, λ̃2=1. (10)

This is contrast with (8) and the averaging w̃1 is associated

with λ̃1 = −1 requiring absolute value |w̃�
1 d| for invari-

ance. In our LMS descriptor that is implemented on 3×3×3
grids, the flipping transformation does not swap the features

on horizontally middle grids but only inverts the sign of μx.
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Algorithm 1 : Learning invariant forms

Input: {dj , d̂j}nj=1 : n descriptor pairs extracted from the origi-

nal and the horizontally flipped patches.

1: Compute fundamental matrices R, R̂ and C in (13).

2: R0=R, R̂0=R̂,C0=C,U0=I∈R
m×m (identity matrix).

3: for i = 1 to m do
4: Ensure orthogonality: R=U�

i−1R0Ui−1, R̂=U�
i−1R̂0Ui−1,

C=U�
i−1C0Ui−1.

5: Compute the eigenvector w′i associated with the maximum

eigenvalue λi by applying CG [7] to (16).

6: Obtain the weight vector by wi = Ui−1w
′
i.

7: Compute the subspace bases Ui ∈ R
m×m−i which is sub-

ject to Ui ⊥ wi and Ui−1 = Ui ∪wi.

8: end for
Output: {wi, λi}mi=1: The weight vectors w associated with the

correlation coefficients λ to produce the invariant form (5).

In this case, the transformation matrix T is reduced to the

scalar T = −1 for μx and T = 1 for the others, obviously

resulting in the invariance form of {|μx|, μy, σx, σy}.

Note that the proposed invariant forms retain the norm

of descriptors, ‖g(d)‖2 = ‖d‖2, since the eigenvectors are

orthonormal due to the symmetric T .

3.3. Learning descriptor-level invariance

Unlike the hand-crafted descriptors, it is difficult to ex-

plicitly describe the transformation of the ConvNet descrip-

tors [37] in advance since the learned ConvNet is not so

understandable for us as to estimate the transformation ma-

trix. Consequently, the descriptor-level invariant form using

w (Sec. 3.2) can not be analytically derived. Therefore, we

propose a method to statistically learn the invariant form for

the ConvNet descriptors based on data.

Suppose we have a pair of a descriptor and its flipped one

{dj , d̂j}nj=1 where d̂j is actually computed on the flipped

video sequences only in this training. Our goal is to learn

the weight vector w in the invariant form (5) from those

pairs. The transformation matrix T can be estimated by the

following least-squares;

min
T

n∑
j=1

‖T�dj − d̂j‖22 + ‖T�d̂j − dj‖22, (11)

since d and d̂ are transformed to each other by T . The

optimizer T ∗ satisfies the following condition,

(R+ R̂)T ∗ = C +C�, (12)

where C=
n∑

j=1

dj d̂
�
j , R=

n∑
j=1

djd
�
j , R̂=

n∑
j=1

d̂j d̂
�
j . (13)

Here, we introduce the eigen-decomposition T ∗ =
WΛW−1 to obtain

(C +C�)W = (R+ R̂)WΛ, (14)

which is a generalized eigenvalue problem.

(14) is interpreted from the other viewpoint of cross-

correlation between d and d̂. Since a scale of the invariant

form w�d is irrelevant to the invariance quality, it is nec-

essary to consider only the relationship between the paired

values {w�d,w�d̂} in disregard of the scale. Such rela-

tionship can be measured by the correlation coefficient be-

tween two sequences of w�[d1, · · · ,dn, d̂1, · · · , d̂n] and

w�[d̂1, · · · , d̂n,d1, · · · ,dn], and the weight w is opti-

mized by maximizing it;

max
w

∑n
j=1 w

�(dj d̂
�
j + d̂jd

�
i )w∑n

j=1 w
�(djd�

j + d̂j d̂�
j )w

, (15)

which induces the generalized eigenvalue problem,

(C +C�)w = λ(R+ R̂)w, (16)

where the eigenvalue λ corresponds to the (optimized) cor-

relation coefficient satisfying −1 ≤ λ ≤ 1 and this is the

same problem as (14).

According to the characteristics of the invariant form

for the hand-crafted descriptors (Sec. 3.2), we can natu-

rally impose an orthonormality constraint w�
i wk = δik on

(14). For solving such an orthogonal generalized eigenvalue

problem, we apply the simple method [8] to sequentially

compute the eigenvector of the maximum eigenvalue in (16)

while keeping the orthonormality constraint; the conjugate

gradient (CG) method [7] is efficiently applied to solve (16),

of which the detailed algorithm is shown in Alg. 1. The in-

variant form of the ConvNet descriptors is given by (5) with

the optimized {wi, λi}mi=1; the learned form of |λ| < 1 does

not provide complete invariance, but effectively increases

robustness to flipping. It should be noted that the invariant

forms presented in Sec. 3.2 for the hand-crafted descriptors

can also be retrieved as the optimizer in this formulation.

The proposed optimization problem is composed of only

three fundamental matrices, R, R̂ and C in (13), which are

computed efficiently. Due to the CG-based optimization

method [7], Alg. 1 can be efficiently applied even to the

high dimensional vectors. As the pair-wise correspondence

is embedded into the cross-correlation matrix C, we can ef-

ficiently leverage a large number of local descriptors to con-

struct the optimization problem without retaining each of

samples; in the experiments (Sec. 4.2), all the local descrip-

tors extracted from the training videos are used for learning.

On the hand-crafted descriptors, the descriptor-level in-

variance is efficiently achieved via (5) only by adding or

subtracting two components (8,10); the computation cost is

negligible as in the case of patch-level invariance (Sec. 3.1).

Even for the ConvNet descriptors [37], (5) is efficiently

computed by sophisticated matrix-vector routine, such as

gemv in BLAS library. It is noteworthy that the proposed

method to render descriptor-level invariance is so general as

to be applicable to versatile descriptors/variations, not lim-

ited to motion descriptors; it is our future work to show the

portability of the method.
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4. Experimental results

We apply the proposed methods to render flip invari-

ance to local motion descriptors on action classification

tasks. The methods are summarized in Table 2 and the de-

tailed procedures are shown in the supplemental material;

note again that they operate on the descriptors with quite

a low computation cost as post-processing, except for the

case of ConvNet descriptors [37] with patch-level invari-

ance (Sec. 3.1) which requires re-computing descriptors.

An input video sequence is represented in the bag-of-

features framework which encodes the local motion de-

scriptors by means of the improved Fisher kernel (iFK)

method [27], and then a linear classifier trained by

SVM [34] is applied to finally categorize the video descrip-

tor (iFK feature vector) into the action classes. The local de-

scriptors (Sec. 2) are extracted on the short-term trajectories

densely sampled from the video sequence [36]. Note that

all these descriptors, even including the ConvNet ones [37],

are computed at the same dense trajectories, in order to

make fair comparison across descriptors; we directly em-

ploy the method [37] to compute ConvNet descriptors, and

for the detail, refer to [37]. Based on the preliminary study,

the PCA projection of local descriptors into 64-dimensional

subspace with 256 GMMs is employed to produce favor-

able performance in terms both of the classification accu-

racy and the computation cost as reported in [37]. Through

the fixed classification pipeline, we can quantitatively evalu-

ate the performance of local descriptors themselves on three

datasets; HMDB51 [18], UCF101 [30] and Hollywood2 [23].

The classification performance is measured according to the

standard protocols provided with the respective datasets.

4.1. Hand-crafted local descriptors

As described in Sec. 2, we employ the commonly used

motion descriptors, HOG [5], HOF [20] and MBHx/y [6] as

well as LMS presented in this paper. The performance re-

sults are shown in Table 3. We can see in Table 3i that in the

original setting, LMS works well, being comparable to HOF

and MBHy with superiority over HOG, in spite of its simple

formulation which contributes to fast computation. And, the

common technique augmenting training and test samples by

flipping1 less contributes to performance improvement.

Then, we investigate the proposed method of patch-

level invariance (Sec. 3.1). The hand-crafted descriptors

are efficiently flipped by analytically transforming them via

the matrix T (Sec. 2.1&3.2) if the patch-level invariance

method suggests to flip the patch. The proposed flow-

based method (Flip-by-Flow) is compared with the previous

one [43] which is proposed in the image domain exploiting

the image gradients. As shown in Table 3ii, the proposed

1In the test phase, we average the two classification scores of the origi-

nal and flipped videos to achieve flip invariance.

Table 3. Performance (%) comparison on hand-crafted descriptors.

The proposed methods are highlighted in bold.

(a) Hollywood2 [23]
Method HOG HOF LMS MBHx MBHy

i original 47.62 58.16 60.78 54.43 58.61

data augmentation 47.80 58.07 59.89 54.51 59.58

ii Flip by Gradient [43] 48.15 60.24 61.51 55.36 60.25

Flip by Trajectory 50.30 60.50 60.41 57.31 61.60

Flip by Flow 50.37 60.42 61.86 55.92 61.76
iii Invariant by Avg. 48.06 60.24 61.26 53.06 58.31

Invariant by Max 48.46 60.51 60.17 52.27 57.99

MI-SIFT [22] 48.29 60.63 62.30 52.77 58.94

Invariant by Eig. (5) 48.45 61.55 62.12 55.50 60.24
(b) HMDB51 [18]

Method HOG HOF LMS MBHx MBHy

i original 43.07 50.00 49.72 43.94 50.35

data augmentation 42.70 49.59 49.35 43.27 50.35

ii Flip by Gradient [43] 44.25 52.24 50.94 46.34 50.74

Flip by Trajectory 45.27 52.68 52.11 46.49 51.79

Flip by Flow 45.49 52.81 51.87 47.12 51.90
iii Invariant by Avg. 43.16 52.24 50.85 44.10 48.00

Invariant by Max 42.14 52.05 48.65 42.72 47.02

MI-SIFT [22] 43.42 52.09 49.93 44.34 49.11

Invariant by Eig. (5) 44.31 54.64 51.72 45.21 50.54
(c) UCF101 [30]

Method HOG HOF LMS MBHx MBHy

i original 73.81 77.44 78.70 75.64 77.88

data augmentation 74.18 77.69 78.34 75.43 77.79

ii Flip by Gradient [43] 75.38 78.47 79.58 77.59 78.92

Flip by Trajectory 75.79 79.04 80.36 78.26 79.58

Flip by Flow 75.47 79.27 80.48 78.17 79.58
iii Invariant by Avg. 73.67 77.08 79.12 74.38 74.64

Invariant by Max 72.99 77.41 78.07 72.86 73.88

MI-SIFT [22] 74.54 77.24 79.31 75.50 75.64

Invariant by Eig. (5) 74.77 80.09 79.69 76.17 78.02

method is superior to the previous one, demonstrating that

motion flow is useful for estimating the patch orientation.

This is because the flows are more robust and stable com-

pared to the image gradients as discussed in Sec. 3.1. To

empirically show the stability, we depict in Fig. 2a the en-

tropy of the distribution of flow and image gradient orienta-

tions on the patch by utilizing HOF and HOG of 8 orienta-

tion bins. The image gradients exhibit high entropy mean-

ing diverse gradient orientations, which causes unstable es-

timation of the dominant patch orientation. In contrast, the

flows are of lower entropy, which contributes to the sta-

ble estimation. The alternative method (Flip-by-Trajectory)

leverages relatively longer-term flow information to esti-

mate the dominant orientation compared with Flip-by-Flow.

Though they work similarly outperforming the gradient-

based method [43], Flip-by-Trajectory is slightly inferior to

Flip-by-Flow. The Flip-by-Flow aggregates the flows dis-

tributed around the trajectory while the Flip-by-Trajectory

focuses only on the tracked points causing less stability. It

is noteworthy that the proposed method equips the HOG de-
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Figure 2. Comparison of entropy in orientation histograms of flows

(HOF) and image gradients (HOG) (a), and in the spatial and tem-

poral ConvNet descriptors (b) on HMDB51 dataset.

scriptor with flow information; that is, even the same HOG

descriptors can be distinguished by patch-flipping which re-

flects the horizontal motion direction estimated by the pro-

posed Flip-by-Flow method.

As to the descriptor-level invariance (Sec. 3.2), the pro-

posed method is compared with the simple methods of

component-wise operators including averaging d+d̂
2 and

maximizing max(d, d̂) as well as MI-SIFT [22] which is

the operator concatenating d+d̂ and d◦d̂ (component-wise

product). The proposed method outperforms the others as

shown in Table 3iii. The method exploits the difference be-

tween the feature components in addition to their average

so that the invariant form retains the information (descrip-

tive power) of the descriptors as much as possible, which is

theoretically derived from the transformation matrix.

Comparing the two types of proposed methods, the

patch-level invariance based on flows works slightly better

on the MBH descriptors, while the invariant form (5) favor-

ably improves the HOF and LMS descriptors. The MBH

descriptors are based on the derivatives of flows resulting in

a somewhat complicated (diverse) histogram features, while

the HOF and LMS derived from the raw flows would pro-

duce the simpler features of low entropy as shown in Fig. 2a.

The invariant form (5) of simple transformation compris-

ing averaging and differencing is suitable to characterize the

simple descriptors rather than the complicated ones which

might require finer treatment to extract the effective infor-

mation; the simple averaging and differencing are enough to

characterize the features of low entropy in which the feature

values are concentrated on a few bins.

4.2. ConvNet local descriptors

As suggested in [37], we apply the spatial ConvNet with

layer 4&5 and the temporal ConvNet with layer 3&4 to ex-

tract local motion descriptors; refer to Table 1 of [37] for

the detailed architectures of the ConvNets. In this case, the

path-level invariance methods (Sec. 3.1) and the methods of

averaging, maximizing and MI-SIFT [22] double the Con-

vNet computation due to re-computing the flipped descrip-

tors, while the learned invariant form (5) (Sec. 3.3) works

solely on the original ConvNet descriptors without consid-

Table 4. Performance (%) comparison on ConvNet descrip-

tors [37]. The proposed methods are highlighted in bold.

(a) Hollywood2 [23]
spatial temporal

Method layer4 layer5 layer3 layer4

i original 48.90 49.42 62.72 64.20

data augmentation 49.38 49.53 62.51 65.34

ii Flip by Gradient [43] 49.66 50.00 64.27 66.20

Flip by Flow 51.59 50.01 65.08 65.96
Invariant by Avg. 49.50 49.58 64.24 66.27

Invariant by Max 49.83 51.75 65.54 66.02

MI-SIFT [22] 48.41 45.89 60.50 60.92

iii Invariant by Learn 48.98 49.45 64.06 65.46
Invariant by Learn (gEig) 48.85 48.78 65.12 64.93

Invariant by Learn (UCF101) 49.05 49.50 63.82 65.56

(b) HMDB51 [18]
spatial temporal

Method layer4 layer5 layer3 layer4

i original 46.67 45.16 54.16 56.45

data augmentation 45.88 45.77 54.36 57.49

ii Flip by Gradient [43] 46.12 45.12 56.01 58.28

Flip by Flow 47.21 45.58 56.25 58.52
Invariant by Avg. 45.73 45.01 54.66 57.49

Invariant by Max 47.43 45.73 56.30 58.26

MI-SIFT [22] 45.34 42.88 50.89 54.34

iii Invariant by Learn 46.41 45.32 54.66 57.30
Invariant by Learn (gEig) 44.66 44.44 53.70 56.45

Invariant by Learn (UCF101) 46.62 45.38 54.90 56.80

(c) UCF101 [30]
spatial temporal

Method layer4 layer5 layer3 layer4

i original 78.19 75.84 79.91 83.19

data augmentation 78.63 76.18 80.30 83.86

ii Flip by Gradient [43] 78.46 75.52 81.52 84.50

Flip by Flow 79.15 75.53 82.11 84.62
Invariant by Avg. 78.35 75.69 80.68 84.47

Invariant by Max 78.68 76.44 81.71 85.14

MI-SIFT [22] 77.13 71.69 77.70 82.51

iii Invariant by Learn 78.43 75.73 80.75 83.81
Invariant by Learn (gEig) 76.41 74.48 80.33 83.70

ering their flipped ones, which keeps the computation cost

almost the same as the original process. We here categorize

the methods from this computational viewpoint and discuss

performance results in Table 4. Note that the invariant form

is learned by applying Alg. 1 to all the ConvNet descriptors

found in the training set for respective datasets.

As shown in Table 4ii, the patch-level invariance method

based on flows favorably improves performance in compar-

ison to that based on gradients [43] as is the case with the

hand-crafted descriptors (Table 3ii). For these ConvNet de-

scriptors, the operator of maximizing is superior to averag-

ing and MI-SIFT [22], producing similar performance to the

flow-based method. The features produced by the ConvNet

exhibit existence of certain types of object in a moderately

higher semantic level and thus those features would be well

enhanced by the maximizing operator which is also com-
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Figure 3. Learned invariant form for the temporal ConvNet de-

scriptors of layer4 on UCF101 (a), and its application to descrip-

tors in HMDB51 (b).

patible with the max-pooling embedded in the ConvNet.

Table 4iii shows that the learned invariant form (Sec. 3.3)

can also improve performance especially on the temporal

ConvNet descriptors. As in the comparison of image gra-

dients and flows in Fig. 2a, Fig. 2b shows that the temporal

ConvNet descriptors are simpler and of lower entropy com-

pared to those of the spatial ConvNet. Thus, the similar dis-

cussion with Sec. 4.1 holds for the reason why the proposed

invariant form works on the temporal ConvNet descriptors

better than on the spatial ones. The obtained eigenvalues

λ (correlation coefficients) are shown in Fig. 3a; there are

negative eigenvalues on which the absolute operator is ap-

plied to encourage positive correlation and the examples of

the projection by the invariant form are shown in Fig. 3bc.

In case of removing orthonormality constraints from the in-

variant form, our optimization problem results in just a gen-

eralized eigenvalue problem (16) which can be solved by

the off-the-shelf solver. The performance of so optimized

invariant form is also shown in Table 4iii. It, however, is

inferior to the proposed one, and thus we can conclude that

the orthonormality constraint is effective even for the Con-

vNet descriptors not only for the hand-crafted descriptors.

We also show generality of the learned invariant form

across the datasets in Table 4iii. The invariant form learned

on UCF101 dataset works similarly to those learned on the

respective datasets; we here employ UCF101 as it is the

largest among the three datasets in our experiments. The de-

scriptors characterize spatio-temporally local motions, not a

whole video, and thus it is less sensitive to the environments

where the video is captured. Therefore, the invariant form

learned from a large number of the local descriptors are gen-

eral across the datasets and transferable to the other datasets

than the one used in learning. This result suggests that the

invariant form learned such as on UCF101 is applicable to

versatile datasets for action recognition without re-learning

it on each dataset.

4.3. Combination of descriptors

Finally, we show the classification performance by com-

bining descriptors. In this experiment, we concatenate the

iFK feature vectors each of which is computed by using

each type of descriptor. We consider two scenarios in the

Table 5. Combination of descriptors. ‘iDT’ means the descrip-

tor set of HOG+HOF+MBHx+MBHy [36], while ‘ConvNet’ indi-

cates the set of all (four) ConvNet descriptors.

(a) Hollywood2

Descriptor orig.
Invariant by
Eig./Learn

Flip by
Flow

iDT [36] 64.25 66.27 65.70

iDT+LMS 64.94 66.64 66.31

ConvNet [37] 68.94 69.92 70.93

iDT+LMS+ConvNet 70.53 72.12 72.49

(b) HMDB51

Descriptor orig.
Invariant by
Eig./Learn

Flip by
Flow

iDT [36] 58.00 60.11 59.98

iDT+LMS 58.69 60.22 60.20

ConvNet [37] 62.79 63.22 63.86

iDT+LMS+ConvNet 64.38 65.14 65.71

(c) UCF101

Descriptor orig.
Invariant by
Eig./Learn

Flip by
Flow

iDT [36] 85.32 86.29 86.36

iDT+LMS 85.04 86.20 86.38

ConvNet [37] 88.74 89.16 89.54

iDT+LMS+ConvNet 89.66 90.27 90.63

combination; the first one is oriented toward computation

efficiency by the proposed invariant form (Sec. 3.2&3.3)

and the other is for high classification accuracy by the pro-

posed patch-level invariance method (Sec. 3.1). The per-

formance results are shown in Table 5. As to the hand-

crafted descriptors, those two methods produce compara-

ble performance, successfully improving the original one.

In the combination with the ConvNet descriptors, the pro-

posed methods favorably improve performance being com-

parable to the state-of-the-arts; 68.0% [19] and 73.6% [13]

on Hollywood2, 65.1% [19] and 66.8% [25] on HMDB51,

and 88.0% [29], 89.1% [19] and 90.4% [32] on UCF101.

5. Conclusion

We have proposed methods to render flip invariance for

local motion descriptors via two approaches. One is to

make the input patch flip-invariant by efficiently estimating

a patch orientation based on flows, and thereby the descrip-

tor extracted from the invariant patch is invariant to flip-

ping. The other method derives the invariant form from the

transformation (matrix), which is explicitly obtained in the

hand-crafted descriptors. It is also extended to learn the

invariant form for the ConvNet descriptors whose flip trans-

formation is not explicitly given. The latter method is ad-

vantageous in terms of computational cost since it works

solely on the original descriptors without re-computing the

flipped ones. In the experiments on action classification, the

proposed methods favorably improve the performance with

superiority to the others invariant methods.
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[35] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense trajec-

tories and motion boundary descriptors for action recogni-

tion. International Journal of Computer Vision, 103:60–79,

2013.

[36] H. Wang and C. Schmid. Action recognition with improved

trajectories. In ICCV, pages 3551–3558, 2013.

[37] L. Wang and Y. Qiao. Action recognition with trajectory-

pooled deep-convolutional descriptors. In CVPR, pages

4305–4314, 2015.

[38] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and

L. V. Gool. Temporal segment networks: Towards good prac-

tices for deep action recognition. In ECCV, pages 20–36,

2016.

[39] D. Weinland, R. Ronfard, and E. Boyer. Free viewpoint ac-

tion recognition using motion history volumes. Computer
Vision and Image Understanding, 104(2):249–257, 2006.

[40] A. D. Wilson and A. F. Bobick. Parametric hidden markov

models for gesture recognition. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 21:884–900, 1999.

5637



[41] L. Xia, C.-C. CHen, and J. Aggarwal. View invariant human

action recognition using histograms of 3d joints. In CVPR,

pages 20–27, 2012.

[42] L. Xie, Q. Tian, and B. Zhang. Max-sift: Flipping invariant

descriptors for web logo search. In ICIP, pages 5716–5720,

2014.

[43] L. Xie, J. Wang, W. Lin, B. Zhang, and Q. Tian. Ride: Rever-

sal invariant descriptor enhancement. In ICCV, pages 100–

108, 2015.

[44] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle,

and A. Courville. Describing videos by exploiting temporal

structure. arXiv, 1502.08029, 2015.

[45] W.-L. Zhao and C.-W. Ngo. Flip-invariant sift for copy and

object detection. IEEE Transactions on Image Processing,

22(3):980–991, 2013.

5638


