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Abstract

The recent advances in extracting motion descriptors, such as Bow and CNN fea-
tures, enable us to effectively convert a video into a sequence of frame-based feature
vectors. For improving the action classification performance, in this paper, we propose
an efficient method to represent the feature sequence by exploiting the temporal patterns
via slow feature analysis (SFA). The ordinary SFA suffers from small sample size (SSS)
problem found in action video clips and thus we propose PCA-SFA to cope with the SSS
problem by incorporating the information of PCA subspaces into SFA. The proposed
method leverages the PCA-SFA projection vector to describe the sequence of even fewer
frames by a fixed-dimensional video descriptor, capturing the essential temporal dynam-
ics which is a slowly varying pattern embedded in the quickly varying input signals. The
computational cost to produce the video descriptor is negligible compared to the feature
extraction process such as Bow and CNN since the PCA-SFA is computed in a com-
putationally efficient manner. In the experiments on action classification using various
datasets, the proposed method exhibits favorable performance being competitive to the
other methods.

1 Introduction

There is an increasing amount of multimedia data containing not only images but also videos
through security cameras in the real world and web sites (such as YouTube) on the Internet.
Thereby, it creates an urgent demand for automatic action recognition in computer vision
communities. The action recognition has been tackled over the last two decades [3, 15, 33,
48]. The difficulty in the action recognition is primarily in extracting effective motion fea-
tures, though the classifier also gains considerable research interest as in image classification.
An input video is formulated in a spatio-temporal volume while the images are defined in
a two-dimensional space. Such higher dimensionality of the input data makes it harder to
design motion features in comparison with image feature extraction.

In recent years, along with the advances of image classification, the motion descrip-
tors which extract motion characteristics are developed in the framework of bag-of-features
including spatio-temporal interest points and/or dense trajectories, exhibiting successful per-
formance in realistic videos [26, 44, 45, 53]. On the other hand, deep convolutional neural
network (CNN) methods have been applied to various image recognition tasks with great
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success, and it is now being extended to motion recognition fields together with the large-
scale video dataset [18, 19, 42]. The CNN methods can establish spatio-temporal features to
effectively describe the motion patterns via end-to-end learning [42].

Although those motion descriptors are good at extracting rather temporally local mo-
tions, the other difficulty also exists in the action recognition, that is, how to describe tempo-
rally global action performed over a sequence. The (human) action/behavior is composed of
several primitive motions which may be well characterized by the above-mentioned descrip-
tors, and it is necessary to summarize or aggregate the local motion descriptors extracted
such as at each frame. To be more concrete, through extracting local motion descriptors, a
video is converted into a sequence of motion feature vectors (frames) and then we aim to
extract global motion patterns from the feature sequence for action recognition.

As in a spatial pyramid of image classification [27], it is possible to assign temporal
grids over the sequence on the assumption that the sequences are well aligned [26]. The
transitions of feature frames in the sequence can be probabilistically modeled such as by
HMM [41] and CRF [37], or LSTM [8] in recent years, to extract a higher-level motion
patterns, though it requires substantial computation cost and thus unsuitable for large-scale
classification. On the other hand, the feature sequence can be regarded as some sort of a
feature set, and the subspace-based methods can be applied to such feature sets [20, 29, 30].
The subspace statistically well approximates the set by extracting the variance information
from the feature frames. However, since the subspace-based methods assume the features to
be i.i.d. samples, they completely lose the temporal patterns along the feature sequence.

In this paper, we propose an efficient method to represent the sequence of motion feature
vectors for action classification. In the proposed method, we extract the characteristics of
temporal dynamics on the feature sequence via slow feature analysis (SFA) [49, 51]. The
SFA suffers from small sample size (SSS) problem usually found in action clips and thus
we propose PCA-SFA to effectively cope with the SSS problem in the framework of SFA.
As a result, the proposed method provides a fixed-dimensional video descriptor which well
captures the temporal characteristics even in the shorter video clips and is favorably fed into
a linear classifier for action recognition. The method is closely related to [11] which also
extracts the sequence direction as a global motion pattern by a video evolution model based
on a linear regression into time index. In contrast, our method represents the video sequence
by leveraging the PCA-SFA to characterize temporal patterns more flexibly than the linear
regression. It should be noted that the proposed method produces the video descriptor in a
computationally efficient way and thus the computational overhead is negligible compared
to the feature extraction process such as by Bow and CNN.

2 Slow feature analysis for small sample size problem

In this study, we focus on slow feature analysis (SFA) [49, 51] to extract temporal patterns
from a feature sequence. The SFA is frequently applied to analyze the (temporal) sequence
data in an unsupervised learning framework which is inspired by the visual system based on
the slowness principle' [16]. The connection between the SFA and visual neurons is found
in [2, 12] and it is also applied to recognize objects [13] and actions [40, 52]. As to the math-
ematical formulation, the SFA is extended to graph-based SFA [9, 10] for dealing with more

'While the primary sensory signals, such as in the retina, change on a faster timescale, our environment changes
slowly. Thus, the internal representation of the environment should vary on a slow timescale.
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general graph structure beyond a sequence. This section first describes the SFA and then
proposes PCA-SFA to cope with small sample size (SSS) problem for action classification.

2.1 Slow feature analysis (SFA)

For analyzing videos in action recognition, an input video is generally converted to a set
of feature vectors sequentially extracted along the time, denoted by X = [x;,--- ,x7] of T
feature vectors x, € R? with the time index 7. The SFA finds a projection vector (linear
mapping function) w € R for features x; such that an output value y; = w'x; + b slowly
changes along the sequence under the following constraints: zero mean %Zthl yr = 0, unit
variance + Y7 y? = 1 and decorrelation + ¥/, Yy = 0 Wi < j where y\V = w/x, +b;
is the i-th output value by the i-th projection w;. This formulation analytically leads to the
generalized eigenvalue problem [49, 51];

(ZxxT ) w=2 (Z(xf —p)(x — u)T) w, (1)

t

where W indicates the mean g = %):t x; and x; is the differential vector w.r.t ¢, practically
computed as X, = X, —X;. The eigenvectors w of the smaller eigenvalues A in (1) are
employed as the projection vectors of SFA that extract the slow features.

2.2 PCA-SFA

In some practical situations, especially on action classification of our interest, the number
of samples T is significantly smaller than the feature dimensionality d of x; a video clip
containing action to be classified is composed of several hundreds of frames while the higher
dimensional (>1000) features are extracted to improve recognition performance. In such a
case, the eigenvalue problem (1) is ill-posed, producing a trivial solution no matter how the
features are extracted [50]; it produces slow features of harmonic oscillation in disregard
of feature distribution (see the supplemental material). To cope with the small sample size
(SSS) problem, a hierarchical approach can be applied to gradually encode the subset of
input features [51]. It, however, contains the difficulty in how to select the subsets and it
is ineffective from the viewpoint that we leverage the projection vector w to represent the
sequence as described in Sec. 3.1.

Thus, to cope with the SSS problem, we incorporate the information of PCA subspaces
into the SFA (1). The small-sized samples {x,}tT:l of T < d can be projected into an arbitrary
form of sequence due to over-fitting, and thus we regularize the projection vector w so as to
follow the PCA subspace of the sequence for effectively extracting temporal information via
SFA. The PCA subspace is obtained through maximizing the variance in the following way;

wiH{Y (x—p)(x—p) tw “ min wlw )

wiw wow {E (x - ) (x — ) Tw

max
w
On the other hand, the SFA (1) is equivalent to the optimization problem of

min w' (X xtx;r)w

wow {Y (e —p) (e —p) " iw

3)
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The above two minimization problem sharing the denominator can be merged into

, w (nI+ Y, xx)w .

where 7 is a balancing parameter between PCA (2) and SFA (3). The proposed method (4),
called PCA-SFA, produces the projection vector to extract slow features while following the
PCA subspace that captures the essential statistical structure in the sequence. It is obvious
that (4) is a unified method of PCA and SFA, rendering the SFA by 1 = 0 and the PCA
by n — o. In this study, the balancing (regularization) parameter is determined as 1 =
LY, |1%|3 which becomes higher for the smaller-sized samples and lower for the larger-
sized ones, compared to the SFA term Y, %,/ ; the SFA can stably exploit temporal structure
of the larger-sized samples without resorting to PCA. It is noteworthy that the PCA-SFA (4)
satisfies the above-mentioned three constraints, zero mean, unit variance and decorrelation,
as in SFA.

The PCA-SFA (4) is efficiently computed in the case of SSS as follows. First, we apply
singular value decomposition (SVD) to the centered feature sequence; X — ul1' =UZV ' €
RT(T < d) where U € R?>" £ € R™" .V € RT*" and r (< T) indicates the rank, usually
r =T — 1. Then, by reparameterizing the projection vector as w = U L e, (4) results in

rlu’ (n1+2xtxf) Ur'la=21a,& <n22+2‘.1UT2xtx,TUZI) a=>La. (5
t 1

The above eigenvalue problem of r x r size and the SVD of X — 17 canbe quite efficiently
computed due to small 7'; on an average, the sequence of 4,096-dimensional BoW features
is processed only in 78 msec by Xeon 3.4GHz PC on HOLLYWOOD?2 dataset which contains
videos of about 300 frames.

2.3 Discussion

As to a mathematical formulation, our method is similar to [39] in which PCA and Fisher
discriminant analysis (FDA) are blended in terms both of objective function and constraints
in the framework of semi-supervised learning. It should be noted that our method is for-
mulated in an unsupervised learning framework without resorting to any class labels and
reasonably merges the objective functions of PCA and SFA through simply reformulating
the PCA into (2), due to which the PCA-SFA effectively retains the SFA constraints.

From a practical viewpoint, it might be possible to avoid the trivial solution in the prac-
tical SFA computation (1 = 0 in (5)) by setting lower dimensional PCA subspace (of small
r). It, however, is difficult to carefully tune the subspace dimension r while keeping essential
temporal patterns in the subspace for each sequence. The proposed PCA-SFA takes the full
rank 7 in (5) and thus only requires the parameter 7 to be set in advance; we present the
pre-defined form of 1 = %Z, ||%; ||%, which is empirically validated in Sec. 4.

One might apply the regularization term 11 to the right-hand-side of (1) as in regularized
FDA [14], but it still provides trivial solution in SFA; the null space of X gives the smallest
eigenvalue (A = 0).
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3 Feature sequence representation

After extracting temporally local (frame-based) motion features to produce a feature se-
quence X, it is required to effectively describe the whole feature sequence by extracting
global patterns, such as temporal dynamics, over the sequence for action recognition.

3.1 SFA-based representation

As described in Sec. 2, SFA can extract the essential slow features from the sequence and
thereby the projection vector w that produces such slow features is considered to reflect
the essential temporal information, such as temporal evolution direction, embedded in the
sequence. Therefore, we directly employ the first projection vector w of the smallest eigen-
value provided by PCA-SFA (4) as a d-dimensional feature vector to represent the feature
sequence. Note that the previous works [40, 52] leverage SFA to extract slow features y as a
basic feature extractor, paying less attention to the projection vector w. In contrast to those
previous works, we describe a sequence by using w. And, the SFA naturally characterizes
the temporal dynamics in the sequence unlike the method [11] which extracts the tempo-
rally evolving direction by means of linear regression into the (equally spaced) time index
t from x; without taking into account the feature distribution; the inherent time index in the
sequence X would not be equally spaced nor always increasing due to non-linearity of the
features. The SFA captures a non-linear manifold structure embedded in quickly varying
input signals [50]. Thus, we can say that the intrinsic temporal information can be extracted
by SFA. Note that in this study we do not apply the polynomial expansion of the feature
vector x; [51] which significantly increases the feature dimensionality.

The only problem is that the directional sign of the projection vector w is arbitrarily
determined in (4); that is, both w and —w give the smallest eigenvalue in (4). To consistently
align the direction of w, we transform w such that the slow features y, = w' (x; — i) exhibit
positive correlation with the time index ¢;

. w  corr(w'x,t)>0
= T 9 (6)
—w corr(w x:,1) <0
where corr computes the correlation coefficient between two sequences int € {1,---,T}.

While temporal dynamics in a sequence is extracted by the PCA-SFA, the sequence is
also characterized by the position in the feature space, i.e., mean U = %Z, x;, which is elim-
inated in the PCA-SFA (4). The mean J is regarded as the 0™ order representation while the
first SFA projection vector w is the 1% order one. Those two types of representations are sim-
ply concatenated into the video descriptor of the fixed dimensionality through normalization;

-
p' w' 2d
V= T € R, @)

[H#Hz ||w||2]

3.2 Transformation of feature sequence

The method [11] showed the performance improvement by transforming an input feature
sequence into smooth one by means of cumulative summation. We generalize this approach
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n
motion feature subtract mean ”HHZ
extraction tsequ?nce
(sec.4.1) ransform ( and apply PCA SFA )
_’ ’LZJ
BoW/CNN
dlrectlonal ”u}HQ
feature transformed alignment (6) ) )
sequence feature sequence video descriptor
Figure 1: Pipeline of the proposed method.
Dataset HorLLywooD2 [28] HMDBS51 [23] UcF101 [38]
number of action classes 12 51 101
number of training videos 823 3570 9582 (avg.)
number of test videos 884 1530 3737 (avg.)
Averaged number of frames per video 286 93 186

Table 1: Action recognition datasets used in the experiments.

by introducing a pooling function for transforming the input feature sequence as follows.

£l — 1(pool(x1,- -, X)) 2owd 1(pool(xr,- -, X))
© ood(xr, - x))ll” T [[(pool(xr X)) 12

) te{la"'aT}a (8)

where pool is a pooling function to produce a d-dimensional vector from a set of d-dimensional
feature vectors and 1 is a feature transformation function which is specified in Sec. 4.1. Note
that the forward pooling in z™"¢ deals with the frame vectors x; from the start (t = 1), while
the backward one in z?¢ is applied from the end (t = T). In the case that pool outputs
the last vector of an input set, pool(xy,---,%x;) = Xx;, the above transformation results in an

identical mapping, that is, zf"9 = z%d = Illl((Xt))H , and the transformation used in [11] corre-

sponds to (8) of the sum-pooling pool(xy,- -, %) = h Zi:l x;. The transformation (8) is also
regarded as a variant of motion history image [4] by replacing a frame image with a frame
feature vector x;, for further enhancing the temporal information on the feature sequence.
The final video descriptor is produced by applying (7) to those bi-directional sequences
{z"4}L | and {zP*4}7_,, respectively;

Vieg = [v({z"} ) T v L) T e RY ©

By separately dealing with those transformed sequences, the temporal characteristics of
the forward and backward dependencies are analyzed, as in bi-directional LSTM [34], and
exploited as features. As a result, the proposed method extracts detailed structure of the
sequence; the pipeline to extract our video descriptor is shown in Fig. 1.

4 Experimental results

We apply the proposed method to two types of features (Sec. 4.1) on three action recognition
datasets, HMDB51 [23], UcF101 [38] and HOLLYWOOD?2 [28], following the evaluation
protocol provided in the respective datasets. The summary of those datasets are shown in
Table 1; for details of the datasets, refer to the respective papers.
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4.1 Motion features

This section details two types of motion features to which the proposed method is applied:
convolutional neural network (CNN) [36, 42] to extract holistic frame-based features and
bag-of-word (BoW) [44, 45] based on local descriptors [5, 26, 46].

CNN features. Asin [1, 7], we transfer the CNN features pretrained on the other datasets
to our action recognition tasks. We employ C3D features [42] that are trained on sports-
1M dataset [19] for extracting motion features from 16 RGB image frames as well as very
deep CNN (VGG19) features [36] trained on ImageNet dataset [6] for extracting frame-based
image features from 1 RGB image frame; those CNNs extract spatially holistic features. We
extract at every 4 frames these CNN features which are the outputs (x, € R*%%) of the first
fully connected layer in respective CNN models.

The max-pooling is a key step in the CNN models [22, 36, 42] together with the con-
volution layers. We can say that taking maximum over local region is considered to im-
prove discriminativity as well as increase robustness. Following this mechanism, we apply
max-pooling across rather longer temporal region in the sequence transform (8) (Sec. 3.2);
pool(xy, -+, %) = [max;—y..,(xi1), -+ ,max;—; .. ,(xig)] ", where x;j indicates the j-th com-
ponent of the i-th feature vector x;, and we apply the identity mapping 1(x) = x.

BoW features. We extract BoW motion features in the framework of dense trajec-
tories [44, 45]. In that framework, the local descriptors of HoF [26] and MBH [5] as
well as the trajectory-pooled CNN local descriptors® [46] are extracted on the trajectories
densely extracted in a video sequence, and then those are coded into 4,096 visual words.
The word counting histogram feature x; € R4%® at time 7 is computed by aggregating lo-
cal descriptors (words) whose trajectories end at ¢ and thereby it results in a rather sparse
feature vector. In the sequence transform (8), the Dirichlet-FK feature transformation’
1(x) = log(m +7) — e [21] is applied to transform the BoW histogram features.

The above feature extraction processes produce two types of CNN motion feature se-
quences and three types of BoW ones, each to which the proposed method (Fig. 1) is applied,
and then the video descriptors (9) are concatenated. Finally, the linear SVM classifier [43]
is applied to categorize the video descriptors into action classes.

4.2 Performance analysis

On HOLLYWOOD?2 dataset, we analyze the performance of the proposed method (Fig. 1)
regarding the sequence transformation (Sec. 3.2) and PCA-SFA based descriptor (Sec. 3.1)
with comparison to the other sequence representations.

Sequence transformation. There are three ways to transform a feature sequence (Sec. 3.2)
by the function pool; the simplest identical mapping, sum pooling and max pooling in two
directions of forward (fivd) and backward (bwd). The performance comparison is shown
in Table 2, demonstrating that pooling-based sequence transformation favorably improves
performance. In BoW features, the pooling-based method significantly outperforms identi-
cal mapping since the BoW features are rather sparse at each frame and thus pooling (ag-
gregation) along the time sequence is effective to enhance discriminative power. And, the
combination of the bi-directional sequences (fwd+bwd) exhibits the best performance. The
max-pooling over larger temporal region is the better way to accumulate the CNN features

2We utilize the neuron activations at the conv4 layer in the temporal CNN; for the detail, refer to [46].
3Those parameter values in the Dirichlet-FK are set to T = 0.0001, & = —8.5 determined by the method [21].
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for action recognition, as described in Sec. 4.1. On the other hand, BoW features prefer
the sum-pooling since the Dirichlet-FK feature transform [21] is built upon the probabilistic
property of the histogram features and max-pooling might violate such probabilistic nature.
Thus fwd+bwd with max-pooling is suitable for CNN features while that with sum-pooling
works on BoW features. We hereafter employ those types of sequence transformation for
CNN and BoW features.

Regularization parameter in PCA-SFA. Then, we analyze the regularization parame-
ter 1 in PCA-SFA (4) which balances SFA and PCA. Note again that the smaller 7 makes
the method close to SFA (1) and the larger one leads to PCA. We change 1 based on
c2 %):, || %||3 (Sec. 2.2). Table 2b shows the performance results on various 1. The perfor-
mance is deteriorated by 1 = 0 where PCA-SFA is reduced to simple SFA (1). In contrast, by
increasing 7, the performance is accordingly improved and the best one is achieved around
1n = C. This experimental result demonstrates that the proposed PCA-SFA with the appro-
priate regularization parameter value 11 = C favorably exploits the temporal information to
represent a sequence as a feature vector, while the SFA (1 = 0) suffers from the SSS problem
found in the action clip and fails to extract effective temporal patterns. Thus, we use n = C
in the PCA-SFA representation throughout these experiments.

Comparison to the other sequence representation. The PCA-SFA based represen-
tation is compared with the other methods that represent a video sequence by a fixed-
dimensional descriptor. For fair comparison, all the methods are applied to bi-directional
fwd+bwd sequence with sum/max pooling on BOW/CNN features.

The method is compared to mean g = %):, Zs, the temporal grid on the sequence [26],
the subspace-based representation and VideoDarwin [11]. We apply two temporal grids
along the sequence around which the frame-based feature vectors are aggregated (summa-
rized), resulting in the 2d-dimensional representation for the sequence. The subspace-based
method extracts the two-dimensional subspace from the samples {z,}7_, in the sequence and
concatenates the (orthonormal) subspace basis vectors into the 2d-dimensional sequence rep-
resentation as in (7). As in the PCA-SFA representation, the subspace bases are arbitrarily
assigned with directional signs and thus we align them so as to produce the projection posi-
tively correlated with the time index 7 by (6). Note that the subspace representation ignores
the temporal information (temporal order ¢) in the sequence. The VideoDarwin [11] extracts
sequence direction through linear regression from the frame-based features z; to the time
index ¢, and in this experiment, for fair comparison, we add the mean y to the VideoDar-
win representation to produce the 2d-dimensional sequence representation. As a result, the
methods other than mean produce the same dimensional video descriptor.

Table 2c shows the performance comparison. The performance is degraded by the method
of temporal grid. The method requires the sequences to be temporally aligned across videos
so that the feature vector summarized at each grid is properly matched. Videos, however, are
not so aligned due to temporal sifts and variation of actions. In contrast, the other methods
statistically exploits the (temporal) variation without such alignment. The subspace method
considers only the variance of the feature distribution without the temporal ordering infor-
mation and is inferior to the methods that incorporates such ordering information in the
representation. The VideoDarwin [11] is still inferior to even SFA and PCA-SFA. The lin-
ear regression employed in the VideoDarwin projects the frame-based features z; into the
equally-spaced time index ¢t which is fixed in any sequences without considering the distri-
bution (manifold) in the sequence. The SFA (1) is close to the linear regression in the sense
that it also embeds the frame-based features into the fixed (slowest) harmonic oscillation due
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(b) Regularization parameter 1) in PCA-SFA (4).

(a) Sequence transformation (Sec. 3.2). 1 is changed based on C 2 1 ¥, ||[3.
The pooling function pool in (8) is defined as BoW CNN BoW+CNN
identical: pool(xy,-- ,x;) =x; n =0[SFA (1)] 67.10 58.92 70.75
sum: pool(xy,--+ %) =Yuxy n=0.1C 67.83 59.36 71.69
max: pool(xy,---,x%)=maxy,({x/},_;) n=0.5C 68.56 60.07  72.83
Note that in identical the feature vectors n=1C 68.62 59.92 72.83
are not pooled (aggregated) on a sequence. n=>5C 68.98 59.58  72.67
pool  direction BoW CNN n =10C 69.06 59.11 72.56
identical - 35.91 55.36 (c) Comparison to other representation.
sum fwd 66.39 56.38 BoW CNN BoW+CNN
max fwd  65.58 55.88 mean 65.39 55.04 68.48
sum bwd  67.17 52.51 temporal grid [26] 59.70 55.25 66.41
max bwd 6540 53.72 subspace 65.87 52.00 68.83
sum  fwd+bwd 68.62 59.61 VideoDarwin [11] 66.26 51.98 70.56
max  fwd+bwd 67.91 59.92 SFA (1) 67.10 58.92 70.75

PCA-SFA (4)  68.62 59.92 72.83

Table 2: Performance comparison on HOLLYWOOD?2 dataset in terms of (a) sequence trans-
formation (Sec. 3.2), (b) regularization parameter 1) in PCA-SFA (4) with (c) comparison to
the other sequence representations. The mean average precisions (%) are reported.

to the SSS problem (see supplemental material). On the other hand, the proposed PCA-SFA
(4) effectively extracts the temporal characteristics by taking into account of the distribution
of the frame-based feature vectors via PCA.

4.3 Comparison to the other methods

Based on the above analyses, we suggest to apply PCA-SFA (4) with n = %Z, || % ||3 to BoF
feature sequence with sum-pooling and to CNN feature sequence with max-pooling through
the bi-directional (forward and backward) sequence transform (8). The proposed method is
also tested on HMDBS51 and UCF101 as in HOLLYWOOD2 and the performance results are
shown in Table 3; we report the classification accuracies (%) on those two datasets.

We can see that the CNN features are inferior to BoW features on HOLLYWOOD?2 dataset
in which the task is to recognize rather primitive actions, while the holistic CNN features
are suitable for classifying actions related to scenes in HMDB51 and UCF101. Then, we
combine those CNN and BoW features to further improve classification performance. It is
noteworthy that the proposed method renders the fixed-dimensional video descriptors from
any types of feature sequence which can be further integrated with the other ones in a sim-
ple manner (concatenation). The combination of the two types of motion features favorably
boosts performance, being competitive to the other methods; especially on HMDBS5 1, it out-
performs the others.

We can analyze the results of the proposed method as follows. In UCF101, the action
classes of “BrushingTeeth” and “Shotput” tend to be misclassified into “ShavingBeard”
and “ThrowDiscus”, respectively, which are composed of similar actions as those classes.
Similarly, in HMDBS5 1, “SwordExercise” is misclassified to “DrawSword”, and in HOLLY-
WooD2, “SitUp” is occasionally confused with “StandUp”. By incorporating more con-
textual information beyond action itself, we could further improve performance. On the
other hand, the classes of smaller number of frames are favorably recognized; 100% on
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HoLLywoobp2 HwmDB51 UCF101

PCA-SFA (BoW) 68.62 60.24  83.12
PCA-SFA (CNN) 59.92 61.66  88.77
PCA-SFA (BoW+CNN) 72.83 71.83 9382
“subspace (BoW+CNN) ~ 68.83  68.69 9270
SFA (BoW+CNN) 70.75 70.68  93.85
””””””” 64.3[44]  65.1[25] 87.9[31]
Others 66.3[24]  65.9[17] 88.0[35]

68.0[25]  66.8[32] 89.1[25]

73.6 [17] 69.4 [47] 94.2 [47]
Table 3: Comparison to the other action recognition methods. We show the classification
performances reported in the respective papers.

“FloorGymnastics” (avg. 71 frames) in UCF101, 93.33% on “Dribble” (avg. 36 frames) in
HMDBS51, 84.01% on “StandUp” (avg. 160 frames) in HOLLYWOOD2.

5 Conclusion

In this paper, we have proposed a method to effectively represent a sequence of frame-based
feature vectors for action classification. The proposed method extracts the temporal dynam-
ics patterns from the feature sequence via slow feature analysis (SFA). While the ordinary
SFA suffers from small sample size (SSS) problem usually found in action clips, we propose
PCA-SFA to effectively cope with the SSS problem by incorporating PCA subspaces into
SFA. In contrast to such as a linear regression, the PCA-SFA exploits the essential temporal
pattern in a non-linear manifold based on the slowness principle. We leverage the PCA-SFA
projection vector to represent the feature sequence capturing temporal characteristics even
in the shorter video clips. It should be noted that the proposed method produces a video
descriptor in a computationally efficient way and the computational overhead is negligible
compared to the feature extraction process such as by BoW and CNN. The experimental
results on action classification using three standard datasets show that the proposed method
improves classification performance, being favorably compared with the other methods.

References

[1] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson. From generic to
specific deep representations for visual recognition. In CVPR Workshop, pages 3645,
2015.

[2] P. Berkes and L. Wiskott. Slow feature analysis yields a rich repertoire of complex cell
properties. Journal of Vision, 5(6):579-602, 2005.

[3] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri. Actions as space-time
shapes. In ICCV, pages 1395-1402, 2005.

[4] A. Bobick and J. Davis. The representation and recognition of action using temporal
templates. [EEE Transaction on Pattern Analysis and Machine Intelligence, 23(3):
257-267, 2001.


Citation
Citation
{Wang and Schmid} 2013

Citation
Citation
{Lan, Lin, Li, Hauptmann, and Raj} 2015{}

Citation
Citation
{Peng, Wang, Wang, and Qiao} 2014{}

Citation
Citation
{Lan, Zhu, Zamir, and Savarese} 2015{}

Citation
Citation
{Hoai and Zisserman} 2014

Citation
Citation
{Simonyan and Zisserman} 2014{}

Citation
Citation
{Lan, Lin, Li, Hauptmann, and Raj} 2015{}

Citation
Citation
{Peng, Zou, Qiao, and Peng} 2014{}

Citation
Citation
{Lan, Lin, Li, Hauptmann, and Raj} 2015{}

Citation
Citation
{Hoai and Zisserman} 2014

Citation
Citation
{Wang, Xiong, Wang, Qiao, Lin, Tang, and Gool} 2016

Citation
Citation
{Wang, Xiong, Wang, Qiao, Lin, Tang, and Gool} 2016


T. KOBAYASHI: FEATURE SEQUENCE REPRESENTATION VIA SFA 11

[5] N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented histograms of
flow and appearance. In ECCV, pages 428—441, 2006.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pages 248-255, 2009.

[7] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf:
A deep convolutional activation feature for generic visual recognition. In /ICML, pages
647-655, 2014.

[8] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual
recognition and description. In CVPR, pages 2625-2634, 2015.

[9] A.N. Escalante-B and L. Wiskott. How to solve classification and regression problems
on high-dimensional data with a supervised extension of slow feature analysis. Journal
of Machine Learning Research, 14:3683-3719, 2013.

[10] A. N. Escalante-B. and L. Wiskott. Theoretical analysis of the optimal free responses
of graph-based sfa for the design of training graphs. Journal of Machine Learning
Research, 17:1-36, 2016.

[11] B. Fernando, E. Gavves, M. J. Oramas, A. Ghodrati, and T. Tuytelaars. Modeling video
evolution for action recognition. In CVPR, pages 5378-5387, 2015.

[12] M. Franzius, H. Sprekeler, and L. Wiskott. Slowness and sparseness lead to place,
head-direction, and spatial-view cells. PLoS Computational Biology, 3(8):1605-1622,
2007.

[13] M. Franzius, N. Wilbert, and L. Wiskott. Invariant object recognition with slow feature
analysis. In International Conference on Artificial Neural Networks, pages 961-970,
2008.

[14] J. H. Friedman. Regularized discriminant analysis. Journal of the American Statistical
Association, 84(405):165-175, 1989.

[15] T. Hassner. A critical review of action recognition benchmarks. In CVPR Workshop,
pages 245-250, 2013.

[16] G. E. Hinton. Connectionist learning procedures. Artificial Intelligence, 40(1-3):185—
234, 1989.

[17] M. Hoai and A. Zisserman. Improving human action recognition using score distribu-
tion and ranking. In ACCYV, pages 3-20, 2014.

[18] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for human action
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1):
221-231, 2013.

[19] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-
scale video classification with convolutional neural networks. In CVPR, pages 1725—
1732, 2014.



12

T. KOBAYASHI: FEATURE SEQUENCE REPRESENTATION VIA SFA

(20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

T.-K. Kim, J. V. Kittler, and R. Cipolla. On-line learning of mutually orthogonal sub-
spaces for face recognition by image sets. IEEE Transaction on Image Processing, 19
(4):1067-1074, 2010.

T. Kobayashi. Dirichlet-based histogram feature transform for image classification. In
CVPR, pages 3278-3285, 2014.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet classification with deep con-
volutional neural networks. In NIPS, pages 1097-1105, 2012.

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: A large video
database for human motion recognition. In ICCV, pages 2556-2563, 2011.

T. Lan, Y. Zhu, A. R. Zamir, and S. Savarese. Action recognition by hierarchical mid-
level action elements. In ICCV, pages 4552-4560, 2015.

Z.Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj. Beyond gaussian pyramid: Multi-
skip feature stacking for action recognition. In CVPR, pages 204-212, 2015.

I. Laptev, M. Marzalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions
from movies. In CVPR, 2008.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In CVPR, pages 2169-2178, 2006.

M. Marszalek, I. Laptev, and C. Schmid. Actions in context. In CVPR, pages 2929—
2936, 2009.

M. Nishiyama, O. Yamaguchi, and K. Fukui. Face recognition with the multiple con-
strained mutual subspace method. In AVBPA, pages 71-80, 2005.

E. Oja. Subspace Methods for Pattern Recognition. Research Studies Press, 1983.

X. Peng, L. Wang, X. Wang, and Y. Qiao. Bag of visual words and fusion methods for
action recognition: Comprehensive study and good practice. CoRR, abs/1405.4506,
2014.

X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition with stacked fisher vectors.
In ECCV, pages 581-595, 2014.

C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A local svm ap-
proach. In ICPR, pages 32-36, 2004.

M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Trans-
actions on Signal Processing, 45(11):2673-2681, 1997.

K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recog-
nition in videos. In NIPS, 2014.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

Y. Song, L.-P.Morency, and R. Davis. Action recognition by hierarchical sequence
summarization. In CVPR, pages 3562-3569, 2013.



T. KOBAYASHI: FEATURE SEQUENCE REPRESENTATION VIA SFA 13

[38] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human action classes
from videos in the wild. In CRCV-TR-12-01, 2012.

[39] M. Sugiyama, T. Ide, S. Nakajima, and J. Sese. Semi-supervised local fisher discrimi-
nant analysis for dimensionality reduction. Machine Learning, 78(1-2):35-61, 2010.

[40] L. Sun, K. Jia, T. Chan, Y. Fang, G. Wang, and S. Yan. Dl-sfa : Deeply-learned slow
feature analysis for action recognition. In CVPR, pages 2625-2632, 2014.

[41] K. Tang, L. Fei-Fei, and D. Koller. Learning latent temporal structure for complex
event detection. In CVPR, pages 1250-1257, 2012.

[42] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal
features with 3d convolutional networks. In ICCV, pages 4489-4497, 2015.

[43] V.N. Vapnik. Statistical Learning Theory. Wiley, 1998.

[44] H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV,
pages 3551-3558, 2013.

[45] H. Wang, A. Kliser, C. Schmid, and C.-L. Liu. Dense trajectories andmotion boundary
descriptors for action recognition. International Journal of Computer Vision, 103:60—
79, 2013.

[46] L. Wang and Y. Qiao. Action recognition with trajectory-pooled deep-convolutional
descriptors. In CVPR, pages 4305-4314, 2015.

[47] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool. Temporal
segment networks: Towards good practices for deep action recognition. In ECCYV,
pages 20-36, 2016.

[48] A.D. Wilson and A. F. Bobick. Parametric hidden markov models for gesture recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21:884-900,
1999.

[49] L. Wiskott. Learning invariance manifolds. In Joint Symposium on Neural Computa-
tion, pages 196-203, 1998.

[50] L. Wiskott. Slow feature analysis: A theoreticalanalysis of optimal free responses.
Neural Computation, 15(9):2147-2177, 2003.

[51] L. Wiskott and T. J. Sejnowski. Slow feature analysis: Unsupervised learning of invari-
ances. Neural Computation, 14(4):715-770, 2002.

[52] Z. Zhang and D. Tao. Slow feature analysis for human action recognition. [EEE
Transactions on Pattern Analysis and Machine Intelligence, 34(3):436—450, 2012.

[53] G. Zhao, T. Ahonen, J. Matas, and M. Pietikdinen. Rotation-invariant image and video
description with local binary pattern features. IEEE transactions on image processing,
21(4):1465-77, 2012.



