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Abstract Local binary pattern (LBP) is widely used to
extract image features as well as motion features in various
visual recognition tasks. LBP is formulated in quite a simple
form and thus enables us to extract effective features with
a low computational cost. There, however, are some limita-
tions mainly regarding sensitivity to noise and loss of image
contrast information. In this paper, we propose a novel LBP-
based feature extraction method to remedy those drawbacks
without degrading the simplicity of the original LBP formu-
lation. LBP is built upon encoding local pixel intensities into
binary patterns which can be regarded as separating them
into two modes (clusters). We introduce Fisher discriminant
criterion to optimize the LBP coding for exploiting binary
patterns more stably and discriminatively with robustness to
noise. Besides, image contrast information is incorporated
in a unified way by leveraging the discriminant score as a
weight on the binary pattern; therefore, the prominent pat-
terns, such as around edges, are emphasized. The proposed
method is applicable to extract not only image features but
also motion features by both efficiently decomposing a XYT
volume patch into 2-D patches and employing the effec-
tive thresholding strategy based on the volume patch. In the
experiments on various visual recognition tasks, the proposed
method exhibits superior performance compared to the ordi-
nary LBP and the other methods.
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1 Introduction

It is a primary process to extract features from images and
videos for visual recognition, such as object classification and
action recognition.While various types of image feature have
been proposed so far [4,14,19,37] and extended for motion
features [10,15,33], local binary pattern (LBP) [26,31] is
one of the commonly used features due to its simple for-
mulation and high performance. The LBP method has been
mainly applied to measure texture characteristics [7,8,26–
28], and in recent years it is shown to be favorably applicable
to various kinds of visual recognition tasks besides texture
classification, such as face recognition [1,34], face detection
[9], pedestrian detection [37] and sound classification [16].
LBP is also known as census transform [40] and utilized for a
holistic image descriptor [38]. As in the other image feature
extraction methods, LBP is extended to 3-D volume features
for classifying dynamic textures [42,43], lip movement [3]
and human action [22,24].

The LBPmethod encodes pixel intensities of a local patch
into binary patterns on the basis of the center pixel intensity.
Although it is nicely formulated in the simple form, there
are some limitations in LBP, mainly regarding sensitivity to
noise and loss of local textual information, i.e., image con-
trast. In the last two decades, considerable research effort
has been made to address those drawbacks of LBP leading
to variants of LBP. In [28], the image contrast information
is separately extracted by computing variance of local pixel
intensities and joint distribution of the contrast feature and
LBP is employed. The contrast information represented by
the local variance is naturally incorporated into LBP for-
mulation via weighting binary patterns in [7]. LBP can be
combined with histogram of oriented gradient (HOG) fea-
tures [4] to compensate the loss of contrast information [37].
The robustness to noise is improved by developing the binary
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patterns to ternary patterns [34] which are further extended to
quinary ones [25], though the number of patterns correspond-
ing to the feature dimensionality is significantly increased;
those methods [25,34] compress the patterns by considering
the ternary/quinary values separately. It is also possible to
build noise-robust LBPby simply considering local statistics,
mean [9] and median [8], as a threshold instead of the center
pixel intensity in coding. To further improve robustness, we
have recently extended LBP to fully incorporate the statis-
tical information, mean and variance, in the processes both
of coding and weighting [16]. For more elaborated review of
LBP, refer to [31].

In this paper, we propose a novel method to extract LBP-
based features by remedying the limitations of LBP while
retaining simplicity of the original LBP formulation. We
first generalize the LBP formulation by focusing on the two
fundamental processes of coding and weighting, and then
along the line of [7–9,16], propose discriminative LBP by
providing a discriminative approach to determine those two
ingredients. In the discriminative approach, LBP coding is
regarded as separating local pixel intensity distribution into
two modes (clusters) and from that viewpoint, a threshold
is optimized by maximizing the Fisher discriminant score
which is further utilized in weighting. Thereby, the discrim-
inative LBP stably encodes the local pixel intensities into
binary patterns via the optimization with high robustness to
noise, incorporating image contrast information in a unified
manner. Due to its simplicity as in the ordinary LBP, the pro-
posed method can be easily integrated with the sophisticated
extension which has been applied to LBP, such as uniform
pattern [27] and combination with the other image features
[37]. In addition, it can be extended to 3-D volume feature
extraction as in the other LBP variants [24,43] by efficiently
decomposing a 3-D volume patch into an ensemble of 2-D
patches as well as employing the effective thresholding strat-
egy based on the volume patch.

The rest of this paper is organized as follows: in the next
section, we present the general formulation of LBP with
brief reviews of the LBP variant methods in that framework
and subsequently detail the proposed discriminative LBP
method. Section3 describes the extension of the proposed
method to volume feature extraction, and in Sect. 4 several
techniques are presented to further improve the effectiveness
of the proposed feature. The experimental results on image
classification for pedestrian detection and face recognition
as well as on action classification are shown in Sect. 5, and
finally Sect. 6 contains our concluding remarks.

This paper is extended from the CAIP2015 conference
paper [12], containing the substantial improvements mainly
in that we present the extended method to volume feature
extraction with thorough analysis on it in the experiments
on action classification. We also improved and detailed the
description of the proposed method by presenting qualitative

comparison of the LBP codes and practical algorithms with
computational analysis.

2 Discriminative local binary pattern

This section describes the detail of the proposed method,
called discriminative LBP. We first give a general formu-
lation for extracting local binary patterns (LBP) [26] with
reviewing the previous LBP variants based on that formula-
tion. Then, the discriminative perspective is introduced into
the processes both of coding and weighting which are fun-
damental in the general formulation.

Although in this section we basically proceed to explain
and discuss the method in the case of image feature extrac-
tion, the proposedmethod can be extended to extract features
from a volume, such as motion images (spatio-temporal vol-
ume) [43], as described in Sect. 3.

2.1 General formulation for LBP

Let r = (x, y) be a spatial position in a two-dimensional
image I and I (r) indicates the pixel intensity at that position.
LBPmethod [26] focuses on a local image patch and encodes
local pixel intensities by binarizing them as follows;

F (Lc; τc) =
N∑

i=1

2i−1[[I (ri ) > τc]] ∈ {0, . . . , 2N −1}, (1)

where [[ · ]] indicates the Iverson bracket that equals to 1
if the condition in the brackets is satisfied and 0 otherwise.
Lc = {ri }Ni=1 denotes a local pixel configuration centered
at c ∈ R2, comprising N spatial positions ri that surround
c. For example, the simplest and widely used configuration
consists of N = 8 surrounding pixels in a 3 × 3 local patch,
as shown in Fig. 1a, and it is further extended in a multi-scale
setting [28]. Though the number of codes (binary patterns)
is exponentially increased according to N , it is also possi-
ble to suppress the pattern variation by considering uniform
patterns [27] as described in Sect. 4.

The local image pattern onLc is encoded into a N -bit code
by means of binarization of pixel intensities with a threshold
τc via (1). Finally, the LBP codes are aggregated to LBP
histogram z ∈ R2N over a region of interest (ROI) D,

z j =
∑

c∈D
wc[[F(Lc; τc) = j−1]], j ∈{1, . . . , 2N }, (2)

where wc is a voting weight to represent significance of the
local binary pattern (code). In the parts-based features, the
weight wc also works for representing the parts (ROI) as
described in Sect. 4.
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Fig. 1 Examples of LBP codes by various thresholds. A local patch
(a) of pixel intensity distribution (a′) is encoded into binary codes by
ordinary LBP τ = I (c) [26] (b), statistics-based LBP τ = µ [16] (c)
and the proposed method τ = γ ∗ (d). In c, d, Lc includes the center
pixel c. The proposedmethod produces a stable codewith a largemargin
which is hardly affected by noise

Table 1 Comparison in variants of LBP in the general formulation (1,
2) containing the threshold τ and voting weight w

Method τ w

Ordinary LBP [26] I (c) 1

Median LBP [8] median(I ) 1

Improved LBP [9] µ 1

LBP variance [7] I (c) σ 2

Statistics-based LBP [16] µ σ

Discriminative LBP (proposed) argmax σB

√
max σ 2

B
σ 2+C

As shown in (1) and (2), the general formulation of LBP
contains two ingredients, the threshold τc and the weight
wc. From these perspectives, LBP variants can be placed in
this general formulation as shown in Table1. As to coding,
an ordinary LBP [26] is established by setting the center
pixel intensity I (c) as the threshold, τ = I (c). The vari-
ant methods [8,9] modify it by employing local statistics,
τ = µ = 1

N

∑
i I (ri ) and τ = mediani [I (ri )], respec-

tively.On the other hand, forweighting,mostmethods simply
employ hard voting weights, i.e., w = 1, as the origi-
nal LBP [26] does, which means that all the LBP codes
equally contribute to characterize an image, losing local
image contrast information. To compensate it, the local vari-
ance, σ 2 = 1

N

∑
i (I (ri ) − µ)2 is separately employed as

the local image contrast in [28], and it is incorporated as the
weightw in [7]. Recently, we have proposed statistics-based
LBP [16] by effectively applying those simple statistics,
mean and standard deviation, to both coding and weighting
as τ = µ and w = σ .

Thus, we can say that the LBP variants are formulated
by modifying two ingredients τ and w. Along this line, we
propose a novel method by designing them in a discrimina-
tive manner for extracting effective image features of high
robustness with exploiting image contrast.

2.2 Discriminative coding

We propose a novel coding method which optimizes the
threshold τ and the voting weight w in (1, 2) based on a
discriminative criterion.

The LBP coding (1) can be viewed as approximating local
pixel intensity distribution in Lc by two modes separated by
the threshold τ . In the previous methods, the spatial center,
I (c), or statistical centers,µ andmediani [I (ri )], are simply
employed a priori, but those are not regarded as the optimum
from the viewpoint of the approximation. Therefore, wemea-
sure quality of the coding (approximation) in a least-square
framework by introducing the following residual error,

ϵ(τ )= 1
N

⎧
⎨

⎩
∑

i |I (ri )≤τ

(I (ri ) − µ0)
2+

∑

i |I (ri )>τ

(I (ri )−µ1)
2

⎫
⎬

⎭,

(3)

where

µ0 =
1
N0

∑

i |I (ri )≤τ

I (ri ), N0 =
∑

i

[[I (ri ) ≤ τ ]], (4)

µ1 =
1
N1

∑

i |I (ri )>τ

I (ri ), N1 =
∑

i

[[I (ri ) > τ ]], (5)

and obviously N = N0 + N1 and µ = N0
N µ0 + N1

N µ1. Here,
two modes are represented by the mean µ0 and µ1, respec-
tively. This least-square formulation also means to fit two
Gaussian models in the pixel intensity distribution from a
probabilistic viewpoint. We determine the threshold τ so as
to minimize this approximation error.

The residual error ϵ corresponds to within-class variance
σ 2
W for the two classes which are partitioned by the threshold

τ . Thus, minimizing ϵ coincides withmaximization of Fisher
discriminant score [5], actually maximization of between-
class variance σ 2

B , since σ 2
B(τ ) = σ 2 − σ 2

W (τ ) where σ 2 is
the constant total variance;

σ 2
B(τ ) =

N0

N
(µ0 − µ)2 + N1

N
(µ1 − µ)2 (6)

= N0N1

N 2 (µ1 − µ0)
2 = (N0µ − N0µ0)

2

N0(N − N0)
. (7)

Thus, the threshold τ that minimizes the approximation error
ϵ (3) is obtained by
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γ ∗ = arg max
τ∈{I (ri )}Ni=1

σ 2
B(τ ). (8)

Thereby, the proposed discriminative codingwith γ ∗ reduces
the error ϵ in assigning binary codes (1) as well as enhances
the discriminativity (σB) between two modes partitioned by
the threshold. This procedure is performed in the sameway as
Otsu’s auto-thresholding method [29] applied to pixel inten-
sities {I (ri )}Ni=1 as detailed in Sect. 2.4.

Next, we can accordingly determine the voting weight w
as the (square root of) discriminant score;

w =
√

σ 2
B(γ

∗)
σ 2 + C

, (9)

where C is a small constant to avoid numerical instability
for smaller σ , especially in the case that local pixel inten-
sities are close to uniform; in this study, we set C = 0.012

for pixel intensity scale [0, 1]. This weight reflects how far
the two modes are separated by γ ∗ and therefore measures
significance of the corresponding binary pattern.

Note that in the proposed method which frees the center
pixel from being the threshold, we have a choice whether
the local patch Lc contains the center pixel (N = 9) or
not (N = 8). It is basically determined according to the
computational requirement such as memory limitation and
computation speed.

The proposed method is built on the optimization (8),
requiring extra computation cost compared to the othermeth-
ods which employ hard coding [8,9,26] and soft coding with
simple statistics [7,16] of lower computational burden. It,
however, is negligible in the case of a smaller local patch size
N and such computational issue is discussed in Sect. 2.4.

2.3 Characteristics of discriminative coding

2.3.1 Robustness

TheordinaryLBP [26] of τ = I (c) andw = 1 always assigns
a local image pattern with one of the LBP codes, no matter
whether the image pattern is less significant, such as being
close to uniform, i.e., less image contrast. This is because the
LBP coding takes into account only magnitude relationships
between the pixel intensities of a center, I (c), and its neigh-
borhoods, I (ri ), in disregard of the margin. Thus, even a
small fluctuation on the pixels whose intensities are close to
I (c) easily degenerates the LBP code by breaking up the
magnitude relationships, which results in totally different
features. In other words, the binary codes on the pixel inten-
sities of a small margin from I (c) are vulnerable to noise,
causing unstable LBP features.

On the other hand, the proposed coding extracts a dis-
criminative structure of a local pixel intensity distribution,
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Fig. 2 Examples of weights in the proposed method. In each figure,
the input local patch, the resultant binary pattern (code) and the pixel
intensity distribution are shown from left to right. Details are in the text.
a w = 0.92, b w = 0.98, c w = 0.89

exhibiting high robustness to noise. In the structure, two
modes endowed by the threshold γ ∗ are discriminatively sep-
arated with a statistically large margin due to maximizing
Fisher discriminant score in (8); it exhibits stable patterns as
shown in Fig. 1. Those binary patterns of large margin are
hardly affected by noise and contribute to robust features.
Thus, we can stably exploit an essential (binary) pattern of a
pixel intensity distribution even under perturbation on pixel
intensities. Besides, inweighting, the significance of the local
pattern is effectively measured by Fisher discriminant score
(9) as shown in Fig. 2. Even for the similar image patches
resulting in the same code, the patch of well-separated pixel
intensities (Fig. 2b) gets the larger weight than that of blurred
intensities (Fig. 2a). And, smaller weight is assigned to the
patch of which distribution is highly biased (Fig. 2c), even
though it is significantly separated. Such a biased distribu-
tion can be regarded as a noisy pattern containing an outlier
and thus it is favorable that such code contributes less to the
feature.

The LBP code maps are visualized in Fig. 3 using pseudo-
color to represent the codes. The proposed method produces
rather smooth and stable code maps (Fig. 3c) in comparison
with that of the original LBP (Fig. 3b) which is noisy and
unstable, especially on the vertical lines in the image, consis-
tent codes are assigned by the proposed method, though the
original LBP produces noisy ones. And, the proposed weight
map (Fig. 3d) reveals the edge-like structure in the image; the
weight is high around the edge region where the local pixel
intensity distribution is well separated, while it is low on the
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Fig. 3 Visualization for LBP codes. The input image (a) is converted
to the original LBP code map (b) and ours (c) which are shown in
pseudo-color (e). The proposed method also produces the weight map
(d) shown in gray scale [0, 1], and our codes combinedwith the weights
are visualized in (c+d). This figure is best viewed in color (color figure
online)

homogeneous region. Those edge-based structure helps us
to effectively characterize the image content [4]. Thereby,
in contrast to the ordinary LBP, the proposed method com-
posed of the codes (Fig. 3c) and weights (Fig. 3d) can extract
effective features (Fig. 3c+d) with enhancing robustness to
noise.

2.3.2 Invariance

It is noteworthy that the proposed LBP is invariant to affine
transformation of pixel intensities, aI (r) + b, in terms of
coding and weighting as in the ordinary LBP, while the
statistics-based LBP [16] is affected by scaling a in the
weight w = σ .

2.3.3 Geometric feature

The proposed method effectively extracts the geometrical
characteristics in an image, various patterns of gradients and
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Fig. 4 LBP codes for adjacent patches. The adjacent patches share
their center pixels of which codes are always flipped in the original
LBP (a). The proposed method appropriately encodes them based on
the local pixel patterns (b)

curvatures which are considered to be fundamental local
geometries for describing an image structure. Those essen-
tial characteristics are represented by the local binary patterns
which reflect discriminative structures of the pixel intensity
distributions with high robustness to noise. Through weight-
ing by Fisher discriminant scores, the patches of less texture
are ignored, contributing less to the feature, while distinctive
ones, such as around object edges, are highly focused on by
large weights as shown in Fig. 3d.

There exist some constraints in the original LBP feature
[38]. The LBP coding is based on pair-wise comparison
between the center pixel and the neighboring one. Thus, in
adjacent local patches sharing the pair, the codes that cor-
responds to the pair are always flipped in disregard of the
other pixels in the patches (Fig. 4a). In contrast, the proposed
method encodes the local patch based on the whole pixels
(intensity distribution) in the patch and thus the shared pixel
pair is appropriately (adaptively) encoded according to the
pixel pattern in the local patch (Fig. 4b).

2.4 Computational issues

We finally mention the computational issue in the proposed
method. The method requires the optimization (8) of rather
high computational cost compared to thepreviousLBP-based
methods which employs simple coding scheme. The opti-
mization (8) can be practically performed in two ways of
greedy (Algorithm1) and efficient approaches (Algorithm2).
The greedy approach computes σ 2

B(τ ) by checking all pixel
pairs in a brute-force manner, O(N 2), and this would work
for smaller number of pixel N in a local patch. On the
other hand, the efficient approach based on [29] incremen-
tally updates σ 2

B according to the sorted pixel intensities in
O(N log(N )) and thus is more efficient for larger N since
the scoring procedure would be the bottle neck in the smaller
N . Those two approaches are empirically compared in Fig.5
where the number of pixels N in the local patch Lc is varied
from N = 8, 9 for a 2-D image patch to N = 26, 27 for a
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Fig. 5 Computation time in discriminative LBP coding. The optimiza-
tion for discriminative codes (8) is performed on an image of 640×480
pixels with N = 8, 9, and a volume of 640 × 480 × 3 voxels with
N = 26, 27, both of which produce 304964 = 638 · 478 patches

Algorithm 1 : Greedy approach for discriminative thresh-
olding
Require: {Ii }Ni=1 : N pixel intensities.
1: Total mean: µ = 1

N

∑N
i=1 Ii .

2: for i = 1 to N do
3: N0 = 0, ξ0 = 0.
4: for j = 1 to N do
5: if I j ≤ Ii then
6: N0 ← N0 + 1
7: ξ0 ← ξ0 + I j
8: end if
9: end for
10: σB(Ii ) = (N0µ−ξ0)

2

N0(N−N0)
.

11: end for
Ensure: γ ∗ = argmaxIi σB(Ii ): optimum threshold.

Algorithm 2 : Efficient approach for discriminative thresh-
olding
Require: {Ii }Ni=1 : N pixel intensities.
1: Total mean: µ = 1

N

∑N
i=1 Ii .

2: Sort {Ii } into { Ĩi } such that Ĩi ≤ Ĩ j (i < j).
3: N0 = 0, ξ0 = 0.
4: for i = 1 to N − 1 do
5: N0 ← N0 + 1
6: ξ0 ← ξ0 + Ii
7: σB( Ĩi ) = (N0µ−ξ0)

2

N0(N−N0)
.

8: end for
Ensure: γ ∗ = argmaxIi σB(Ii ): optimum threshold.

3-D volume patch (described in Sect. 3). As expected, in the
case of smaller N of an image patch, the greedy approach
is faster than the efficient one, but the result is inverted for
larger N of a volume patch. Thus, we select the optimiza-
tion approach according to the domain that the method is
applied; the greedy approach (Algorithm1) for 2-D image
feature extraction and the efficient one (Algorithm2) for 3-D
volume feature extraction.
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Fig. 6 Decomposition of a 3-D volume patch into nine types of 2-D
patches. XY, XT and YT patches are ordinary used to represent XYT
spatio-temporal volume of motion images (a). In this study, we also
consider the other types of patches along X, Y and T -axis each of which
provide two orthogonal patches (b, c, d)

3 Extension to volume feature extraction

The formulation described above for (2-D) image feature
extraction is straightforwardly applied to 3-D volume fea-
ture extraction, such as in motion (XYT) recognition, by
extending the local patch Lc of 3 × 3 pixels to 3-D patch
of 3 × 3 × 3 voxels. It, however, results in infeasibly large-
dimensional features; 3 × 3 × 3 patch leads to N = 27 and
227 ∼100Mcodes.Therefore, theLBP-basedvolume feature
extraction methods [3,22,42,43] suppress the dimensional-
ity by decomposing the local volume patch into an ensemble
of 2-D patches. In most cases, the 3-D (XYT) volume is rep-
resented in a marginal manner by using three types of 2-D
patches on XY , XT and YT slices (Fig. 6a). In this study,
we additionally consider the other types of patches along
X , Y and T -axis as shown in Fig. 6bcd. Along each axis,
two orthogonal patches are conceivable; for example, along
X -axis, there are two patches of oX1 and oX2 which are
orthogonal, other than XY and XT patches. In total, nine
types of 2-D patches are sampled from the 3-D volume patch
and they are empirically compared in Sect. 5.4.

In the ordinary LBP coding, the decomposed patches that
share the center pixel are encoded by the identical threshold
τ of the center pixel intensity. In contrast, for the discrimina-
tive coding, there are two ways to determine the threshold.
One way, called respective thresholding, is that we regard
those patches to be independently drawn from the volume
and give the threshold individually for each patch; three
patches are encoded by respective thresholds. The other one,
called joint thresholding, is based on the joint representation
of those patches. Namely, the single threshold is computed
over the volume patch (3 × 3 × 3) from which the decom-
posed patches are drawn, and it is identically applied to
encode those patches. From the computational perspective,
the respective thresholding approach to perform the opti-
mization (8) on a 2-D patch several times is comparable to
the joint thresholding that performs it only once but on a 3-
D volume patch; the computation on the 2-D patch is about
three times faster than that on the 3-D patch as shown in
Fig. 5. These two approaches are empirically compared in
terms of performance in Sect. 5.4.
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4 Techniques for effective feature

Wemention some practically useful techniques for extracting
effective features.

4.1 Normalization

The discriminative LBP produces features in a histogram
form which is regarded as a discrete probability distribution
over the LBP codes. The Hellinger (Bhattacharya) kernel can
be effectively applied tomeasure the similarity between those
probability distributions [2], and it is possible to embed the
kernel in a (linear) dot product of the feature vectors by nor-
malizing the features in the following form [32]; ẑ =

√
z

∥z∥1 .
This normalization enhances the discriminative power of fea-
tures by enhancing difference on smaller feature valueswhile
suppressing it on larger values via the square root function.

4.2 Cell-structured feature

In the case of object-related classification, it is demanded to
extract features sensitive to parts which compose the target
objects. Those part-based features are naively extracted by
partitioning the object image into subregions, called cells, on
which the features are computed [4,19]. In this setting, the
voting weights in (2) are composed not only of the weight to
represent pattern significance (9) but also of the closeness to
surrounding cells via bilinear voting on 2-D spatial grids [19]
and trilinear voting on 3-D spatio-temporal grids [33]. The
final feature is built by simply concatenating all cell-wise
features. Note that in this study, the above-mentioned nor-
malization is applied to respective cell-wise feature vectors
before concatenation.

4.3 Binary pattern reduction

Thedimensionality of theLBP-based feature is exponentially
increased according to the number of pixels N in the local
patch Lc. If one wants to reduce the feature dimensionality
such as due to memory limitation, binary patterns can be
reduced by applying uniform patterns [27]. Uniform patterns
are constructed by allowing only a few times 0/1 transitions
on the neighborhood pixels surrounding the center c in the 2-
D patch; 256-dimensional features of N = 8 are reduced to
58-dimensional ones by uniform patterns allowing only two
times 0/1 transitions and 512-dimensional features of N = 9
including the center pixel become 114-dimensional ones as
well.1 In the case of volume data, the uniform pattern is

1 58 patterns for N = 8 consist of 1 flat pattern for zero 0/1 transition,
56 moderate patterns for less than or equal to twice transitions and 1
messy pattern for greater than twice transitions. In N = 9, we consider

applied to respective 2-D patches into which the 3-D volume
patch is decomposed.

5 Experimental results

We first apply the proposed method to image classification
tasks of pedestrian detection using the Daimler Chrysler
pedestrian benchmark dataset [23] for evaluating the per-
formance from various aspects (Sect. 5.1) and INRIA person
dataset [4] (Sect. 5.2), and of face recognition using FERET
dataset [30] (Sect. 5.3). Then, the extended method to vol-
ume features (Sect. 3) is applied to action classification on
HMDB51 dataset [17] (Sect. 5.4).

In feature extraction, the local patchLc is restrictedwithin
3 × 3 pixels (3 × 3 × 3 voxels) except for face recognition
(Sect. 5.3) since the larger patch degrades performance as
reported in [37], and we apply L2-Hellinger normalization
to LBP-based feature vectors.

5.1 Performance analysis on Daimler Chrysler dataset

The Daimler Chrysler pedestrian dataset [23] is composed
of five disjoint sets, three for training and two for test. Each
set has 4800 pedestrian and 5000 pedestrian-free images of
18× 36 pixels. For constructing cell-structured features, we
consider cells of 6 × 6 pixels, producing 3 × 6 cells over an
image. We follow the standard evaluation protocol on this
dataset, in which the linear classifier is trained on two out of
three training sets by using liblinear [6] and is tested on each
of the test sets, producing six evaluation results. We measure
the average of accuracies at equal error rate across the six
classification results.

In the following, we analyze in detail the proposedmethod
in terms of coding by τ , weighting withw and feature dimen-
sionality controlled by a local patchLc and pattern reduction
(Sect. 4). Performance results in various settings are shown
in Table2.

5.1.1 Coding and weighting

Compared to the ordinary LBP (the first row in Table2), the
proposed method (the last row) significantly improves the
performance with and without uniform patterns (Table2ab).
Under the condition of the same feature dimensionality, the
method is still largely superior to the ordinary LBP as shown
in lines 1 and 5 of Table2, though only weighting and coding
are modified to discriminative ones (Sect. 2.2). In addition,
our method outperforms the statistics-based LBP [16] in all
feature dimensionalities; see lines 3, 5, 7 and 9 in Table2.We

1 flat and 1 messy patterns no matter what the center pixel is, and
112 = 56 × 2 moderate patterns according to the center pixel state.
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Table 2 Performance analysis on the Daimler Chrysler dataset for various settings in LBP formulation

(a) Full binary pattern (b) Uniform pattern

Lc τ w Dim. Acc. (%) Lc τ w Dim. Acc. (%)

1. N=8 I (c) 1 256 92.29 N=8 I (c) 1 58 91.32

2. N=8 µ 1 256 94.04 N=8 µ 1 58 93.42

3. N=8 µ σ 256 94.32 N=8 µ σ 58 93.64

4. N=8 γ ∗ 1 256 95.02 N=8 γ ∗ 1 58 94.71

5. N=8 γ ∗
√

σ 2
B

σ 2+C 256 95.11 N=8 γ ∗
√

σ 2
B

σ 2+C 58 94.77

6. N=9 µ 1 512 94.62 N=9 µ 1 114 94.23

7. N=9 µ σ 512 94.87 N=9 µ σ 114 94.40

8. N=9 γ ∗ 1 512 95.12 N=9 γ ∗ 1 114 94.93

9. N=9 γ ∗
√

σ 2
B

σ 2+C 512 95.25 N=9 γ ∗
√

σ 2
B

σ 2+C 114 95.16

The local patch Lc of N = 8 excludes the center pixel. The number of dimensionality of cell-wise features is shown in the column of ‘Dim.’. The
performances of the proposed method are underlined

further set the weighting as w = 1 in both statistics-based
LBP and ourmethod in order to give light on the effectiveness
of the discriminative coding with threshold γ ∗. A thresh-
old in coding is crucial to encode the local pixel intensities
into a binary pattern, while weighting works just for assign-
ing significance to those patterns. Comparing the methods of
w = 1, the thresholds µ and γ ∗ are superior to the ordinary
threshold I (c) and in particular, our discriminative threshold
γ ∗ significantly outperforms both of µ and I (c). Thus, it is
confirmed that the proposed method which discriminatively
optimizes the threshold can effectively work in constructing
local binary patterns for image features. By incorporating
discriminative weights, the performance is further improved
as shown in lines 4–5 and 8–9.

5.1.2 Dimensionality

By controlling a local patch Lc and applying the uniform
pattern (Sect. 4), the feature dimensionality is halved, accord-
ingly causing a little performance degeneration; compare (a)
with (b), and lines 2–5 with 6–9 in Table2. Note that in
the case that a local patch Lc is of N = 8, the proposed
and statistics-based methods do not take into account the
center pixel intensity I (c) at all in coding and weighting.
Figure 7 graphically summarizes the performance results
from the viewpoint of the feature dimensionalities. The per-
formance gain achieved by the proposed method is larger in
the lower dimensional features. This is because the discrim-
inative power per feature element (binary pattern) is higher

58 114 256 512
91

92

93

94

95

96

Number of dimension per cell

Ac
cu

ra
cy

 (%
)

LBP
stat. LBP, N=8
stat. LBP, N=9
disc. LBP, N=8
disc. LBP, N=9

Fig. 7 Performance analysis on the Daimler Chrysler dataset in terms
of feature dimensionality. Empty and filled markers indicate the perfor-
mances of full binary patterns and uniform patterns, respectively. The
horizontal axis shows dimensionality in log scale. This figure is best
viewed in color (color figure online)

in the proposed method due to the discriminative coding and
thus even lower dimensional features work well in classifica-
tion. Thus, we can say that the proposed method is effective
especially for lower dimensional LBP features such as by
applying the uniform pattern, which is practically useful due
to saving memory usage for features. Based on the trade-
off between performance and dimensionality,we recommend
to apply the proposed method with the uniform pattern and
N = 9 local patch including the center pixel.
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Table 3 Performance comparison to the other methods on the Daimler
Chrysler dataset

Method Acc. (%)

Ours, N=9, full 95.25

Ours, N=9, uniform 95.16

HOG [4] 86.41

Maji and Berg[20] 89.25

Vedaldi and
Zisserman[35]

91.10

Kobayashi [11] 94.32

The performances by our methods are highlighted by bold

5.1.3 Comparison to the other methods

The proposed method is compared to the other methods than
LBP; HOG [4], additive kernel-based feature maps [20,35]
and higher-order co-occurrence [11]. Although our method
is quite simple, the performance is superior to thosemethods;
note that even the method of N = 9 with the uniform pattern
outperforms those state-of-the-arts (Table3).

5.2 INRIA person dataset

Next, the proposed method is tested on the INRIA person
dataset [4]. It contains 2416 person annotations and 1218
person-free images for training, and 1132 person annotations
and 453 person-free images for test; the person annotations
(bounding boxes) are scaled into a fixed size of 64 × 128
pixels. Cell-structured features are computed on cells of 8×8
or 16×16 pixels, producing 8×16 or 4×8 cells on a detection
window of 64×128 pixels. In each cell, LBP-based features
with uniform patterns of N = 9 are extracted to reduce the
feature dimensionality. The performance is shown in Fig. 8
where for quantifying and comparing methods, we plotted
detection error trade-off curves by calculating miss rate and
false-positive rate per detection window.

As shown in Fig. 8a, the proposed method outperforms
LBP-related methods [16,26] and HOG [4] in both cases of
8 × 8 and 16 × 16 px cells. Note that the method with cells
of 16× 16 pixels produces 3648-dimensional feature vector
which is close toHOGdimensionality (3780 dimension). The
larger cell of 16 × 16 pixels contains a substantial number
of pixels, i.e., LBP codes, to construct features, which statis-
tically contributes to increase robustness of noise-sensitive
LBP features; the LBP method becomes even comparable
to the statistics-based LBP method [16] as shown in Fig. 8a
(comparing dashed lines for 16× 16 px cells with solid ones
for 8×8px cells). In contrast, the proposedmethod is superior
to the LBPmethod in any cases due to discriminative coding.

Finally, the LBP-based features are combined with HOG
as proposed in [37]; Fig. 8b shows the performance results.
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Fig. 8 Performance comparison on the INRIA dataset. The solid lines
show the performance of LBP-based features with cells of 8× 8 pixels,
while the dashed lines are for cells of 16 × 16 pixels. Note that the
uniform patterns are applied to LBP-based features. The performance
of single type of feature is shown in (a), while that of combined features
with HOG is in (b). The ordinary HOG-LBP method [37] is denoted by
HOG-LBP

The performance is improved by the combination and the
proposed method again outperforms the ordinary HOG-LBP
[37].

5.3 Face recognition

We tested themethod on a face recognition task using FERET
dataset [30]. In this experiment, we used frontal face images
which are partitioned into the following five sets; fa is a
gallery set of 1196 persons, fb set (1195 images) is taken
with different facial expression, fc (194 images) is captured
under different lighting condition, dup I (722 images) is taken
later in time, and dup II (234 images) is a subset of dup I con-
taining images taken at least a year later. The sets other than
fa are regarded as probe sets on which the classification is
performed.
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Table 4 Recognition rate (%) on the FERET dataset

Method fb fc dup I dup II

LBP 98 84 82 71

Stat. LBP 98 87 81 73

Ours 98 90 83 76

Ahonen et al. [1] 97 79 66 64

Zhang et al. [41] 98 97 74 71

Lei et al. [18] 97 90 71 67

Xie et al. [39] 97 97 75 71

The best performances are highlighted by bold

An facial image of 130×150 pixels is spatially partitioned
into 18× 21 cells at each of which the LBP-based feature is
extracted. The LBP feature is computed on 8 sampling points
along the circle of 3 pixel radius. In classification, since each
individual is represented by only one frontal face image in the
fa gallery set, we apply the exemplar SVM method [13,21].
The method individually trains linear SVM classifiers for
respective persons on the fa set and an (unknown) input face
image is classified into the one of themaximum classification
score. It is superior to 1-NN in that individual classifiers
contain discriminative information endowed by SVM [13,
21].

The performance results are shown in Table4. Classifica-
tion on the fb set is the easiest and thus the performance of the
LBP method is almost saturated, exhibiting no performance
gain by the proposed method. In contrast, on the fc, dup I
and dup II sets, the performance is successfully improved;
especially, on the dup I and dup II sets, the method exhibits
superior performance to the others.

5.4 Action classification

Lastly, we apply the method to action classification from
videos. A video is represented as a sequence of image
frames which form volume data in XYT domain, and thus
the extended method described in Sect. 3 effectively works
to extract local motion descriptors from the XYT volume
patches in the framework using dense trajectory [36]. As in
[36], we extract plenty of trajectories of 15 frame time length
starting from dense spatio-temporal points in an input video
sequence. Each trajectory is spatially extended to 32×32 pix-
els along aX-Y image plane (frame), resulting in 32×32×15
tube, not “cuboid”, which is partitioned into 2 × 2 × 2
cells to extract cell-based volume descriptors followed by
dimensionality reduction via PCA. The descriptor features
are extracted by the proposedmethod of N = 8with uniform
patterns using joint thresholding (Sect. 3) on the decomposed
2-D patch in 3 × 3 × 3 voxels. As a result, the input video

Table 5 Performance results (%) of the proposed method on various
types of patches in the HMDB51 dataset

(a) Single patch
XY
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t
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t
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Patch XY XT YT oX1 oX2 oY1 oY2 oT1 oT2
Acc. 44.1 40.8 43.5 41.0 41.0 43.0 43.4 41.1 40.5

(b) Two patches

45.9 47.8 45.0 45.5 45.9 46.5 45.8 45.5

44.5 43.0 42.9 44.4 44.5 42.6 42.2

44.8 44.6 44.7 44.9 43.6 43.8

42.3 43.5 43.6 43.4 43.3

43.7 44.1 43.8 43.2

43.8 44.0 43.8

43.6 43.5

41.9

X
Y

X
T

Y
T

oX
1

oX
2

oY
1

oY
2

oT
1

oT
2

XY

XT

YT

oX1

oX2

oY1

oY2

oT1

oT2

(c) Three patches
Patches XY+XT+YT XY+YT

Acc. 47.2 47.8

sequence is represented by a bag of local volume descriptors
and then the Fisher kernel encoding [32] is applied to them.

We tested the method on the HMDB51 dataset [17] which
is collected from a variety of sources ranging from digitized
movies to YouTube videos, containing 6766 video sequences
of 51 action categories in total. The performance is measured
by following the original protocol; we report the averaged
classification accuracy over three training-test splits [17] in
which there are 70 videos for training and 30 videos for test
in each class, and note that in this experiment we use the
original videos which are not stabilized.

As described in Sect. 3, it is infeasible to extract LBP-
based features directly from the 3-D volume patch, and
therefore, the volume patch is decomposed into various types
of 2-D patch on which the features are actually computed.
We compare those 2-D patches in Table5. Table5a shows
the performance comparison of various types of 2-D patch.
The XY patch performs best and the YT one is the second,
which implies the patches related to Y -axis perform well;
actually, oY1 and oY2 patches also work well. On the other
hand, the patches related to X -axis are relatively inferior,
such as in XT , oX1 and oX2. This is due to the difference
in horizontal and vertical movement. The human motion is
dominated by horizontal movement, e.g., translation, with
large displacement along X -axis which is difficult to be prop-
erly characterized by the small LBP patch, in this case 3× 3

123

Author's personal copy



Discriminative local binary pattern

Table 6 Comparison in thresholding strategies on theHMDB51dataset

Patch XY XT YT XY + YT

Respective thresholding 40.0 39.9 43.3 47.6

Joint thresholding 44.1 40.8 43.5 47.8

The better performances are highlighted by bold

Table 7 Performance comparison on the HMDB51 dataset

(a) Comparison on LBP-based methods

Method LBP stat. LBP Ours

Acc. 43.7 47.3 47.8

(b) Combination with dense trajectory feature [36]

Method [17] [36] [36]+LBP [36]+ stat. LBP [36]+Ours

Acc. 23.2 51.2 51.6 52.3 52.7

The best performances are highlighted by bold

pixels, on XT slice. In contrast, the vertical movement along
Y -axis is relatively small and its discriminative features can
be appropriately extracted by the LBP patch for discriminat-
ing actions. The combination of patches is also compared in
Table5b which shows that the best performance is obtained
by combining XY and YT patches. While the patch com-
binations on the basis of Y -axis, such as XY +oY1 and
XY +oY2, also improve performance, the XY + YT patch
combination is superior since it integrates orthogonal patches
of XY and YT favorably compensating motion and shape
information to each other; the oY1 and oY2 patches contain
the information from X -axiswhich is already extracted by the
XY patch. As shown in Table5c, the XY +YT combination
outperforms the full set of XY + XT + YT which degrades
performance by adding the redundant and less-informative
patch of XT.

Next, we compared the thresholding strategies described
in Sect. 3, respective and joint thresholding, in Table6.While
in the respective thresholding each patch has its own discrim-
inative threshold in disregard of the others, by which the XY
patch results in completely shape (texture) feature, the joint
thresholding naively introduces volume information in the
threshold shared across all the patches, which leads to per-
formance improvement especially on XY patch, as shown in
Table6. Based on this result, we employ the joint threshold-
ing.

By using the patch combination of XY + YT , the LBP-
based methods are compared in Table7a, showing that
the proposed method is superior to the original LBP and
statistics-based LBP as is the case with image classification
described in the previous sub-sections. The proposedmethod
is then combined with the features [36] composed of HOG,
histogram of optical flow (HOF) and motion boundary his-

togram (MDH), and favorably improve the performance as
shown in Table7b.

6 Conclusion

In this paper, we have proposed a novel LBP-based method
to extract effective features from images and volume data,
such as motion images. We generalize the LBP formulation
by focusing on the two fundamental processes of coding and
weighting, and the proposed method provides a discrimi-
native approach to determine those two fundamentals. In
the discriminative approach, LBP coding to binarize pixel
intensities by a threshold is regarded as separating a local
pixel intensity distribution into two modes, and from that
viewpoint the threshold is optimized by maximizing the
Fisher discriminant score which is subsequently employed
in weighting. So discriminatively optimized thresholds sig-
nificantly contribute to construct effective features of high
robustness to noise and the weight of the discriminant scores
efficiently exploit image contrast information to reveal the
visual structure of the content (object). The proposedmethod
retains the simple formulation of the original LBP and is also
applicable to extract volume features via efficiently decom-
posing a 3-D volume patch into 2-D patches as well as
employing the effective thresholding strategy based on the
volume patch. The experimental results on various visual
recognition tasks including image and action classification
show that the proposed method exhibits favorable perfor-
mance compared to the other methods.

References

1. Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local
binary patterns: application to face recognition. IEEETrans. Pattern
Anal. Mach. Intell. 28(12), 2037–2041 (2006)

2. Bishop, C.M.: Pattern Recognition and Machine Learning.
Springer, New York (2007)

3. Chan, C.H., Goswami, B., Kittler, J., Christmas, W.: Local ordinal
contrast pattern histograms for spatiotemporal, lip-based speaker
authentication. IEEE Trans. Inf. Forensics Secur. 7(2), 602–612
(2012)

4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human
detection. IEEE Conf. Comput. Vis. Pattern Recognit. 1, 886–893
(2005)

5. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn.
Wiley, Hoboken (2001)

6. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Lib-
linear: a library for large linear classification. J. Mach. Learn. Res.
9, 1871–1874 (2008)

7. Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classi-
fication using lbp variance (LBPV) with global matching. Pattern
Recognit. 43(3), 706–719 (2010)

8. Hafiane, A., Seetharaman, G., Zavidovique, B.: Median binary
pattern for texture classification. In: International Conference on
Image Analysis and Recognition, pp. 387–398 (2007)

123

Author's personal copy



T. Kobayashi

9. Jin,H., Liu,Q., Lu,H., Tong,X.: Face detection using improved lbp
under bayesian framework. In: International Conference on Image
and Graphics, pp. 306–309 (2004)

10. Kläser, A., Marszałek, M., Schmid, C.: A spatio-temporal descrip-
tor based on 3D-gradients. In: British Machine Vision Conference,
pp. 995–1004 (2008)

11. Kobayashi, T.: Higher-order co-occurrence features based on dis-
criminative co-clusters for image classification. In:BritishMachine
Vision Conference, pp. 64.1–64.11 (2012)

12. Kobayashi, T.:Discriminative local binary pattern for image feature
extraction. In: International Conference on Computer Analysis of
Images and Patterns, pp. 594–605 (2015)

13. Kobayashi, T.: Three viewpoints toward exemplar SVM. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp.
2765–2773 (2015)

14. Kobayashi, T., Otsu, N.: Image feature extraction using gradi-
ent local auto-correlations. In: European Conference on Computer
Vision, pp. 346–358 (2008)

15. Kobayashi, T., Otsu, N.: Motion recognition using local auto-
correlation of space-time gradients. Pattern Recognit. Lett. 33(9),
1188–1195 (2012)

16. Kobayashi, T., Ye, J.: Acoustic feature extraction by statistics based
local binary pattern for environmental sound classification. In:
International Conference on Acoustic, Speech and Signal Process-
ing, pp. 3076–3080 (2014)

17. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB:
a large video database for human motion recognition. In: Interna-
tional Conference on Computer Vision, pp. 2556–2563 (2011)

18. Lei, Z., Li, S.Z., Chu, R., Zhu, X.: Face recognition with local
gabor textons. In: International Conference on Biometrics, pp. 49–
57 (2007)

19. Lowe, D.: Distinctive image features from scale invariant features.
Int. J. Comput. Vis. 60, 91–110 (2004)

20. Maji, S., Berg,A.:Max-margin additive classifiers for detection. In:
International Conference on Computer Vision, pp. 40–47 (2009)

21. Malisiewicz, T., Gupta, A., Efros, A.: Ensemble of exemplar-svms
for object detection and beyond. In: International Conference on
Computer Vision, pp. 89–96 (2011)

22. Mattivi, R., Shao, L.: Human action recognition ising LBP-TOP as
sparse spatio-temporal feature descriptor. In: International Confer-
ence on Computer Analysis of Images and Patterns, pp. 740–747
(2009)

23. Munder, S., Gavrila, D.M.: An experimental study on pedestrian
classification. IEEE Trans. Pattern Anal. Mach. Intell. 28(11),
1863–1868 (2006)

24. Nanni, L., Brahnam, S., Lumini, A.: Local ternary patterns from
three orthogonal planes for human action classification. Expert
Syst. Appl. 38(5), 5125–5128 (2011)

25. Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants
as texture descriptors formedical image analysis. Artif. Intell.Med.
49(2), 117–125 (2010)

26. Ojala, T., Pietikäinen, M., Harwood, D.: Performance evaluation
of texture measures with classification based on kullback discrim-
ination of distributions. In: International Conference on Pattern
Recognition, pp. 582–585 (1994)

27. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of
texture measures with classification based on feature distributions.
Pattern Recognit. 29(1), 51–59(1998)

28. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale
and rotation invariant texture classification with local binary pat-
terns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987
(2002)

29. Otsu, N.: Discriminant and least squares threshold selection. In:
International Conference on Pattern Recognition, pp. 592–596
(1978)

30. Phillips, P., Wechsler, H., Huang, J., Rauss, P.: The feret database
and evaluation procedure for face recognition algorithms. Image
Vis. Comput. 16(10), 295–306 (1998)

31. Pietikäinen,M., Zhao, G., Hadid, A., Ahonen, T.: Computer Vision
Using Local Binary Pattern. Springer, New York (2011)

32. Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classi-
fication with the fisher vector: theory and practice. Int. J. Comput.
Vis. 105(3), 222–245 (2013)

33. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor
and its application to action recognition. In: ACM Conference on
Multimedia, pp. 357–360 (2007)

34. Tan, X., Triggs, B.: Enhanced local texture feature sets for face
recognition under difficult lighting conditions. IEEE Trans. Image
Process. 19(6), 1635–1650 (2010)

35. Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit
featuremaps. In: IEEEConference onComputerVision andPattern
Recognition (2010)

36. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and
motion boundary descriptors for action recognition. Int. J. Comput.
Vision 103, 60–79 (2013)

37. Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with
partial occlusion handling. In: International Conference on Com-
puter Vision, pp. 32–39 (2009)

38. Wu, J., Rehg, J.M.: Centrist: a visual descriptor for scene catego-
rization. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1489–1501
(2011)

39. Xie, S., Shan, S., Chen, X., Meng, X., Gao, W.: Learned local
gabor patterns for face representation and recognition. Sig. Process.
89(12), 2333–2344 (2009)

40. Zabih, R., Woodfill, J.: Non-parametric local transforms for com-
puting visual correspondence. In: European Conference on Com-
puter Vision, pp. 151–158 (1994)

41. Zhang, W., Shan, S., Gao, W., Zhang, H.: Local gabor binary pat-
tern histogram sequence (lgbphs): a novel non-statistical model for
face representation and recognition. In: International Conference
on Computer Vision, pp. 786–791 (2005)

42. Zhao,G., Ahonen, T.,Matas, J., Pietikäinen,M.: Rotation-invariant
image and video description with local binary pattern features.
IEEE Trans. Image Process. 21(4), 1465–1477 (2012)

43. Zhao, G., Pietikäinen,M.: Dynamic texture recognition using local
binary patterns with an application to facial expressions. IEEE
Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)

Takumi Kobayashi received Ms. Eng. from University of Tokyo in
2005 and Dr. Eng. from University of Tsukuba in 2009. He was a
researcher at Toshiba Corporation in 2006 and then joined National
Institute ofAdvanced Industrial Science andTechnology (AIST), Japan,
in 2007. His research interest includes pattern recognition.

123

Author's personal copy


	Discriminative local binary pattern
	Abstract
	1 Introduction
	2 Discriminative local binary pattern
	2.1 General formulation for LBP
	2.2 Discriminative coding
	2.3 Characteristics of discriminative coding
	2.3.1 Robustness
	2.3.2 Invariance
	2.3.3 Geometric feature

	2.4 Computational issues

	3 Extension to volume feature extraction
	4 Techniques for effective feature
	4.1 Normalization
	4.2 Cell-structured feature
	4.3 Binary pattern reduction

	5 Experimental results
	5.1 Performance analysis on Daimler Chrysler dataset
	5.1.1 Coding and weighting
	5.1.2 Dimensionality
	5.1.3 Comparison to the other methods

	5.2 INRIA person dataset
	5.3 Face recognition
	5.4 Action classification

	6 Conclusion
	References


