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Abstract—Image quality assessment gains a greater interest
due to development of digital imaging and storage. In that field,
structural similarity (SSIM) index has been shown to favorably
agree with human perceptual assessment, significantly outper-
forming the method of mean squared error, i.e., L2 distance. The
similarity measure function in SSIM which compares a target
(distorted) image with its reference (original) image is hand-
crafted in a simple form via a top-down approach based on the
human visual system. It, however, might lack optimality without
directly considering the relationships between image data and
the perceptual assessment (scores). In this paper, we propose
a method to construct an image similarity measure based on
actual data. The proposed method optimizes a similarity measure
function by exploiting annotated data in a bottom-up and
data-driven manner, while retaining the favorable property of
structural similarity in SSIM. The non-linear similarity function
is optimized as the global optimum of high generalization power.
In addition, the proposed method is simply formulated and thus
applicable to the family of SSIM, especially to FSIM which
has been recently proposed exhibiting superior performance to
SSIM. The experimental results on image quality assessment
demonstrate the effectiveness of the proposed method compared
to the other methods.

I. INTRODUCTION

In image processing, it is a fundamental task to assess
quality of images which are subject to various types of distor-
tion caused such as through acquisition, compression, storage
and transmission. Such quality assessment can be applied not
only to images but also to a variety of signals. The quality
is essentially defined based on subjective human perception,
not solely on physical property of signals, i.e., pixel values,
themselves. The subjective assessment, however, requires large
amounts of cost and time, and thus we demand automatic
quality assessment which is rather objective. Given a source
(reference) image, the target (test) image would be assessed via
comparison with it. Although mean squared error (MSE) has
been successfully applied in the other fields to compare two
signals, it is unfortunately unsuitable for the quality assessment
due to its incompatibility with human perception [1].

In the last decade, structural similarity index (SSIM) [2]
has drawn keen attention for image quality assessment since
it significantly outperforms MSE [1]. SSIM is composed of
three kinds of patch-based similarity between reference and
test images; structural, luminance and contrast similarities. The
patch-based similarity is pooled over a whole image to provide
single similarity measure which can be regarded as quality
measure of the test image. Apart from simple MSE, SSIM
that exploits structural similarity in patches is closely related to
human perception [1], thus producing favorable performance

for automatic image quality assessment. There are variants
of SSIM, such as multi-scale SSIM (MS-SSIM) [3], complex
wavelet SSIM [4] and information content-weighted SSIM
(IW-SSIM) [5], and it is noteworthy that feature similarity
index (FSIM) [6] is recently proposed and outperforms the
other family of SSIM. The mathematical properties of SSIM
are also analyzed in detail by [7]. SSIM is so versatile as to
be widely applicable in various fields other than image quality
assessment, e.g., image fusion, image denoising, watermarking
and compression. Note that these SSIM-based methods are
called fully-referenced methods due to assessing image qual-
ity based on the similarity measure between reference and
test images, while there also exist blind approaches without
requiring reference images [8], [9]. This study focuses on the
framework of fully-referenced image quality assessment.

In this paper, we propose a novel method for learning image
similarity measure from annotated data. SSIM is formulated
in a fully top-down manner (so we can call this hand-
crafted measure) without considering actual data distribution
nor its relationship to human perceptual assessment (scores).
Thus, it might be said that the SSIM and its variants lack
optimality from the data-driven (bottom-up) point of view. We
first present a general framework of SSIM and then, in that
framework, combine top-down and bottom-up approaches to
construct optimized similarity measure based on data while
leveraging top-down structural similarity measure, the key
component of SSIM. In the proposed method, we formulate
the similarity learning problem in a convex form to globally
optimize non-linear similarity measure function. The bottom-
up data-driven approach is, however, vulnerable to overfit-
ting. In order to avoid it and improve generalization, model
complexity of a similarity measure function is reduced and a
prior model is also introduced. The proposed method provides
similarity measure in such a simple form as SSIM, due to
which it requires a low computational cost to assess image
quality. In addition, the simple formulation of the proposed
method enables us to extend the method to the variants of
SSIM beyond the original SSIM; in this work, we apply it to
FSIM [6] which produces high performance.

II. PROPOSED METHOD

We begin with a brief review of SSIM [2] that measures
similarity between reference and test images (Sec. II-A),
and then propose a method to learn similarity measure from
annotated data (Sec. II-B). We also describe the extension of
the method in the framework of FSIM [6] (Sec. II-C).
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A. Structured similarity index (SSIM)

Given two image patches x and y to be compared,
SSIM [1], [2] provides similarity measure between them as
follows;

S(x,y) = l(u(x), u(y)) c(q(x), q(y)) s(x,y), (1)
l(µx, µy)=k(µx, µy; c1), c(σx, σy)=k(σx, σy; c2), (2)

k(a, b; c)=
2ab+ c

a2 + b2 + c
, s(x,y) =

r(x,y) + c3
q(x)q(y) + c3

, (3)

where u(x), q(x) and r(x,y) are functions to compute mean,
standard deviation and covariance of pixel values in patches
x and y, respectively. While the function s simply computes
the correlation coefficient, the function k is applied to measure
similarities of scalars, in this case, the mean µ and standard
deviation σ; the small constants c1, c2 and c3 are introduced to
avoid instable computation. A similarity between two images
Ix and Iy is then computed by pooling the patch-based SSIM
indexes (1) over a whole image;

S̄(Ix, Iy) =
1

m

m∑
j=1

S(xj ,yj), (4)

where {xj ,yj}mj=1 are m patch pairs densely sampled from
the pair of Ix and Iy .

Three functions l, c and s in (2,3) measure similarity
of luminances, contrasts and structures in the patches, re-
spectively. The structural similarity s(x,y) plays a key role
in SSIM by extracting pairwise pixel relationship to take
into account a patch structure which is closely related to
perceptual similarity [1]. It, however, is too robust in pixel
value changes to give favorable similarity measure since it
always produces maximum similarity score (i.e., 1) for affine
relationships between pixel values, yk = αxk + β, (α > 0).
To compensate it, the other two types of similarities l and c

are complementarily introduced to capture changes regarding
luminance (pixel value bias, β) and contrast (pixel value
scaling, α).

B. Similarity measure learning

The function k to compute the luminance and contrast simi-
larities in (2) is not necessarily optimal for actual digital image
data. Therefore, we aim to optimize the similarity measuring
function based on actual data. From the viewpoint that the
luminance and contrast similarities work for compensating the
structural similarity s(x,y), a patch similarity is generally
formulated by

L(x,y) = w(u(x), u(y), q(x), q(y)) s(x,y), (5)

L̄(Ix, Iy) =
1

m

m∑
j=1

L(xj ,yj) + ρ, (6)

where a bias ρ is added for more generalization and w is
a non-linear function of four statistics u(x), u(y), q(x)
and q(y); in the case of SSIM, it is constructed by using
the function k as w(µx, µy, σx, σy) = l(µx, µy)c(σx, σy) =

k(µx, µy; c1)k(σx, σy; c2). We learn the function w from an-
notated image pairs, assuming that a training set is composed
of image pairs which are coupled with perceptual similarity
scores, such as mean opinion score (MOS) and differential
MOS (DMOS).

1) Feature representation: It is generally difficult to opti-
mize the non-linear function w in (5) since we do not impose
any constraints on the form of w. However, it is possible to
formulate a feasible optimization problem for w by linearizing
(6) to

L̄(Ix, Iy)=

∫∫∫∫
µx,µy
σx,σy

w(µx, µy, σx, σy)f(µx, µy, σx, σy)+ρ,

(7)

f(µx, µy, σx, σy)=

m∑
j=1

s(xj ,yj)

m
δ(µx−u(xj))δ(µy−u(yj))

× δ(σx−q(xj))δ(σy−q(yj)), (8)

where δ is a delta function. In this formulation, a similar-
ity of an image pair is measured by the inner product of
the weighting function w and the feature function f which
is extracted from the image pair by using the structural
similarity s. In practice, the mean and standard deviation
values are discretized; in the case that a pixel value ranges
in {0, · · · , 255}, those statistics values can also be discretized
into {0, · · · , 255}. The weight w and the feature f are accord-
ingly discretized from functional forms into vectors of fixed
dimensionality, w and f , respectively. As a result, we can
obtain the tractable problem for optimizing the weight vector
w as described in Sec. II-B2.

It, however, is vulnerable to over-learning, resulting in
less generalization performance, since the wight vector w is
of high dimensionality; in the above-mentioned setting, the
dimensionality of w is 2564 ≈ 4× 109. Therefore, we reduce
complexity of the model (5) by

L′(x,y)= {wµ(u(x), u(y)) + wσ(q(x), q(y))} s(x,y), (9)

where the joint function w(µx, µy, σx, σy) is replaced with sum
of the marginal functions wµ(µx, µy) for mean and wσ(σx, σy)
for standard deviation by considering the distinct statistical
nature of µ and σ. Similar decomposition of SSIM is also
found in [7]. Consequently, in a manner similar to (8), we
linearize the similarity computation as

L̄′(Ix, Iy) =

∫∫
µx,µy

wµ(µx, µy)fµ(µx, µy)

+

∫∫
σx,σy

wσ(σx, σy)fσ(σx, σy) + ρ, (10)

fµ(µx, µy)=

m∑
j=1

s(xj ,yj)

m
δ(µx−u(xj))δ(µy−u(yj)), (11)

fσ(σx, σy)=

m∑
j=1

s(xj ,yj)

m
δ(σx−q(xj))δ(σy−q(yj)). (12)
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(a) fµ (b) fσ
Fig. 1. Example of marginal features fµ and fσ . For convenience, features
are represented in a matrix form of 256 × 256, which is actually unfolded
into a vector form of 2562 = 65536 dimensionality. The feature values are
depicted in pseudo color. This figure is best viewed in color.

This is discretized into

L̄′(Ix, Iy) =

[
wµ

wσ

]> [
fµ
fσ

]
+ ρ = w>f + ρ, (13)

where wµ and wσ are weight vectors discretized from the
functions wµ and wσ , while fµ and fσ are discretized feature
vectors (Fig. 1), e.g., wµ,wσ,fµ,fσ ∈ R65536=2562 . This
marginal model is of significantly lower complexity compared
to the joint model (8) in which feature dimensionality is 2564.

2) Optimization formulation: Suppose that we have n
annotated image data {I∗i , Ii, ti}ni=1, where the i-th triplet
is composed of the reference image I∗i , the test image Ii
(distorted from I∗i ) and the quality assessment score ti for Ii.
We here assume the score t is given in the form of absolute
assessment scores, e.g., MOS, and will discuss the case of
DMOS in the later part of this section. For optimizing the
weight w (and the bias ρ), we regard an image quality t as
a similarity between reference and test images and thereby
estimate it according to (13);

t ≈ w>f(I∗, I) + ρ, (14)

where f(I∗, I) is the feature vector extracted from the pair
of I∗ and I as described in the previous section.

(14) is a form of linear regression, and based on the large-
margin criterion [10], the optimization problem with respect
to w and ρ can be formulated as the support vector regression
(SVR) [11];

min
w,ρ, ξ+i≥0,ξ

−
i ≥0

1

2
‖w‖22 + C

n∑
i=1

(ξ+i + ξ−i ), (15)

s.t. w>f(I∗i , Ii) + ρ ≤ ti + εi + ξ−i , (16)

w>f(I∗i , Ii) + ρ ≥ ti − εi − ξ+i , (17)

where εi indicates insensitivity to ti; practically, ε is set to
standard deviation of MOS. This SVR formulation produces
the weight vector w which would be overly fit to training
data especially on small-scale datasets. Actually, the optimized
weight w is represented by the weighted sum of the feature
vectors {fi}ni=1 and thus the weights on unseen mean µ and

standard deviation σ are obviously zeros, which could cause
less generalization.

For improving the generalization performance, we introduce
a prior weight vector w0 to give the following optimization
formulation;

min
w,ρ, ξ+i≥0,ξ

−
i ≥0

1

2
‖w −w0‖22 + C

n∑
i=1

(ξ+i + ξ−i ), (18)

s.t. w>f(I∗i , Ii) + ρ ≤ ti + εi + ξ−i , (19)

w>f(I∗i , Ii) + ρ ≥ ti − εi − ξ+i , (20)

which optimizes the weight w by minimizing the regression
error (the second term) while simultaneously making it close
to the prior weight w0 (the first term). Since the method stems
from SSIM [2], it is natural to employ as the prior model the
similarity functions used in SSIM,

wµ0(µx, µy) =
l(µx, µy)

2
, wσ0(σx, σy) =

c(σx, σy)

2
, (21)

and these functions are discretized into the prior weight vector
w0. By transforming the variable w into ŵ = w − w0, the
above problem (18) results in the standard SVR formulation;

min
ŵ,ρ, ξ+i≥0,ξ

−
i ≥0

1

2
‖ŵ‖22 + C

n∑
i=1

(ξ+i + ξ−i ), (22)

s.t. ŵ>f(I∗i , Ii) + ρ ≤ t̂i + εi + ξ−i , (23)

ŵ>f(I∗i , Ii) + ρ ≥ t̂i − εi − ξ+i , (24)

where t̂i = ti −w>0 f(I∗i , Ii).
On the other hand, the quality is often assessed as a relative

score, e.g., DMOS, unlike the above-mentioned absolute score
of MOS. Based on the regression form (14), the relative score
is also estimated by our model as

t̃ = {w>f(I∗, I∗) + ρ} − {w>f(I∗, I) + ρ}
= w>{f(I∗, I∗)− f(I∗, I)}, (25)

where the constant bias ρ is canceled out. Thus, the optimiza-
tion problem to deal with DMOS is slightly different from
(22-24) only in that the feature vectors f(I∗, I) are replaced
with the differential features f(I∗, I∗)−f(I∗, I) and the bias
ρ is removed in the constraints (23,24);

s.t. ŵ>{f(I∗i , I∗i )− f(I∗i , Ii)} ≤ t̂i + εi + ξ−i , (26)

ŵ>{f(I∗i , I∗i )− f(I∗i , Ii)} ≥ t̂i − εi − ξ+i . (27)

C. Extension to feature similarity index (FSIM)

While Sec. II-B has described the proposed method in
the framework of SSIM, the method can be easily extended
to the family of SSIM, especially to the feature similarity
index (FSIM) [6] which exhibits superior performance even
to SSIM. The FSIM is formulated based on both the phase
congruency [12] and the gradient magnitude on images as
follows;

Sj = k(Gxj , G
y
j ; c4) k(P xj , P

y
j ; c5) P̂j , (28)

P̂j = max[P xj , P
y
j ], (29)
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where Gxj and Gyj are gradient magnitudes by applying Scharr
operator [13] at the j-th pixel position on the images Ix and
Iy , respectively, and P xj and P yj are the phase congruency
computed by means of [14]. As is the case for µ and σ in
SSIM, the function k in (3) is applied to measure similarities
for those two types of characteristics with constants c4 and c5.
In contrast to SSIM, the FSIM leverages the phase congruency
for exploiting local structures, which is also a biologically
plausible model [12]. The FSIM for the images Ix and Iy is
defined as

S̄(Ix, Iy) =

∑m
j=1 Sj∑m
j=1 P̂j

, (30)

where m is the number of pixels in the image. The pixel-wise
FSIM scores (28) are pooled and normalized by the sum of
P̂j . In this case of FSIM, we can formulate the features in a
manner similar to the procedure presented in Sec. II-B1. That
is, by considering the weight P̂ instead of s in SSIM,

fg(gx, gy)=

m∑
j=1

P̂j∑
j′ P̂j′

δ(gx−Gxj )δ(gy−Gyj ), (31)

fp(px, py)=

m∑
j=1

P̂j∑
j′ P̂j′

δ(px−P xj )δ(py−P yj ), (32)

which are actually discretized into the feature vectors fg and
fp as in (13).

The FSIM is extended to cope with colored images, called
FSIMc [6], while the SSIM (1) and the above-mentioned FSIM
(28) are defined on gray-scaled images. Given the colored
images, the RGB color channels are first converted into YIQ
color representation [15] in which Y conveys the luminance
information while I and Q reflect the chrominic characteristics.
The similarities regarding the I and Q channels are measured
by means of the function k in the same manner for P and G,
while the FSIM (28) is directly applied to measure similarity
on the Y channel. Those three types of similarity are finally
integrated into

Sj = k(Gxj , G
y
j ; c4) k(P xj , P

y
j ; c5)×

{k(Ixj , I
y
j , c6) k(Qxj , Q

y
j , c7)}λP̂j , (33)

where Ixj , I
y
j , Q

x
j and Qyj are the I and Q channel values at

the j-th position on the images Ix and Iy , respectively, and
λ is a parameter usually set to λ = 0.03 [6]. Due to such a
small λ, the term of I and Q channels are less contributing
to the similarity measure and thus we incorporate it into the
weighting with P̂ for constructing the feature representation
in the proposed method;

fg(gx, gy)= (34)
m∑
j=1

{k(Ixj , I
y
j , c6) k(Qxj , Q

y
j , c7)}λP̂j∑′

j P̂j′
δ(gx−Gxj )δ(gy−Gyj ),

fp(px, py)= (35)
m∑
j=1

{k(Ixj , I
y
j , c6) k(Qxj , Q

y
j , c7)}λP̂j∑′

j P̂j′
δ(px−P xj )δ(py−P yj ).

TABLE I
DATASETS USED IN THE EXPERIMENT. MOS STANDS FOR MEAN OPINION

SCORE, WHILE DMOS IS DIFFERENTIAL MEAN OPINION SCORE AS
RELATIVE MEASUREMENT.

Dataset score
image
pair

reference
image

distortion
type

TID2013 [16] MOS 3,000 25 24
TID2008 [17] MOS 1,700 25 17

CISQ [18] DMOS 866 30 6
LIVE [19] DMOS 779 29 5

As a result, through the above definitions of features f in
(31,32) for FSIM and (34,35) for FSIMc, the optimization
procedure can be applied in the same way as described in
Sec. II-B2 to learn FSIM/FSIMc-based similarity measure.

III. EXPERIMENTAL RESULTS

We tested the proposed method on four datasets,
TID2013 [16], TID2008 [17], CISQ [18] and LIVE [19]. The
details of these datasets are described in Table I; the former
two datasets are provided with MOS while the scores in the
latter two are measured as DMOS. For more details, refer to
the respective papers.

For fair comparison, the proposed method is applied in a
leave-“one reference image”-out manner; that is, one reference
image and its corresponding test (distorted) images are used
only for test while the other pairs are fed into training, and
the procedure is repeated for all reference images. As a result,
quality scores of all test images are estimated by the proposed
method excluding them in learning. Performance of the quality
assessment is measured based on two kinds of rank correlation
coefficient, Kendall’s and Spearman’s, between the estimated
scores and the human perceptual scores of MOS or DMOS.

We first compare variants of the proposed method, all of
which lean the similarity function w from training data. There
are four conceivable variants regarding a feature model and
a prior in learning; the features would be either of joint
model (8) or marginal model (9), while we can optimize
similarity function with or without a prior (18,15). Note that
the marginal model is of a lower complexity than the joint
model in terms of the (discretized) feature dimensionality in
(13). Table II shows the performance results of these variants
in the frameworks of SSIM [2], FSIM and FSIMc [6]. One can
see that the performance is favorably improved by introducing
the prior on all the datasets. It is generally difficult to build a
proper similarity function from scratch by using such a limited
number of training samples and thus the introduction of the
prior facilitates to effectively learn it. In addition, the prior
can suppress over-fitting in the learning especially for the
joint model of high complexity; the performance of the joint
model is more effectively boosted by introducing the prior,
compared to the marginal model. In particular, the joint model
surpasses the marginal one in the discriminative framework
of FSIM/FSIMc on the datasets of larger size, TID2013 and
TID2008, though the marginal model is still competitive to the
joint one with outperforming the original similarity measures,
FSIM and FSIMc.
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TABLE II
PERFORMANCE COMPARISON ON VARIANTS OF THE PROPOSED METHOD.

(a) Kendall’s rank correlation coefficient
Ours based on SSIM

joint marginal
Dataset SSIM w/o prior w/ prior w/o prior w/ prior

TID2013 0.5588 0.5113 0.5981 0.5931 0.6359
TID2008 0.5768 0.4894 0.6139 0.5959 0.6605

CISQ 0.6900 0.5848 0.6756 0.7447 0.7700
LIVE 0.7963 0.6997 0.7787 0.8164 0.8188

Ours based on FSIM
joint marginal

Dataset FSIM w/o prior w/ prior w/o prior w/ prior
TID2013 0.6289 0.6720 0.7043 0.6833 0.6901
TID2008 0.6946 0.6940 0.7353 0.7156 0.7292

CISQ 0.7561 0.7709 0.7931 0.8136 0.8177
LIVE 0.8337 0.7491 0.8016 0.8285 0.8288

Ours based on FSIMc
joint marginal

Dataset FSIMc w/o prior w/ prior w/o prior w/ prior
TID2013 0.6665 0.6729 0.7126 0.6858 0.6999
TID2008 0.6991 0.6942 0.7372 0.7153 0.7303

CISQ 0.7684 0.7710 0.7976 0.8137 0.8189
LIVE 0.8363 0.7481 0.8043 0.8286 0.8306

(b) Spearman’s rank correlation coefficient
Ours based on SSIM

joint marginal
Dataset SSIM w/o prior w/ prior w/o prior w/ prior

TID2013 0.7417 0.6765 0.7853 0.7724 0.8175
TID2008 0.7749 0.6523 0.7994 0.7807 0.8413

CISQ 0.8755 0.7653 0.8644 0.9173 0.9332
LIVE 0.9479 0.8825 0.9376 0.9536 0.9555

Ours based on FSIM
joint marginal

Dataset FSIM w/o prior w/ prior w/o prior w/ prior
TID2013 0.8015 0.8558 0.8810 0.8617 0.8677
TID2008 0.8805 0.8757 0.9075 0.8924 0.9017

CISQ 0.9242 0.9307 0.9453 0.9570 0.9588
LIVE 0.9634 0.9205 0.9481 0.9590 0.9589

Ours based on FSIMc
joint marginal

Dataset FSIMc w/o prior w/ prior w/o prior w/ prior
TID2013 0.8510 0.8567 0.8889 0.8645 0.8775
TID2008 0.8840 0.8759 0.9087 0.8921 0.9023

CISQ 0.9309 0.9308 0.9477 0.9570 0.9592
LIVE 0.9645 0.9199 0.9494 0.9591 0.9598

TABLE III
PERFORMANCE COMPARISON ON VARIOUS FORMULATIONS FOR

ESTIMATING DMOS IN THE FSIMC-BASED FRAMEWORK.

(a) Kendall’s rank correlation coefficient
Ours based on FSIMc

joint w/ prior marginal w/ prior
Dataset w/o bias w/ bias w/o bias w/ bias
CISQ 0.7976 0.7311 0.8189 0.7908
LIVE 0.8043 0.7645 0.8306 0.8040

(b) Spearman’s rank correlation coefficient
Ours based on FSIMc

joint w/ prior marginal w/ prior
Dataset w/o bias w/ bias w/o bias w/ bias
CISQ 0.9477 0.9095 0.9592 0.9466
LIVE 0.9494 0.9274 0.9598 0.9509

Next, we go into the case of DMOS measurement which is
found in LIVE and CISQ datasets. The DMOS is based on
a relative score and the proposed method to estimate DMOS
is accordingly defined as the difference between the scores
excluding the bias in (27). Nonetheless, it is possible to put
the bias term by force into the DMOS estimation (27). We
compare in Table III the methods with and without the bias
term in the framework of the FSIMc with a prior. It is observed
that the method without the bias outperforms the one including
the bias. This result validates the proposed formulation (27)
for estimating DMOS.

The proposed methods are then compared to the other
methods, SSIM [2], FSIM [6], FSIMc [6], MS-SSIM [3],
VIF [20] and IW-SSIM [5]. The proposed methods are
equipped with the prior in the framework of FSIMc. Table IV
shows the performance comparison results, demonstrating that
the proposed methods are superior to the others except on the
LIVE dataset; on that dataset, the performance is saturated and
the performance difference between the original FSIMc and

the proposed method of marginal model is quite small. Thus,
from the viewpoint of the overall generalization performance,
we can conclude that the marginal model with a prior is
suitable to the proposed method, which produces favorable
performance on all the datasets. Note that the proposed method
is formulated in the simple framework as in SSIM/FSIM that
computes an image similarity via multiplying the structural
similarity s or the phase congruency P̂ by the weight function
output w, and thus it requires quite a low computation cost to
assess images by the proposed method.

Finally, we show in Fig. 2 the estimated scores in com-
parison with human perceptual scores, MOS and DMOS,
on the datasets of TID2013 and CISQ. One can see that
the scores estimated by the proposed method approximate
human perceptual scores well, while SSIM/FSIMc exhibits
highly nonlinear relationship to it as pointed out in [2], [6].
Therefore, the SSIM/FSIMc scores are often transformed by
fitting a logistic function to revise such nonlinearity. On the
other hand, the proposed method produces favorable scores
that are directly compatible to human perceptual measure; the
estimated scores are linearly related to MOS and DMOS.

IV. CONCLUSION

In this paper, we have proposed a novel method to construct
image similarity based on data for image quality assessment.
The proposed method learns a similarity function from data in
a bottom-up manner while retaining the favorable property of
SSIM/FSIM which is defined in a top-down manner; from
this perspective, the proposed method combines bottom-up
and top-down approaches. To avoid overfitting caused by the
bottom-up approach, we reduce the model complexity as well
as introduce a prior to the model. In the experiments using
publicly available datasets, the proposed method exhibited
favorable performance compared to the other methods.
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TABLE IV
PERFORMANCE COMPARISON WITH THE OTHER METHODS. OUR METHOD IS EQUIPPED WITH A PRIOR IN THE FRAMEWORK OF FSIMC.

Dataset Measure SSIM FSIM [6] FSIMc [6] MS-SSIM [3] VIF [20] IW-SSIM [5] Ours-joint Ours-marginal
TID2013 Kendall 0.5588 0.6289 0.6665 0.6079 0.4567 0.5977 0.7126 0.6999
TID2013 Spearman 0.7417 0.8015 0.8510 0.7872 0.6084 0.7779 0.8889 0.8775
TID2008 Kendall 0.5768 0.6946 0.6991 0.6568 0.5863 0.6636 0.7372 0.7303
TID2008 Spearman 0.7749 0.8805 0.8840 0.8542 0.7496 0.8559 0.9087 0.9023

CISQ Kendall 0.6900 0.7561 0.7684 0.7393 0.7537 0.7529 0.7976 0.8189
CISQ Spearman 0.8755 0.9242 0.9309 0.9133 0.9195 0.9213 0.9477 0.9592
LIVE Kendall 0.7963 0.8337 0.8363 0.8044 0.8270 0.8175 0.8043 0.8306
LIVE Spearman 0.9479 0.9634 0.9645 0.9513 0.9632 0.9567 0.9494 0.9598

TID2013 - SSIM TID2013 - FSIMc CISQ - SSIM CISQ - FSIMc
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Fig. 2. Estimated scores on TID2013 (MOS) and CISQ (DMOS). The proposed method is compared with the original similarity measure in the frameworks
of SSIM and FSIMc.
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