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ABSTRACT

Filter banks on a frequency domain are widely applied and
studied mainly for MFCC and its variant methods on speech
recognition tasks. In recent years, other types of acoustic fea-
tures which are derived from image classification literature
have attracted attentions for the tasks regarding environmen-
tal sounds. For those features, the filter banks can also be
employed mainly to effectively reduce feature dimensional-
ity along the frequency. The filter banks have been designed
according to human auditory process and are not necessarily
optimal from the viewpoint of distinguishing actual acous-
tic data. We propose a method to build a filter bank from
scratch in a data-driven manner based on the natural prop-
erties of filter banks without parametrically modeling them,
which thereby more flexibly describes intrinsic characteristics
of data. Those filters are optimized by incorporating discrimi-
native criterion so as to provide effective features of high per-
formance even with the smaller-sized filter bank. In the exper-
iments on acoustic scene classification, the proposed method
exhibits favorable performance especially on lower dimen-
sional features.

Index Terms— Filter bank, discriminative learning,
acoustic feature, acoustic scene classification

1. INTRODUCTION

Audio-based classification has been applied to various types
of application, not limited to human speech recognition [1],
but including scene classification [2] and event recognition
embedded even in consumer electronic devices [3]. In such
classification, auditory features play a key role for improv-
ing performance. While in speech recognition mel-frequency
cepstral coefficients (MFCC) and its variants [4, 5] have been
applied, other types of features which are derived from im-
age classification literature have been gaining keen attention
in environmental sound classification [2, 6]. Those types of
features are also extracted with preserving frequency infor-
mation and thus require a filter bank on a frequency domain1

as in MFCC for adequately reducing feature dimensionality
so as to enable computationally efficient classification even in

1Throughout this paper, we consider filter weights along the frequency
axis in a spectrogram as Mel-filter bank does in MFCC.

low-end devices. They, however, employ simple filter banks
such as a mel-filter bank.

Especially in the framework of MFCC feature extraction,
some filter banks are heuristically designed based on the re-
sults of psychoacoustic studies by mimicking the human au-
ditory process [1]. On the other hand, there are some works to
optimize the filter banks from the viewpoint of classification
accuracy, i.e., minimizing classification error, based on actual
data [3, 7, 8, 9], which are close to the purpose of this paper.
Those works aim to improve discriminative power of MFCC
features by parametrically modeling the filters, e.g., regarding
control points of filter weights [7], center positions of uni-
modal filters with fixing weights [3] and vice versa [8]. Al-
though they achieve favorable performance, such parametric
model of filters which resembles existing filter banks limits its
ability to describe statistical and discriminative characteristics
intrinsically contained in data. Without loss of generality, we
can naturally assume the following properties on a filter bank:

1. Non-negativity. Filters are composed of non-negative
weights.

2. Locality. Support region of the filter weights, namely
region of positive weights, is well compact to enable
functionality of frequency selection.

3. Disjointness (or less overlapping). Different filters are
disjoint, or less overlapped, to each other for effectively
and/or selectively encoding the frequency information.

4. Smoothness. Filter weights are smoothly continuous
without a lot of fluctuations.

Compared to conventional dimensionality reduction meth-
ods such as principal component analysis (PCA) and Fisher
discriminant analysis (FDA) [9], the filter bank which works
on frequency axis is useful not only for dimensionality reduc-
tion but also for facilitating further analysis of acoustic data
in terms of frequency; for example, we can analyze which
frequency bands are useful for classification.

In this paper, we propose a novel method to build a fil-
ter bank from scratch for discriminatively working on the re-
cently proposed acoustic features, such as histogram of ori-
ented gradients (HOG) on spectrogram [2]. For constructing a
filter bank on a frequency domain, our method imposes on fil-
ter weights the constraint and regularization according to the
above-mentioned properties that filter banks inherently pos-
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sess, instead of parametrically modeling them. We also con-
sider a discriminative criterion for optimizing the filter bank
to enhance discriminative power of the resultant features, im-
proving performance in the lower dimensional features.

2. PROPOSED METHOD

For efficiently building a filter bank from scratch, we rewrite
the above-mentioned requirements (properties) of filters into
three conditions, 1) non-negativity, 2) (near) orthogonality
and 3) smoothness. The combination of non-negativity and
orthogonality results in disjoint filters since

∑
f WfiWfj =

0 ∧ Wfi ≥ 0 ∧ Wjf ≥ 0 ⇔ Wfi = 0 ∨ Wfj = 0 where
Wfi and Wfj are weights for the f -th frequency component
in the i-th and j-th filters, respectively; thereby, near orthogo-
nality similarly induces less-overlapping filters which are not
strictly disjoint. In addition, on the orthogonal non-negative
weights, smoothness favors localized (compactly supported)
distribution of weights rather than scattered one; the locality
of filter weights is further ensured by the post-processing de-
scribed in Sec. 2.3.

We formulate the optimization problem by regarding the
first two conditions as constraints and the last one as regular-
ization; namely, we consider a problem with non-negative and
orthogonal constraints as well as smoothness regularization.
In the optimization, a discriminative criterion is introduced
according to FDA [10].

2.1. Discriminative optimization problem

The typical choice for enhancing discriminativity is to employ
Fisher discriminant criterion as a cost function. In this study,
however, according to the method [11] which constructs data-
driven co-occurrence features from support vector machine
(SVM) classifier weights, we optimize a filter bank based on
the discriminative projection produced by FDA [10], instead
of directly optimizing the Fisher criterion2.

Given total covariance matrix ΣT ∈Rm×m and between-
class one ΣB ∈ Rm×m for m-dimensional features (cor-
responding to m frequency components) in C classes, the
Fisher discriminant projection P ∈ Rm×C−1 is obtained by
maximizing the cost function,

max
P

trace
{

(P>ΣTP )−1(P>ΣBP )
}
, (1)

of which the optimizer is analytically obtained as the firstC−
1 eigenvectors of the generalized eigenvalue problem,

ΣBP = ΣTPΛ, (2)

where Λ is the diagonal matrix of eigenvalues. Since any in-
vertible matrix can be applied to P without changing the cost
(1), the essential projection is represented as the subspace

2Fisher criterion is formulated in a complex form (Rayleigh quotient) due
to which we can not empirically obtain favorable convergence of the filter
weights. Such optimization approach is our future work.
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Fig. 1. The proposed method optimizes a filter bank W by
approximating the FDA subspace A with the orthogonal and
non-negative constraints and smoothness regularization.

spanned by the orthonormal matrix Q obtained such as via
QR decomposition P = QR. Therefore, we aim to optimize
a filter bank so as to well approximate the discriminative sub-
space. The essential form of the subspace is A = QQ> and
thus the optimization formulation of n filters W ∈Rm×n is,
as show in Fig. 1,

min
W |W>W=I,

Wij≥0 ∀i,j

1

2
‖WW> −A‖2F + Ω(W ) (3)

⇔ max
W |W>W=I,

Wij≥0 ∀i,j

trace(W>AW )− Ω(W ), (4)

where ‖ · ‖F indicates Frobenius norm of a matrix and Ω(W )
is a smoothness regularization term described in the later.

In this study, we generally assume that the local features,
such as HOG [12], are extracted along the frequency axis in
the spectrogram as in [2] and thus the input signal is repre-
sented by a feature matrix X ∈ Rm×d wherem is the number
of frequency component and d denotes the local feature di-
mensionality. A filter bank W = [w1, · · · ,wn] ∈ Rm×n

works on the frequency components mainly to reduce di-
mensionality by W>X . In this case of matrix features,
to produce the projection P (eventually A), we follow
the procedure of 2D-FDA [13] which applies FDA twice.
First, we compute the FDA projection P̂ ∈ Rd×k for the d-
dimensional local features based on the following covariance
matrices;

Σ̂T =
1

N

N∑
i=1

(Xi −M)>(Xi −M), (5)

Σ̂B =

C∑
c=1

Nc

N
(Mc −M)>(Mc −M), (6)

where M and Mc are the mean feature matrices on all N
samples and on Nc samples of the c-th class, respectively.
Then, the FDA projection P ∈ Rm×k of our interest is ob-
tained via

ΣT =
1

N

N∑
i=1

(Xi −M)P̂ P̂>(Xi −M)>, (7)

ΣB =

C∑
c=1

Nc

N
(Mc −M)P̂ P̂>(Mc −M)>. (8)
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Here, k indicates the subspace dimensionality which is usu-
ally set as k = C − 1.

On the other hand, as to Ω(W ) in (4), smooth weights are
obtained via minimizing the Laplacian cost,

l(w) =

∫
|∆w(f)|2df ≈

∑
f

|−wf−1+2wf−wf+1|2. (9)

The above Laplacian cost is written by the quadratic form
l(w) = w>Lw where the matrix L is determined accord-
ing to (9). Thus, the regularization term Ω(W ) is repre-
sented with the regularization parameter η by Ω(W ) =
η trace(W>LW ); thereby, the optimization problem is fi-
nally described as

max
W |W>W=I,

Wij≥0 ∀i,j

trace
{
W>(A− ηL)W

}
. (10)

2.2. Optimization with nearly orthogonal and non-negative
constraints

We employ the approach proposed in [14] to optimize (10)
which contains the constraints regarding orthogonality and
non-negativity. Let us generally consider to maximize a func-
tion f(W ) with respect to W on which those constraints are
imposed;

max
W

f(W ), s.t. W>W = I, Wij ≥ 0 ∀i, j. (11)

Oja and Yang [14] proposed an efficient optimization ap-
proach based on the following multiplicative update of W :

Wij ←Wij
(∇+ + WW>∇−)ij
(∇− + WW>∇+)ij

, (12)

where ∇+ and ∇− are elementwise non-negative matrices
such that ∂

∂W f(W ) =∇+−∇− and ∇+
ij ≥ 0,∇−ij ≥ 0 ∀i, j.

This approximately optimizes the Lagrangian function de-
rived from the constraints, and thus produces the non-negative
and nearly orthogonal W of which the column vectors (filters
in our case) are less overlapped to each other3. Practically
speaking, such nearly orthogonal optimizer is preferable for
our task of filter bank learning since less overlapped filters
enhance robustness to frequency shift by mitigating boundary
effects, compared to strictly orthogonal filters.

We can actually optimize (10) by

Wij ←Wij
(S+W + WW>S−W )ij
(S−W + WW>S+W )ij

, (13)

where S+
ij = Aij − ηLij + |Aij − ηLij |, S−ij = |Aij −

ηLij | − (Aij − ηLij) and we substitute ∇+ = S+W and
∇− = S−W in (12).

3In the paper [14], the authors pointed out that the orthogonality con-
straint is approximately satisfied in the approximated optimization approach.

support region #1 support region #2

Fig. 2. Filter weight decomposition. Multi-modal filter
weights are decomposed, and trivial weight modes are re-
moved during optimization.

2.3. Technical tips

Initialization. The optimization problem (10) is vulnerable
to local optima, and thus for obtaining the better optimizer,
we apply warm startup by first optimizing (10) with η = 0
(excluding smoothness regularization) and then passing the
optimizer as an initial W of the target optimization problem
with smoothing (η > 0).
Locality of filters. The optimized filter wi occasionally con-
tains more than one mode especially in the case of smaller
regularization parameter η. Since filter weights are supposed
to be locally distributed as described in Sec. 1, such a fil-
ter that consists of multi-modal weights are decomposed into
multiple filters each of which has only one mode as shown in
Fig. 2. Consequently, the size of the resultant filter bank is
greater than or equal to n. In addition, during the optimiza-
tion, we remove a trivial mode of which local maximum is
less than 1√

m
in order to produce a meaningful filter bank.

3. EXPERIMENTAL RESULTS

We test the proposed method on acoustic scene classifica-
tion using Rouen dataset [2]. This dataset contains 3,026
sound clips (in 30 seconds) of 19 scene categories, such as
cafe and market. The authors [2] also provided 20-fold train-
ing/test splits on which the averaged classification accuracy
is reported. For feature extraction, we follow the procedure
in [2] which extracts HOG features [12] with cells of 8×8 pix-
els on the spectrogram produced by constant Q-transform [15]
of 48 bins per octave. The HOG features are averaged along
the time axis, resulting in the feature matrix X ∈ R84×31

where the HOG feature dimensionality is d = 31 as in [16]
and the number of frequency component is m = 84.

For comparison, we apply the following three alternative
methods.
Uniform filter bank (Mel filter bank). As a simple yet com-
monly used filter bank, we apply filters of which band widths
are exponentially increased along the frequency axis; that is,
they are equally distributed on log-frequency axis as in mel
filter bank (Fig. 3a).
FDA projector bank. We can directly employ the FDA pro-
jection P described in Sec. 2.1 (Fig. 3d); this is close to the
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Fig. 3. Filter/projector banks that we used in the experiment. While the uniform filter bank (a) is obtained a priori, the others
(b,c,d) are learned from data.

work [9] which employs FDA projection for (raw) spectro-
gram features. Note that the projection is not regarded as a
filter bank since it does not satisfy the before-mentioned con-
ditions for filters. Such projector could not provide any inter-
pretable information regarding frequency.
PCA projector bank. As in the FDA projection, we can ap-
ply PCA projection (Fig. 3c) to reduce the frequency dimen-
sionality. This projector is learned from the generative, not
discriminative, perspective. Note again that this is not a filter.

According to the convention in FDA, we apply n=C −
1=18 filters/projectors to reduce the frequency dimensional-
ity, while setting η = 10 in the proposed method. The perfor-
mance results are shown in Table 1. Even though the dimen-
sionality is reduced to only a quarter, the proposed method
exhibits high performance in comparison with the generative
methods, uniform filter and PCA projector; the FDA projec-
tor from which the proposed method stems is competitive
with ours. This result shows that the constraints and regu-
larization introduced for building filters do not degrade per-
formance, reasonably characterizing the physical properties
of frequency. Furthermore, the optimized filters can provide
us with interpretable information for further analysis of fre-
quency; for example, by looking at the obtained filter bank
(Fig. 3b), lower frequencies are less important and do not re-
quire high resolution for distinguishing scene categories.

In the above experiment, the proposed method actually
produces 20 filters on average, which are slightly larger than
n = 18, due to the decomposition of multi-modal filter
weights as described in Sec. 2.3. We investigate the perfor-
mance of the proposed method in detail from the viewpoint
of filter bank size by varying the parameters η and n. Fig. 4
shows the performance results on various sizes of filter bank.
The proposed method produces better performance even in
smaller size, exhibiting superiority over the uniform filter
bank. While the performance of the uniform filter is gradu-
ally approaching that of full features (91.64%), the proposed
method outperforms it at about half of that dimensionality
(91.92% at the size of 47 (averaged) for n = 18). On the
cases of n 6= 18, we can also observe similar tendency of
performance; the best is 92.01% at η = 0.1 and n = 40,
producing 60 filters on average, which is also superior to
91.7 reported in [2]. These experimental results validate

Table 1. Performance comparison (%) with n = C−1 = 18.
full Ours Uniform FDA PCA

91.64 89.22 85.52 88.98 86.80

Number of filters
10 20 30 40 50 60 70 80

Ac
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cy
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)
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88
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Full feature
Uniform filter banks
Ours (n=10)
Ours (n=18)
Ours (n=30)
Ours (n=40)

Fig. 4. Performance results on various sizes of filter bank. We
apply a uniform filter bank of n ∈ {10, 20, · · · , 80}, the pro-
posed method with n = 18 of η ∈ {10, 5, 4, 3, 2, 1, 0.5, 0.1}
and that with n = 10, 30, 40 of η ∈ {10, 1, 0.1} for gradually
increasing filter bank size.

the effectiveness of the proposed method which discrimina-
tively learns a filter bank to produce better performance in a
smaller-sized filter bank.

4. CONCLUSION

We have proposed a novel method to discriminatively learn a
filter bank for effectively reducing frequency dimensionality
of acoustic features. The method is formulated by introducing
constraints regarding non-negativity and (near) orthogonality
as well as smoothness regularization for filter weights in or-
der to form a reasonable filter bank. In addition, we incorpo-
rate discriminative optimization based on the Fisher criterion
via approximating the FDA projection. Thus, the proposed
method builds an effective filter bank from scratch without
assuming any parametric model on the filters. In the exper-
iments on acoustic scene classification using Rouen dataset,
the method exhibits favorable performance even in smaller
size of filter bank.
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