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ABSTRACT

A histogram is an effective form for extracting various types
of features and has been attracting keen attention in pattern
recognition fields. In visual recognition, however, the his-
togram features suffer from smoothing due to the processes of
quantizing continuous input patterns into discrete codes and
pooling them. Such smoothing degrades discriminative power
by blurring the distinctive features. In this paper, we propose
a novel method to get rid of such blurriness and reveal the
essential discriminative information from the histogram fea-
tures. We first model the blurring process based on the graph
Laplacian of discrete codes and then formulate a method for
deblurring histogram features in a computationally efficient
form which works as post-processing just after feature ex-
traction. The proposed method is also shown to be related
to unsharp masking of an image restoration technique. In
the experiments on image classification using BoW histogram
features, the proposed deblurring method favorably improves
performance of the histogram features.

Index Terms— Histogram feature, feature transform, im-
age classification

1. INTRODUCTION

Feature extraction is a basic building block for visual recogni-
tion and most of image features are formulated in a histogram
form, such as bag-of-word (BoW) [1] and local binary pat-
tern (LBP) [2]. The histogram form is such a general feature
representation that we can also find it in the other fields than
computer vision, e.g., document analysis. However, the his-
togram features used in vision tasks suffer from smoothing
mainly due to the processes of quantization and pooling.

In visual recognition, input signals, such as pixel values,
are inherently continuous and it is required for extracting his-
togram features to quantize those continuous signals into dis-
crete patterns (codes); on the other hand, in document anal-
ysis, text is naturally defined in a categorical form. Thus,
although much research effort has been made in providing
various types of code to effectively describe continuous in-
put patterns, such as by gradient orientation bins, local binary
patterns and visual words, the resultant histogram features in-
evitably contain quantization errors. To reduce the quanti-

zation errors, most methods employ soft assignment of con-
tinuous patterns onto discrete codes. Whereas, it increases
smoothness of the histogram features, degrading the distinc-
tiveness. So coded patterns are then aggregated (pooled) on
the region of interest to construct histogram features which
describe the region. In sum-pooling, all the codes are uni-
formly taken into account to provide statistically stable his-
togram features by sufficiently containing distinctive codes as
well as erroneous ones. This process also enhances smooth-
ness in histogram values.

Due to those soft coding and sum-pooling, the obtained
histogram is subject to over-smoothing; we define such
smoothing as blurring1 in histogram features (Fig. 1a). In
this paper, we propose a novel method to get rid of the blur-
riness and emphasize a discriminative features by deblurring
histogram features (Fig. 1b). The blurring process is modeled
by using the graph Laplacian of the discrete codes and then a
computationally efficient method is presented for sharpening
the distinctive codes in a histogram. In the framework of
BoW, max-pooling [3, 4] has been proposed to pick up the
most distinctive samples by applying max operator instead
of sum operator in pooling codes, but it loses plenty of code
information which may contain discriminative power. In
contrast, sum-pooling thoroughly embeds them in histogram
features. Therefore, we expect that it is more effective to ap-
ply the deblurring method to reveal the distinctive information
buried by sum-pooling from the blurred histogram features.
Note that the proposed method results in a simple form op-
erating efficiently as post-processing just after the histogram
feature extraction, and thus various types of transformation
methods including normalization are applicable.

2. PROPOSED METHOD

For enhancing the discriminative power of the features in a
histogram form, we propose a method to reveal the intrinsic
features via deblurring the histogram. We first model the blur-
ring process in extracting histogram features which causes
performance degradation. Then, based on the model, we for-
mulate a method to sharpen the blurred histograms in a com-

1Note that in this paper we mention blurring in the resultant histogram
features, not on input images.
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Fig. 1. Blurring/deblurring for (BoW) histogram features. (a)
Histogram features are blurred due to soft coding and sum-
pooling. (b) We define as deblurring the process to retrieve
the intrinsic histogram features from the observed one. P
indicates the transition probabilities among codes; see (1).

putationally efficient form.
In what follows, we proceed to describe a general for-

mulation regarding the histogram blurring/deblurring, and it
might be helpful for better understanding to refer to a BoW
model which constructs a histogram of visual words via cod-
ing and pooling local descriptors (Fig. 1).

2.1. Blurring process in histogram feature extraction

The coding process has inherent difficulty in quantizing con-
tinuous patterns, such as real-valued pixels and local descrip-
tors, into discrete codes; it is hard to decide which code is
assigned to the continuous patterns at boundary. To miti-
gate miss quantization, soft coding is employed to represent
a continuous pattern by (nearby) multiple codes with voting
weights, though unfavorably smoothing the histogram fea-
tures. On the other hand, it is also possible to statistically
compensate the miss quantization by aggregating substantial
codes via sum-pooling. Such aggregation embeds not only the
essential code information but also noisy ones in the resultant
histogram features. Consequently, the procedures of soft cod-
ing and sum-pooling lead to blurring histograms (Fig. 1a). In
the blurred histogram, features are less discriminative since
the distinctive feature patterns are buried.

Through the blurring, the codes which are close to each
other tend to similarly get weights due to soft coding and/or
miss quantization. Thereby, the intrinsic histogram values
would spread on the similar codes (histogram bins). This
can be mathematically modeled as follows. Given the pair-
wise transition probabilities among C codes as P = {Pij =
p(ci|cj)} ∈ RC×C s.t.

∑
i Pij = 1, the code weights (his-

togram values) would leak according to the transition proba-
bility like random walks:

z = Pz∗, (1)

where z ∈ RC+ is the observed (blurred) histogram and z∗ ∈
RC+ is the intrinsic (unblurred) one (Fig. 1b). The blurring de-
teriorates discriminativity of the histogram feature; in the ex-
treme case, the strong blurring leads to a uniform histogram.

The transition probabilities P play a key role in this de-

blurring model (1). In practice, they can be computed based
on pair-wise similarities S, while the method of [5] straight-
forwardly provides the transition probabilities as described in
Sec.3.1. However, probabilities for self-transitions Pjj can
not be well defined since Sjj is inherently different measure-
ment from Sij , i 6= j. Thus, they are practically parameter-
ized as Pjj = p(cj |cj) = λj while the inter-transition prob-
abilities are accordingly defined by Pij =

(1−λj)Sij∑
k 6=j Skj

, i 6= j.
As a result, the transition probabilities P are represented by

P = Λ+ P̃ ∈ RC×C , (2)

where Λ = diag(λ1, ..., λC) is a diagonal matrix to param-
eterize self-transition probabilities while P̃ consists of inter-
transition probabilities computed from pair-wise similarities
P̃ij =

(1−λj)Sij∑
k 6=j Skj

, i 6= j, with letting the diagonal zeros P̃jj =
0. More practically, we can simply assume uniform self-
transition probabilities as Λ = λI , resulting in

P = λI + (1− λ)Q ∈ RC×C , (3)

where Q contains the inter-transition probabilities only;
Qij =

Sij∑
k 6=j Skj

, i 6= j, and Qjj = 0. The parameter λ
controls blurriness in the model (1); the lower λ assumes
higher blurriness in histogram features and vice versa. Note
that the pair-wise similarities are usually computed not across
all C codes but within a few similar codes, and thus the key
property of the transition probability matrix P is sparseness.

2.2. Deblurring histogram

To dig out the discriminative and essential information from
the blurred histograms, it is required to deblur histogram fea-
tures. Based on the model (1), the deblurring operator is
straightforwardly obtained as the inverse of P ;

z∗ = max
[
P−1z, 0

]
, (4)

where we ensure non-negative histogram features z∗ for con-
sistency with the input histogram features z by simply cutting
off negative features since non-negative least squares [6] for
the large P requires huge computation cost. The inverse ma-
trix P−1, however, is not necessarily sparse even for sparse
P , and thus (4) suffers from computational burden in matrix-
vector multiplication. In this study, we derive a computation-
ally efficient deblurring method by approximating (4) as fol-
lows. The inverse matrix P−1 is expanded as

P−1 = {λI + (1− λ)Q}−1 = λ−1(I + 1−λ
λ Q)−1

= λ−1{I − 1−λ
λ Q+ ( 1−λλ Q)2 − · · · } (5)

The above expansion converges in the case that the maximum
eigenvalue of 1−λ

λ Q is less than 1. Such assumption holds
by setting 0.5 < λj ≤ 1 and as a result we can obtain the
first-order approximation;

P−1 ≈ 1
λI −

1−λ
λ2 Q ∝ I + η(I −Q), (6)
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where η is re-parameterization of λ by η = 1−λ
2λ−1 ≥ 0. Note

that I −Q is closely related to the graph Laplacian [7] since
Q is practically derived from the similarity matrix. This ap-
proximation for P−1 is introduced into (4) to provide the ap-
proximated deblurring method;

z∗ = max
[{
I + η(I −Q)

}
z, 0

]
. (7)

This inherits sparseness from P and enables us to deblur the
histogram feature with only a low computation cost. Note that
the deblurred histogram features are usually fed into normal-
ization in visual recognition.

2.3. Related works

The proposed method is closely related to image deblurring
methods, especially unsharp masking [8]. The blurring model
(1) implies that the transition probabilities work as a point
spread function (PSF) from the viewpoint of image restora-
tion. While recent deconvolution methods using the estimated
PSF require substantial computational cost, unsharp mask-
ing [8] is formulated in a simple operator exploiting differ-
ence between an original image I and its blurred image p∗I;

I∗ = I + η̂(I − p ∗ I) = I + η̂(δ − p) ∗ I, (8)

where ∗ indicates convolution, p is a blurring PSF, e.g., Gaus-
sian kernel, δ is a delta function and η̂ is a parameter how
sharpening an image. The unsharp masking (8) can be ex-
tended for histogram features modeled in (1) as

z∗ = {I + η̂(I − P )}z = {I + η(I −Q)}z, (9)

where η is re-parameterized from η̂ and λ; η = η̂(1−λ). This
is the same form as (7) and thus we can say that the proposed
method is regarded as the extension of the unsharp masking
to general histogram features. It is noteworthy that although
the deblurring by unsharp masking is a well-known technique
in image restoration, it has never been applied to deblurring
histogram features, to our best knowledge. According to the
convention in image processing, we set η = 1, i.e., λ = 2

3 , as
a default value; this is empirically discussed in Sec.3.2.

From the statistical perspective, deblurring over his-
togram features is related to decorrelation of features, which
can be realized such as by applying principal component
analysis (PCA). Jégou and Chum [9] presented a method to
whiten BoW histograms for decorrelation via PCA projec-
tion. Our method deblurs the histogram, not statistically, but
based on the inherent structure among the codes, e.g., words
in BoW, which is represented by the graph Laplacian. Thus,
it works as post-processing just after feature extraction and
can be followed by other feature transform methods including
the statistical decorrelation. Besides, the deblurring method
exploits sparse projection performed efficiently, while PCA
decorrelation based on a dense projection matrix is time-
consuming especially for large-dimensional histograms.

In a BoW framework, Gao et al. [10] have proposed a
method to assign words to local descriptors consistently ac-

cording to the pair-wise similarities between the descriptors.
That method would render deblurring effect to some extent in
the sense that similar descriptors are coded into similar words,
though it requires a considerable computation load to opti-
mize the consistent coding. On the other hand, the proposed
method operates on the resultant BoW histogram without go-
ing into detail of the relationships among the local descriptors.

3. EXPERIMENTAL RESULTS

We apply the proposed method to BoW histogram features [1]
on image classification tasks. Bag of features is obtained by
densely extracting SIFT local descriptors [11] at spatial grid
points in 4 pixel step with three scales of {16, 24, 32} pixels.
To construct visual words {ci}Ci=1, we apply k-means cluster-
ing to a million of SIFT descriptors randomly drawn from the
training images; the dictionary learning [10, 4, 3] is out of our
scope and thus k-means is simply employed in this study. An
image is partitioned into sub-regions in three levels of spatial
pyramid as 1 × 1, 2 × 2 and 3 × 1; the word histograms are
computed on the respective sub-regions via sum-pooling. The
respective histograms are deblurred by the proposed method
(7) and then concatenated into the image feature vector fol-
lowed by L2 normalization and linear SVM classifier [12].

3.1. Word coding by kernel-based transition probability

In a BoW model, local descriptors extracted in an image
are coded into visual words. In this study, we apply the
kernel-based transition probability (KTP) [5] to produce
(soft) weights on the words, as well as to directly construct
the transition probabilities Q among words.

The KTP method was proposed in [5] to produce transi-
tion probabilities among samples. In this case of word coding,
the transition probability p(ci|x) from the descriptor x∈Rd
to the i-th word ci ∈Rd is regarded as a voting weight to the
i-th word. Suppose we have C visual words and denote the
transition probabilities by w(x) = [p(c1|x), · · · , p(cC |x)]>.
The KTP is computed as follows;

w(x) = arg min
w|w≥0,

∑C
i wi=1

1

2
w>Kw −w>k(x), (10)

where K ∈ RC×C is the kernel Gram matrix of the C words,
Kij = k(ci, cj), and k(x) ∈ RC is the kernel vector at the
descriptor x, ki(x) = k(ci,x); we employ Gaussian kernel
k(ci, cj) = exp(−‖ci−cj‖

2

2σ2 ) for the kernel function k. As
suggested by [5], (10) can be efficiently solved by applying
SMO [13] to k-nearest neighbor words; we set k = 30 and
σ = 0.5. The KTP is favorably sparse and robust to both the
number of the nearest neighbors k and the bandwidth param-
eter in the Gaussian kernel [5]. This method is also applied in
a leave-one-out manner to compute the inter-transition prob-
abilities {Qij = p(ci|cj)}i 6=j among words; this is precom-
puted off-line for the deblurring method.
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3.2. Performance analysis

We analyze the performances of the proposed method from
various aspects by using PASCAL VOC2007 dataset [14].
Coding. Before proceeding to deblurring, we first compare
the KTP coding method (Sec.3.1) with the other methods,
RBF, LLC [4] and SAC [15]; the latter two coding methods
are applied with max-pooling as suggested in those papers.
The performance results at 8,192 words are shown in Table 1.
The method of KTP coding works well with sum-pooling,
compared with the other methods, by favorably exploiting
local structure of the descriptors on the visual words.
Deblurring. Next, we further improve the performance by
applying the proposed deblurring method to the BoW his-
togram features computed via sum-pooling. In Sec.2.2, we
have presented two deblurring methods; the exact method (4)
using inverse matrix and the approximated one (7) based on
unsharp masking. Fig. 2a shows the performance results of
those two methods on various η ∈ {0, 14 ,

1
2 , 1, 2, 4, 8} where

η = 0 indicates the standard method without deblurring. The
deblurring of η > 0 improves the performance in both exact
and approximated methods for both KTP and RBF coding
with sum-pooling; interestingly, as in unsharp masking [8],
the best performance is obtained around η = 1. Since there
is no significant performance gap between the exact and ap-
proximated methods, we employ the approximated one for
computational efficiency. Then, to validate the process of
sum-pooling for deblurring, we compare it with max-pooling
in Fig. 2b which shows the performance gain compared to
that of η = 0. As expected, the deblurring fails to improve
performance in max-pooling methods. The max-pooling
picks up only one sample for each word, degrading the rela-
tionships among words and breaking the blurring model (1).
And, the deblurring might unfavorably enhance the effect
of noisy words caused by the max operator. In contrast, it
successfully digs out the discriminative features from sum-
pooled histograms. As a result, we apply BoW of KTP coding
with sum-pooling followed by the approximated deblurring
method of η = 1 in the following experiments.
Number of words. Finally, we show the performance re-
sults on various numbers of word in Fig. 3. The proposed
deblurring method favorably improves the performance, out-
performing the methods of LLC [4] and SAC [15]. The
performance gain by the deblurring becomes larger as the
number of words increases. Due to the curse of dimensional-
ity, in a high dimensional space of local descriptors, the code
weights leak to substantial numbers of words and thus the
histograms of larger number of words would be more blurred.
The deblurring method works well to get rid of such high
blurriness and extract the discriminative information.

3.3. Performance comparison

The deblurring method applied to BoW of 16,384 words is
compared to the other methods on MIT scene [16] and Cal-

Table 1. Comparison in coding methods at 8,192 words.
LLC [4] SAC [15] RBF KTP

mAP(%) 58.16 57.99 57.72 59.46
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Fig. 2. Comparison in deblurring. (a) The approximated de-
blurring method is compared to the exact one. (b) The ap-
proximated deblurring method is applied to sum- and max-
pooling methods. The numbers in the brackets indicate the
performances without deblurring (η = 0).
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Table 2. Comparison to the other methods.
MIT scene [16]

Method Acc.
Ours 60.2

Ours w/o delur 58.4
LLC [4] 55.1
SaC [15] 55.2

Bo et al. [18] 50.5
Juneja et al. [19] 63.1

Caltech-256 [17]
#training sample 15 30 45 60

Ours 40.9±0.3 48.3±0.3 52.7±0.1 55.5±0.2

Ours w/o deblur 39.3±0.1 46.8±0.4 51.3±0.3 54.1±0.2

LLC [4] 38.8±0.1 46.1±0.4 50.2±0.1 53.0±0.2

SAC [15] 37.6±0.3 45.2±0.2 49.1±0.3 51.7±0.4

Bo et al. [18] 40.5 ±0.4 48.0 ±0.2 51.9 ±0.2 55.2 ±0.3

Sánchez et al. [20] 38.5±0.2 47.4±0.1 52.1±0.4 54.8±0.4

tech256 [17] datasets as shown in Table 2. The proposed
method improves the original (unblurred) features, outper-
forming the other methods as well.

4. CONCLUSION

We have proposed a novel method to improve discriminative
power of features defined in a histogram form. The histogram
features used in visual recognition are subject to blurring
through the processes of coding and pooling, which pollutes
distinctive features. By modeling the blurring process based
on graph Laplacian of codes, we formulate a histogram de-
blurring method which gets rid of the blurriness and extracts
distinctive features. The experiment results on image classifi-
cation using various datasets show that the proposed deblur-
ring method effectively enhances the discriminative power
and improves the performance of the histogram features. It is
noteworthy that our method works as post-processing with a
low computation cost just after feature extraction and can be
followed by other types of feature transformation method.
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