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Abstract. In pattern classification, a classifier is generally composed
both of feature (vector) mapping and bias. While the mapping function
for features is formulated in either a linear or a non-linear (kernel-based)
form, the bias is simply represented by a constant scalar value, render-
ing prior information on class probabilities. In this paper, by focusing
on the prior bias embedded in the classifier, we propose a novel method
to discriminatively learn not only the feature mapping function but also
the prior bias based on the extra prior information assigned to samples
other than the class category, e.g., the 2-D position where the local image
feature is extracted. Without imposing specific probabilistic models, the
proposed method is formulated in the framework of maximum margin to
adaptively optimize the biases, improving the classification performance.
We present a computationally efficient optimization approach for making
the method applicable even to large-scale data. The experimental results
on patch labeling in the on-board camera images demonstrate the favor-
able performance of the proposed method in terms of both classification
accuracy and computation time.
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1 Introduction

Prior information has been effectively exploited in the fields of computer vision
and machine learning, such as for shape matching [1], image segmentation [2],
graph inference [3], transfer learning [4] and multi-task learning [5]. Learning
prior has so far been addressed mainly in the probabilistic framework on the
assumption that the prior is defined by a certain type of generative probabilistic
model [6,7]; especially, non-parametric Bayesian approach further considers the
hyper priors of the probabilistic models [8].

In this paper, we focus on the (linear) classifier, y = w⊤x+ b, and especially
on the bias term, so called ‘b’ term [9]. The bias is also regarded as rendering
the prior information on the class probabilities [10,11] and we aim to learn
the unstructured prior bias b without assuming any specific models, while some
transfer learning methods are differently built upon the prior of the weight w for
effectively transferring the knowledge into the novel class categories [4,12] and
the prior of w also induces a regularization on w. While the bias b is generally
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set as a constant across samples depending only on the class category, in this
study we define it adaptively based on the extra prior information other than
the class category. Note that, in the case of non-linear classification, the above
classifier can be similarity formulated by y = w⊤

φ φx +b where the feature vector
x is simply replaced with the kernel-based feature vector φx in the reproducing
kernel Hilbert space defined by the kernel function k(xi,xj) = φ⊤

xi
φxj . Thereby,

our focus also includes such kernel-based non-linear classifiers.

Fig. 1. The task of patch labeling is to predict the class labels c of the patches, each
of which is represented by the appearance feature vector x and the prior position p.
Note that there are P positions in total, p ∈ {1, · · · , P}.

Suppose samples are associatedwith the extra prior information p ∈ {1, · · · , P}
as well as the class category c ∈ {1, · · · , C}, whereP andC indicate the total num-
ber of the prior types and the class categories, respectively. For instance, in the task
of labeling patches on the on-board camera images, each patch (sample) is assigned
with the appearance feature vector x, the class category c and the position (extra
prior information) p, as shown in Fig. 1. The class category of the patch is effec-
tively predicted by using not only the feature x but also the prior position p where
the feature is extracted; the patches on an upper region probably belong to sky and
the lower region would be road, even though the patches extracted from those two
regions are both less textured, resulting in similar features.

The probabilistic structure that we assume in this study is shown in Fig. 2b
with comparison to the simple model in Fig. 2a. By using generalized linear
model [13], the standard classifier (Fig. 2a) is formulated to estimate the posterior
on the class category c as1

log p(c|x) ∼ log p(x|c) + log p(c) = w⊤
c x + bc, (1)

where bc = log p(c) indicates the class-dependent bias. On the other hand, the
proposed model (Fig. 2b) using the extra prior p induces the following classifier;

log p(c|x, p) ∼ log p(x|c) + log p(p|c) + log p(c) = w⊤
c x + b[p]c , (2)

where the bias b[p]c = log p(p|c)+log p(c) is dependent on both the class category
c and the prior information p. Thus, if the bias could be properly determined,
1 ‘∼’ in (1) means the equality in disregard of the irrelevant constant term log p(x) or
log p(x, p) in (2) and (3).
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the classification performance would be improved compared to the standard
classification model (1). One might also consider the full-connected model
shown in Fig. 2c whose classifier is formulated by

log p(c|x, p) ∼ log p(x|c, p) + log p(p|c) + log p(c) = w[p]
c

⊤
x + b[p]c , (3)

where the classifier weight w[p]
c relies on the prior p as the bias b[p]c does. This

model is more complicated and consumes large memory storage since the classi-
fier model {w[p]

c , b[p]c } is prepared for respective priors p = 1, · · · , P and classes
c = 1, · · · , C. And, due to the high degree of freedom (D.O.F) of this model, it
would be vulnerable to over-learning. These models are summarized in Table 1
and will be again discussed later.

In this paper, we propose a novel method for discriminatively learning the
prior biases b[p]c in (2) to improve the classification performance. The proposed
method is formulated in the optimization problem based on the maximum mar-
gin criterion [14]. We also propose a computationally efficient approach for the
optimization which contains large amount of samples drawn from all the priors
p ∈ {1, · · · , P}. Thereby, the proposed method is fast and applicable to large-
scale data, while providing the high-performance classifier that exploits the extra
prior information.

Fig. 2. Graphical models to depict the probabilistic dependencies. The notations c, x
and p denote the class category, the (appearance) feature vector and the extra prior
information, respectively. The arrows show the probabilistic dependencies. (a) The fea-
ture x is simply drawn from the class category c in the simple model. (b) The proposed
model incorporates the extra prior information p which is connected to x via c.
(c) Those three variables are fully connected in the full-connected model.

2 Classifier Bias Learning

We detail the proposed method by first defining the formulation for learning the
biases and then presenting the computationally efficient approach to optimize
them. As we proceed to describe a general form regarding the prior biases p, for
better understanding, it might be helpful to refer to the task of labeling patches
shown in Fig. 1; the sample is represented by the appearance feature vector x
and the prior position p ∈ {1, · · · , P}.
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Table 1. Classification methods for c-th class category. The dimensionality of the
feature vector is denoted by D, x ∈ RD, and the number of extra prior types is P .

Method Model D.O.F

simple yc = w⊤
c x + bc D + 1

proposed yc = w⊤
c x + b[p]c D + P

full-connected yc = w[p]
c

⊤
x + b[p]c PD + P

2.1 Formulation

We consider a binary classification problem for simplicity and take a one-vs-
rest approach for multi-class tasks. Suppose we have P types of extra prior
information, and let x[p]

i ∈ RD denote the D-dimensional feature vector of the
i-th sample (i = 1, · · · , n[p]) drawn from the p-th type of prior. As described in
Sect. 1, we deal with the classification defined by

y = w⊤x[p] + b[p], (4)

where y denotes the classifier output which is subsequently thresholded by zero
for performing binary classification, and w and b[p] are the classifier weight vector
and the bias, respectively. Note again that the bias b[p] depends on the p-th type
of prior, p ∈ {1, · · · , P}. The classifier (4) can be optimized via the following
formulation in the framework of maximum margin [14];

min
w,{b[p]}p

1
2
∥w∥2 + C

P∑

p

n[p]∑

i

ξ[p]i (5)

s.t. ∀p ∈ {1, · · · , P}, ∀i ∈ {1, · · · , n[p]}, y[p]i (w⊤x[p]
i + b[p]) ≥ 1 − ξ[p]i , ξ[p]i ≥ 0,

where C is the cost parameter. This is obviously convex and its Lagrangian is
written by

L =
1

2
∥w∥2 +C

P∑

p

n[p]∑

i

ξ[p]
i −

P∑

p

n[p]∑

i

β[p]
i ξ[p]

i −
P∑

p

n[p]∑

i

α[p]
i {y[p]

i (w⊤x[p]
i +b[p])−1+ξ[p]

i }, (6)

where we introduce the Lagrange multipliers α[p]
i ≥ 0, β[p]

i ≥ 0. The derivatives
of the Lagrangian are

∂L

∂w
= w −

P∑

p

n[p]∑

i

α[p]
i y[p]i x[p]

i = 0 ⇒ w =
P∑

p

n[p]∑

i

α[p]
i y[p]i x[p]

i (7)

∂L

∂ξ[p]i

= C − α[p]
i − β[p]

i = 0 ⇒ 0 ≤ α[p]
i ≤ C (8)

∂L

∂b[p]
=

n[p]∑

i

α[p]
i y[p]i = 0. (9)
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Thereby, the dual is finally obtained as

min
{α[p]

i }i,p

1
2

P∑

p,q

n[p]∑

i

n[q]∑

j

α[p]
i α[q]

j y[p]i y[q]j x[p]
i

⊤
x[q]
j −

P∑

p

n[p]∑

i

α[p]
i (10)

s.t. ∀p,
n[p]∑

i

α[p]
i y[p]i = 0, ∀i,∀p, 0 ≤ α[p]

i ≤ C.

This is a quadratic programming (QP) analogous to the dual of SVM [15] except
that there exist P linear equality constraints with respect to α[p]. The standard
QP solver is applicable to optimize (10), though requiring substantial computa-
tion cost. For solving QP of the SVM dual, the method of sequential minimal
optimization (SMO) [16] is successfully applied, but in this case, we can not
employ it directly due to the multiple equality constraints. In what follows, we
present a computationally efficient approach to optimize (10).

2.2 Optimization

A large number of variables {α[p]
i }i,p in the QP (10) are inherently partitioned

into block-wise variables regarding the prior p; we obtain P blocks of
α[p] = {α[p]

i }i=1,··· ,n[p] ∈ Rn[p]
, p = 1, · · · , P . According to those block-wise

variables, (10) is decomposed into the following sub-problem as well:

min
α[p]

i

1
2

n[p]∑

i,j

α[p]
i α[p]

j y[p]i y[p]j x[p]
i

⊤
x[p]
j −

n[p]∑

i

α[p]
i

⎧
⎨

⎩1 − y[p]i

P∑

q ̸=p

n[q]∑

j

α[q]
j y[q]j x[p]

i

⊤
x[q]
j

⎫
⎬

⎭

(11)

s.t.
n[p]∑

i

α[p]
i y[p]i = 0, ∀i, 0 ≤ α[p]

i ≤ C. (12)

This is again a quadratic programming which resembles the SVM dual except
for the linear term with respect to α[p] and thus is effectively optimized by
using the SMO [16]. Therefore, the whole procedure for optimizing (10) con-
sists of iteratively optimizing the sub-problem (11) with respect to every prior
p ∈ {1, · · · , P} by means of SMO. According to [17], the order of the priors p
to be optimized is randomly permuted. The detailed procedures are shown in
Algorithm 1.

In order to discuss the convergence of the iterative optimization, we men-
tion the KKT condition of (10) [18]. The optimizer α[p]

i satisfies the following
condition:

Gi,p(α) + b[p]i y[p]i = λ[p]
i − µ[p]

i , (13)

λ[p]
i α[p]

i = 0, µ[p]
i (C − α[p]

i ) = 0, (14)

λ[p]
i ≥ 0, µ[p]

i ≥ 0, (15)
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where Gi,p(α) = y[p]i x[p]
i

⊤ ∑P
q

∑n[q]

j α[q]
j y[q]j x[q]

j −1 is the derivative of the objec-
tive function in (10) with respect to α[p]

i . This condition is rewritten into

α[p]
i < C : Gi,p(α) + b[p]i y[p]i ≥ 0, (16)

α[p]
i > 0 : Gi,p(α) + b[p]i y[p]i ≤ 0, (17)

and since y[p]i ∈ {+1,−1}, it results in

−y[p]i Gi,p(α)

{
≤ b[p]i i ∈ I[p]+

≥ b[p]i i ∈ I[p]−
, (18)

where

I[p]+ ={i|(α[p]
i <C ∧ y[p]i =1) ∨ (α[p]

i >0 ∧ y[p]i =−1)}, (19)

I[p]− ={i|(α[p]
i <C ∧ y[p]i =−1) ∨ (α[p]

i >0 ∧ y[p]i =1)}. (20)

Therefore, we can conclude that α[p]
i is a stationary point if and only if

δ[p] !
[
max
i∈I[p]+

−y[p]i Gi,p(α)
]

−
[
min
i∈I[p]−

−y[p]i Gi,p(α)
]

≤ 0. (21)

On the basis of this measure, we can stop the iteration when maxp δ[p] < ϵ
with a small tolerance ϵ > 0. At the optimum, the bias b[p] is retrieved by

b[p] =
1

|I[p]|
∑

i∈I[p]
−y[p]i Gi,p(α), where I[p] = {i|0 < α[p]

i < C}, (22)

since the right hand side in (13) equals zero for i ∈ I[p].

2.3 Trivial Biases

Finally, we mention the trivial sub-problem for further reducing the computa-
tional cost in the optimization. From a practical viewpoint, the samples of the
two class categories are not equally distributed across the priors p = 1, .., P but
are localized in limited number of priors. For instance, in the case of on-board
camera images, the road never appears in upper regions where the sky usually
dominates. That is, we occasionally encounter the following sub-problem;

min
α[p]

i

1
2

n[p]∑

i,j

α[p]
i α[p]

j y[p]i y[p]j x[p]
i

⊤
x[p]
j −

n[p]∑

i

α[p]
i

⎧
⎨

⎩1 − y[p]i

P∑

q ̸=p

n[q]∑

j

α[q]
j y[q]j x[p]

i

⊤
x[q]
j

⎫
⎬

⎭

(23)

s.t.
n[p]∑

i

α[p]
i y[p]i = 0, ∀i, 0 ≤ α[p]

i ≤ C, ∀i, y[p]i = 1 (or ∀i, y[p]i = −1). (24)
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The above QP is trivially optimized by α[p] = 0 without exhaustive computation
due to the constraint (24). Thus, by eliminating such priors that result in trivial
optimization, we can reduce the computational burden of the whole procedure
to optimize (10); see line 1 in Algorithm1.

The only issue in this trivial case is how to determine the bias b[p]. In this
case, the bias is not uniquely determined but accepts any value satisfying the
following;

y[p] = +1 : b[p] ≥ max
i

−w⊤x[p]
i + 1, (25)

y[p] = −1 : b[p] ≤ min
i

−w⊤x[p]
i − 1. (26)

Thus, we can provide three alternative ways for computing the bias on the trivial
prior.

1. Tight bias:

b[p] =

{
maxi −w⊤x[p]

i + 1 (for y[p] = +1)
mini −w⊤x[p]

i − 1 (for y[p] = −1)
. (27)

Algorithm 1. Bias Learning.

Input: {x[p]
i , y[p]

i }: feature vector and its class label of the i-th training sample from
the p-th type of prior, p = 1, .., P, i = 1, .., n[p].

ϵ > 0: small tolerance for terminating the iteration.
1: P = {p|∃i, y[p]

i = 1 ∧ ∃i, y[p]
i = −1}

2: Initialization: ∀p ∈ {1, .., P}, α[p] = 0
3: repeat
4: Random permutation of {1, · · · , P}: {π(1), · · · ,π(P )}
5: for i = 1 to P do
6: p ← π(i)
7: Set α[p] as the optimizer of (11)
8: end for
9: until maxp∈P δ[p] < ϵ
Output: w computed by (7) and {b[p]}p=1,..,P computed by (22) for p ∈ P and (27∼29)

for p /∈ P, using the optimizers {α[p]}p.

This gives the tight bias based on the above conditions (25, 26), which is com-
puted by using only the samples x[p]

i belonging to the prior p.

2. Mild bias:

b[p] =

{
maxi,p −w⊤x[p]

i + 1 (for y[p] = +1)
mini,p −w⊤x[p]

i − 1 (for y[p] = −1)
, (28)

By considering whole samples {x[p]
i }i,p across the priors, the bias is determined

with a margin from the tight one, which might improve the generalization per-
formance to some extent.
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3. Extreme bias:
b[p] =

{
+∞ (for y[p] = +1)
−∞ (for y[p] = −1) , (29)

By this bias, the samples from such a prior are definitely classified as positive
(or negative) no matter how the appearance features of the samples are. In this
case, the class category is solely dependent on the extra prior information via
the bias b[p] ∈ {+∞,−∞}.

These three ways are empirically compared in the experiments (Sect. 3.3).

2.4 Discussion

In the proposed method, all samples across all types of priors are leveraged to
train the classifier, improving the generalization performance. In contrast, the
full-connected method (Table 1) treats the samples separately regarding the
priors, and thus the p-th classifier is learnt by using only a small amount of sam-
ples belonging to the p-th type of prior, which might degrade the performance.
On the other hand, the simple method learning the classifier from the whole
set of samples is less discriminative without utilizing the extra prior information
associated with the samples. The proposed method effectively incorporate the
prior information into the classifiers via the biases which are discriminatively
optimized.

The proposed method is slightly close to the cross-modal learning [19,20].
The samples belonging to different priors are separated as if they are in different
modalities, though the feature representations are the same in this case. The pro-
posed method deals with them in a unified manner via the adaptive prior biases.
Actually, the proposed method is applicable to the samples that are distributed
differently across the priors; the sample distribution is shifted (translated) as
x[q] = x[p] + e and the prior bias can adapt to it by b[q] = b[p] − w⊤e since
y[p] = w⊤x[p] + b[p], y[q] = w⊤x[q] + b[q] = w⊤x[p] + (b[q] + w⊤e) = y[p].
Therefore, the samples of the different priors are effectively transferred into the
optimization to improve the classification performance.

3 Experimental Results

We evaluated the proposed method on a task of patch labeling in on-board
camera images by using CamVid dataset [21]. This patch labeling contributes to
understand the scene surrounding the car.

3.1 Setting

The CamVid dataset [21] contains several sequences composed of fully labeled
image frames as shown in Fig. 3: each pixel is assigned with one of 32 class labels
including ‘void’. Those labeled images are captured at 10 Hz. In this experiment,
we employ the major 11 labels frequently seen in the image frames, road, building,
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Fig. 3. CamVid dataset [21].

sky, tree, sidewalk, car, column pole, sign symbol, fence, pedestrian and bicyclist,
to form the 11-class classification task.

We extracted the GLAC image feature [22] from a local image patch of 20×40
pixels which slides at every 10 pixels over the resized image of 480× 360. In this
case, the feature vector x ∈ R2112 is associated with the 2D position of the patch
as the extra prior information; the total number of prior types (grid points) is
P = 1551. Thus, the task is to categorize the patch feature vectors extracted at
1511 positions into the above-mentioned 11 classes.

We used three sequences in the CamVid dataset, and partitioned each sequence
into three sub-sequences along the time, one of which was used for training and
the others were for test. This cross validation was repeated three times and the
averaged classification accuracy is reported.

For comparison, we applied the methods mentioned in Sect. 1; simple and
full-connected methods as listed in Table 1. The simple method is a standard
classification using the weight w with the constant bias b in disregard of the prior
information p. The full-connected method applies classifiers comprising w[p]

and b[p] at respective priors p = 1, · · · , P . This method requires tremendous
memory storage for those P classifiers; in this experiment, 2112-dimensional
weight vectors w[p] and scalar bias b[p] in 11 class categories are stored at each of
1511 positions. On the other hand, in the proposed method, the feature vectors
are classified by using the identical weight w across the priors together with the
adaptively optimized bias b[p] depending on the prior p. We consider the linear
classification form y = w⊤x+ b in all these methods for fast computation time.

3.2 Computation Cost

We first evaluated the proposed method in terms of computation cost. The
method trains the classifier by using all the samples across the priors, scale
of which is as large as in the simple method. These methods are implemented
by MATLAB on Xeon 3.4 GHz PC. In the proposed method, we apply libsvm [23]
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Fig. 4. Comparison of the simple and proposed methods in terms of (a) computation
time as well as (b) number of support vectors (SVs).

to solve QP and efficiently compute the derivatives Gi,p(α) required for the lin-
ear term in the objective function (11) and δ[p] in (21) by exploiting the linear
classification form as in [24]. On the other hand, two types of solvers, libsvm and
liblinear [24], are applied to the simple method.

Figure 4a shows the computation time on various sizes of training samples.
The proposed method is significantly faster than the simple method using lib-
svm and competitive with that using liblinear. The time complexity of simple
method which solves the standard SVM dual has been empirically shown to
be O(n2.1) [25]. The proposed optimization approach iteratively works on the
block-wise subset into which the whole training set is decomposed (Sect. 2.2).
The subset is regarded as the working set whose size is an important factor
for fast computing QP [18]. In the proposed method, it is advantageous to
inherently define the subset, i.e., the working set, of adequate size according to
the prior. Thus, roughly speaking, the time complexity of the proposed method
results in O(M n2.1

M2.1 ) = O( n2.1

M1.1 ). Besides, the technique to skip the trivial subset
(Sect. 2.3) empirically contributes to further reduce the computational cost. The
computation time essentially depends on the (resultant) number of support vec-
tors (SVs); Fig. 4b shows the number of support vectors produced by those two
methods. The proposed method provides a smaller number of support vectors,
which significantly contributes to reduce the computation time. As a result, the
proposed optimization approach works quite well from the viewpoint of compu-
tation time. This result shows the favorable scalability of the proposed method,
especially compared to the standard simple method.

3.3 Trivial Biases

As described in Sect. 2.3, in the proposed method, it is necessary to compute the
biases on the trivial priors rather heuristically, since they are not theoretically
determined. We presented three ways, tight, mild and extreme ones, for com-
puting those biases (Sect. 2.3), and the classification performances are compared
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in Table 2. We can not find significant differences in performance across those
approaches; the extreme way provides slightly better performance and in the
following experiments we apply this method for computing biases on the trivial
priors.

Table 2. Performance comparison (%) on the ways of computing biases on trivial
priors.

Tight Mild Extreme

52.22 52.19 52.25

Table 3. Performance comparison.

(a) Classification accuracy (%)
simple full-connected proposed-linear proposed-kernel

road 93.10 93.80 94.92 95.43
building 75.90 72.96 78.70 80.51
sky 90.52 82.21 90.25 90.64
tree 70.49 77.59 79.95 83.15

sidewalk 77.06 78.43 81.36 83.11
car 53.84 58.64 65.16 73.82

column pole 9.53 16.15 12.85 27.32
sign symbol 1.73 1.62 1.70 8.76

fence 5.23 11.09 13.48 19.47
pedestrian 17.26 30.69 31.52 42.78
bicyclist 17.09 18.49 24.88 31.17

avg. 46.52 49.24 52.25 57.83

(b) Confusion matrix (%)
proposed-linear proposed-kernel

Road

Building

Sky

Tree

Sidewalk

Car

Column Pole

SignSymbol

Fence

Pedestrian

Bicyclist

94.92

0.43

0.01

0.07

11.86

4.18

0.39

0.13

2.08

0.62

7.12

0.22

78.69

4.71

13.35

1.93

11.70

46.67

69.17

45.22

21.05

12.81

0.00

2.35

90.25

2.25

0.00

0.13

4.43

0.32

0.10

0.05

0.14

0.04

6.63

4.10

79.97

0.05

2.78

18.23

18.75

6.54

4.87

3.33

3.54

1.62

0.00

0.07

81.36

3.69

1.52

0.03

5.14

2.28

2.77

0.89

3.48

0.13

1.86

3.39

65.16

6.93

3.07

12.03
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3.4 Classification Performance

We finally compared the classification performance of the three methods, simple,
full-connected and proposed (listed in Table 1); for reference, we also apply
the kernel-based extension of the proposed method by using Gaussian kernel
k(xi,xj) = exp(−∥xi−xj∥

γ ) where γ is mean of the pair-wise distances. Table 3
shows the overall performance, demonstrating that the proposed method outper-
forms the others. It should be noted that the full-connected method individ-
ually applies the classifier specific to the prior p ∈ {1, · · · , P}, requiring a plenty
of memory storage and consequently taking large classification time due to load-
ing the enormous memory. The proposed method renders as fast classification
as the simple method since it enlarges only the bias. By discriminatively opti-
mizing the biases for respective priors, the performance is significantly improved

Fig. 5. Maps of the biases learnt by the proposed-linear method. The significance of
the biases are shown by using pseudo colors from (dark) blue to (dark) red. This figure
is best viewed in color (Color figure online).
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in comparison to the simple method; the improvement is especially found at
the categories of car, pedestrian and bicyclist that are composed of patch parts
similar to other categories but are associated with the distinct prior positions.

The kernel-based method (proposed-kernel) further improves the perfor-
mance on the foreground object categories, such as column pole and pedestrian.
Those foreground objects exhibit large variations in appearance due to viewpoint
changes and within-class variations themselves, and the kernel-based method
produces more discriminative feature mapping function compared to the linear
method.

Finally, we show in Fig. 5 the biases learnt by the proposed method; the
biases {b[p]}p are folded into the form of image frame according to the x-y posi-
tions. These maps of the biases reflect the prior probability over the locations
where the target category appears. These seem quite reasonable from the view-
point of the traffic rules that cars obeys; since the CamVid dataset is collected at
the Cambridge city [21], in this case, the traffic rules are of the United Kingdom.
The pedestrian probably walks on the sidewalk mainly shown in the left side. The
oncoming car runs on the right-hand road, and the row of the building is found
on the roadside. These biases are adaptively learnt from the CamVid dataset and
they would be different if we use other datasets collected under different traffic
rules.

4 Conclusions

We have proposed a method to discriminatively learn the prior biases in the
classification. In the proposed method, for improving the classification perfor-
mance, all samples are utilized to train the classifier and the input sample is
adequately classified based on the prior information via the learnt biases. The
proposed method is formulated in the maximum-margin framework, resulting in
the optimization problem of the quadratic programming form similarly to SVM.
We also presented a computationally efficient approach to optimize the resul-
tant quadratic programming along the line of sequential minimal optimization.
The experimental results on the patch labeling in the on-board camera images
demonstrated that the proposed method is superior in terms of classification
accuracy and the computation cost. In particular, the proposed classifier oper-
ates as fast as the standard (linear) classifier, and besides the computation time
for training the classifier is even faster than the SVM of the same size.
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