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Abstract. Local binary pattern (LBP) is widely used to extract image
features in various visual recognition tasks. LBP is formulated in quite a
simple form and thus enables us to extract effective image features with
a low computational cost. There, however, are some limitations mainly
regarding sensitivity to noise and loss of image contrast information. In
this paper, we propose a novel LBP-based image feature to remedy those
drawbacks without degrading the simplicity of the original LBP formula-
tion. Encoding local pixel intensities into binary patterns can be regarded
as separating them into two modes (clusters). We introduce Fisher dis-
criminant criterion to optimize the LBP coding for exploiting binary
patterns stably and discriminatively with robustness to noise. Besides,
image contrast information is incorporated in a unified way by leveraging
the discriminant score as a weight on the corresponding binary pattern;
thereby, the prominent patterns are emphasized. In the experiments on
pedestrian detection, the proposed method exhibits superior performance
compared to the ordinary LBP and the other methods, especially in the
case of lower-dimensional features.

Keywords: Visual recognition · Image feature · Local binary pattern ·
Discriminant criterion

1 Introduction

In visual recognition, it is a fundamental procedure to extract features from
images, which is followed by classification. While various types of image fea-
ture have been proposed so far [3,11,21,24], local binary pattern (LBP) [15,20]
is one of the commonly used features due to its simple formulation and high
performance. The LBP method has been mainly applied to measure texture
characteristics [6,7,15–17], and in recent years it is shown to be favorably appli-
cable to various kinds of visual recognition tasks besides texture classification,
such as face recognition [1,22], face detection [8], pedestrian detection [24] and
sound classification [10].

The LBP method encodes local pixel intensities into binary patterns on the
basis of the center pixel intensity in the local region. There are some limitations in
LBP, mainly regarding sensitivity to noise and loss of local textual information,
i.e., image contrast. In the last two decades, considerable research effort has been
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made to address those drawbacks of LBP leading to variants of LBP. In [17],
the image contrast information is separately extracted by computing variance
of local pixel intensities and joint distribution of the contrast feature and LBP
is employed. The contrast information, local variance, is also naturally incorpo-
rated into LBP formulation via weighting binary patterns in [6]. LBP can be
combined with HOG features [3] to compensate such information loss [24]. The
robustness to noise is improved by developing binary patterns to ternary pat-
terns [22] which are further extended to quinary ones [14], though the number of
patterns corresponding to the feature dimensionality is significantly increased. It
is also possible to build noise-robust LBP by simply considering local statistics,
mean [8] or median [7], as a threshold instead of the center pixel intensity in
coding. To further improve robustness, we have recently extended LBP to fully
incorporate statistical information, mean and variance, in the processes both of
coding and weighting. For more elaborated review of LBP, refer to [20].

In this paper, we propose a novel method to extract LBP-based image fea-
tures with retaining simplicity of the original LBP formulation as well as remedy-
ing the limitations of LBP. We first generalize the LBP formulation by focusing
on the two fundamental processes of coding and weighting, and then along the
line of [6–8,10], propose discriminative LBP by providing a discriminative app-
roach to determine those two fundamentals. In the discriminative approach, LBP
coding is regarded as separating local pixel intensity distribution into two modes
(clusters) and from that viewpoint, a threshold is optimized by maximizing the
Fisher discriminant score which is further utilized in weighting. Thereby, the dis-
criminative LBP stably encodes the local pixel intensities into binary patterns
via the optimization with high robustness to noise, also incorporating image con-
trast information in a unified manner. Due to simplicity as in the ordinary LBP,
the proposed method can be easily integrated with the sophisticated extension
which has been applied to LBP, such as uniform pattern [16] and combination
with the other image features [24].

2 Discriminative Local Binary Pattern

In this section, we detail the proposed method, called discriminative LBP. We
first give a general formulation for extracting local binary patterns (LBP) [15]
with review of the LBP variants based on that formulation. Then, the discrimi-
native perspective is introduced into the processes of coding and weighting which
are fundamental in the general formulation.

2.1 General Formulation for LBP

Let r = (x, y) be a spatial position in a two-dimensional image I and I(r)
indicates the pixel intensity at that position. In LBP [15], local pixel intensities
are focused on and encoded by binarizing individual pixel intensities as follows;

code(Lc; τc) =
N∑

j=1

2j−1[[I(ri) > τc]] ∈ {0, · · · , 2N − 1}, (1)
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Table 1. Comparison in variants of LBP

method τ w

ordinary LBP [20] I(c) 1

median LBP (MBP) [7] median(I) 1

improved LBP [8] μ 1

LBP variance [6] I(c) σ2

statistics-based LBP [10] μ σ

discriminative LBP (proposed) arg max σB

√
max σ2

B
σ2+C

where [[·]] indicates the Iverson bracket that equals to 1 if the condition in the
brackets is satisfied and 0 otherwise. Lc = {ri}N

i=1 denotes a local pixel config-
uration centered at c ∈ R

2, comprising N spatial positions ri close to c. For
example, the simplest and widely used configuration consists of N = 8 sur-
rounding pixels in a 3 × 3 local patch and it is further extended in a multi-scale
setting [17]. Though the number of codes (binary patterns) is exponentially
increased according to N , it is also possible to suppress the pattern variation
by considering uniform patterns [16]. As shown in (1), the local image pattern
on Lc is encoded into a N -bit code by means of binarization of pixel intensities
with a threshold τc. Finally, LBP codes computed by (1) are aggregated to LBP
features x ∈ R

2N over a region of interest D,

xi =
∑

c∈D

wc[[code(Lc; τc) = i − 1]], i∈{1, · · · , 2N}, (2)

where wc is a voting weight which indicates significance of the local binary
pattern.

LBP variants can be placed in this general formulation as shown in Table 1.
As to coding, an ordinary LBP [20] is established by setting τ = I(c) and in [7,8]
it is modified by local statistics, τ = μ = 1

N

∑
i I(ri) and τ = mediani[I(ri)],

respectively. On the other hand, the local variance, σ2 = 1
N

∑
i(I(ri) − μ)2,

which is separately employed as local image contrast in [17], is incorporated as
the weight w in [6], and very recently, we have proposed statistics-based LBP [10]
by effectively applying those simple statistics to both coding and weighting as
τ = μ and w = σ; it should be noted that most methods simply employ hard
voting weights, i.e., w = 1. Thus, we can say that the LBP method generally
contains two essential parameters τ and w to be designed a priori for extracting
effective image features.

2.2 Discriminative Coding

We propose a novel coding method which optimizes the threshold τ and the
voting weight w in (1, 2) based on a discriminative criterion.
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The LBP coding (1) can be viewed as approximating local pixel intensity
distribution in Lc by two modes separated by the threshold τ . In a least squares
sense, which also means to fit Gaussian models from a probabilistic viewpoint,
we can measure quality of the code by the following residual error,

ε(τ) =
1
N

⎧
⎨

⎩
∑

i|I(ri)≤τ

(I(ri) − μ0)2 +
∑

i|I(ri)>τ

(I(ri) − μ1)2

⎫
⎬

⎭ , (3)

where μ0 =
1

N0

∑

i|I(ri)≤τ

I(ri), N0 =
∑

i

[[I(ri) ≤ τ ]], (4)

μ1 =
1

N1

∑

i|I(ri)>τ

I(ri), N1 =
∑

i

[[I(ri) > τ ]]. (5)

Here, we represent two modes with the mean μ0 and μ1, respectively. The resid-
ual error ε corresponds to within-class variance σ2

W for the classes which are
partitioned by the threshold τ . Minimizing ε coincides with maximization of
Fisher discriminant score [4], actually maximization of between-class variance
σ2

B;

σ2
B(τ) =

N0

N
(μ0 − μ)2 +

N1

N
(μ1 − μ)2 =

N0N1

N2
(μ1 − μ0)2. (6)

Thus, the threshold τ is optimized by

γ∗ = arg max
τ∈{I(ri)}N

i=1

σ2
B(τ). (7)

Thereby, the proposed discriminative coding with γ∗ reduces the error (ε) in
assigning binary codes (1) as well as enhances the discriminativity (σB) between
two modes partitioned by γ∗. This procedure is performed in the same way as
Otsu’s auto-thresholding method [18] applied to pixel intensities {I(ri)}N

i=1.
Next, we can accordingly determine the voting weight w as the (square root

of) discriminant score;

w =

√
σ2

B(γ∗)
σ2 + C

, (8)

where C is a small constant to avoid numerical instability for smaller σ, especially
in the case that local pixel intensities are close to uniform; in this study, we set
C = 0.012 for pixel intensity scale [0, 1]. This weight reflects how far the two
modes are separated by γ∗ and therefore is considered to measure significance
of the corresponding binary pattern.

The proposed coding is built on the optimization (7), while the other methods
employ hard coding [7,8,15] and soft coding with simple statistics [6,10]. The
computational cost for the optimization is negligible due to a small number
of pixels N to be focused on in Lc; a brute-force approach optimizes (7) with
computational complexity O(N2), but N is empirically quite small, e.g ., N = 8
or 9 in most cases.
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(a) local 3 × 3 patch (b) τ = I(c) [15] (c) τ = μ [10] (d) τ = γ∗

0.3 0.7

c

(a’) pixel intensity distribution

Fig. 1. Examples of LBP codes by various thresholds. A local patch (a) of pixel inten-
sity distribution (a’) is encoded into binary codes by ordinary LBP τ = I(c) [15] (b),
statistics-based LBP τ = μ [10] (c) and the proposed method τ = γ∗ (d). In (c, d), Lc

includes the center pixel c. The proposed method produces a stable code with a large
margin which is hardly affected by noise.

(a) w = 0.92 (b) w = 0.98 (c) w = 0.89

Fig. 2. Examples of weights in the proposed method. In each figure, the input local
patch, its pixel intensity distribution and the resultant binary pattern (code) are shown
in top-left, bottom and top-right, respectively. Details are in the text.

2.3 Characteristics of Discriminative Coding

The ordinary LBP [15] of τ = I(c) and w = 1 always assigns a local image
pattern with one of the LBP codes, no matter how the image pattern is less
significant, such as being close to uniform. The LBP coding takes into account
only magnitude relationships between the pixel intensities of neighborhoods and
that of a center pixel, I(c), in disregard of the margin. Thus, even a small
fluctuation on the pixels whose intensities are close to I(c) easily degenerates the
LBP code by breaking up the magnitude relationships, which results in totally
different features. In other words, the binary codes on the pixel intensities of a
small margin from I(c) are vulnerable to noise, causing unstable LBP features.

On the other hand, the proposed coding (Section 2.2) extracts a discrimina-
tive structure of a local pixel intensity distribution, exhibiting high robustness
to noise. In the structure, two modes endowed by the threshold γ∗ are discrim-
inatively separated with a statistically large margin due to maximizing Fisher
discriminant score in (7), which exhibits stable patterns as shown in Figure 1.
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Besides, for weighting, the significance of the local pattern is effectively mea-
sured by Fisher discriminant score (8) as shown in Figure 2. Even for the similar
image patches resulting in the same code, the patch of sharply separated pixel
intensities gets the larger weight than that of blurred intensities (Figure 2ab).
On the other hand, smaller weight is assigned to the patch of which distribution
is highly biased (Figure 2c), even though it is sharply separated. Such a biased
distribution can be regarded as a noisy pattern containing a outlier and thus it
is favorable that such code contributes less to the feature.

It should be noted that the proposed LBP is invariant to affine transformation
of pixel intensities, aI(r)+b, in terms of coding and weighting as in the ordinary
LBP, while the statistics-based LBP [10] is affected by scaling a in the weight
w = σ.

The proposed method effectively extracts the geometrical characteristics in
an image, various patterns of gradients and curvatures which are considered
to be fundamental local geometries for describing an image structure. Those
essential characteristics are represented by the local binary patterns which reflect
discriminative structures of the pixel intensity distributions with high robustness
to noise. Through weighting by Fisher discriminant scores, the patches of less
texture are ignored, contributing less to the feature, while distinctive ones, such
as around object edges, are highly focused on by large weights.

3 Techniques for Image Feature

We mention some practically useful techniques for extracting effective image
features [24].

Normalization. The discriminative LBP produces features in a histogram form
which is regarded as a discrete probability distribution over the LBP codes.
The Hellinger (Bhattacharya) kernel can be effectively applied to measure the
similarity between those probability distributions [2], and it is possible to embed
the kernel in a (linear) dot product of the feature vectors by normalizing the
features in the following form [19]; x̂ =

√
x

‖x‖1
. This normalization enhances

the discriminative power of features by enhancing difference on smaller feature
values while suppressing it on larger values via the square root function.

Cell-Structured Feature. In the case of object classification, it is demanded
to extract features related to parts which compose the target objects. Those
part-based features are naively extracted by partitioning the object image into
subregions, called cells, on which the features are computed [3,11]. The final
feature is built by simply concatenating all cell-wise features. Note that in this
study, the above-mentioned normalization is applied to respective cell-wise fea-
ture vectors before concatenation.

Binary Pattern Reduction. The dimensionality of the LBP-based feature
is exponentially increased according to the number of pixels N in the local
patch Lc. If one wants to reduce the feature dimensionality such as due to
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memory limitation, binary patterns can be reduced by considering uniform pat-
terns [16]. Uniform patterns are constructed by allowing only a few times 0/1
transitions on the neighborhood pixels surrounding the center c; 256-dimensional
features of N = 8 are reduced to 58-dimensional ones by uniform patterns allow-
ing only two times 0/1 transitions and 512-dimensional features of N = 9 includ-
ing the center become 114-dimensional ones as well1.

4 Experimental Results

We apply the proposed method to pedestrian detection tasks using the Daimler
Chrysler pedestrian benchmark dataset [13] for evaluating the performance from
various aspects and INRIA person dataset [3].

In feature extraction, the local patch Lc is restricted within 3 × 3 pixels
since the larger patch degrades performance as reported in [24], and we apply
L2-Hellinger normalization to LBP-based feature vectors.

4.1 Performance Analysis on Daimler Chrysler Dataset

The Daimler Chrysler pedestrian dataset is composed of five disjoint sets, three
for training and two for test. Each set has 4,800 pedestrian and 5,000 pedestrian-
free images of 18×36 pixels. For constructing cell-structured features, we consider
cells of 6 × 6 pixels, producing 3 × 6 cells over an image. We follow the standard
evaluation protocol on this dataset, in which the linear classifier is trained on
two out of three training sets by using liblinear [5] and is tested on each of the
test sets, producing six evaluation results. We measure the average of accuracies
at equal error rate across the six results.

In the following, we analyze in detail the proposed method in terms of coding
by τ , weighting with w and feature dimensionality controlled by a local patch
Lc and pattern reduction (Section 3). Performance results in various settings are
shown in Table 2.

Coding and Weighting. Compared to the ordinary LBP (the first row in
Table 2), the proposed method (the last row) significantly improves the perfor-
mance with and without uniform patterns (Table 2ab). Under the condition of
the same feature dimensionality, the method is still largely superior to ordinary
LBP as shown in lines 1 and 5 of Table 2, though only weighting and coding are
modified to discriminative ones (Section 2.2). In addition, our method outper-
forms the statistics-based LBP [10] in all feature dimensionalities; see lines 3, 5,
7 and 9 in Table 2. We further set the weighting as w = 1 in both statistics-based

1 58 patterns for N = 8 consist of 1 flat pattern for zero 0/1 transition, 56 moderate
patterns for less than or equal to twice transitions and 1 messy pattern for greater
than twice transitions. In N = 9, we consider 1 flat and 1 messy patterns no matter
what the center pixel is, and 112 = 56×2 moderate patterns according to the center
pixel state.
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Table 2. Performance analysis on Daimler Chrysler dataset for various settings in LBP
formulation. The local patch Lc of N = 8 excludes the center pixel. The number of
dimensionality of cell-wise features is shown in the column of ‘Dim.’. The performances
of the proposed method are underlined.

(a) Full binary pattern
Lc τ w Dim. Acc. (%)

1. N =8 I(c) 1 256 92.29

2. N =8 μ 1 256 94.04

3. N =8 μ σ 256 94.32

4. N =8 γ∗ 1 256 95.02

5. N =8 γ∗
√

σ2
B

σ2+C
256 95.11

6. N =9 μ 1 512 94.62

7. N =9 μ σ 512 94.87

8. N =9 γ∗ 1 512 95.12

9. N =9 γ∗
√

σ2
B

σ2+C
512 95.25

(b) Uniform pattern
Lc τ w Dim. Acc. (%)

N =8 I(c) 1 58 91.32

N =8 μ 1 58 93.42

N =8 μ σ 58 93.64

N =8 γ∗ 1 58 94.71

N =8 γ∗
√

σ2
B

σ2+C
58 94.77

N =9 μ 1 114 94.23

N =9 μ σ 114 94.40

N =9 γ∗ 1 114 94.93

N =9 γ∗
√

σ2
B

σ2+C
114 95.16

LBP and our method in order to give light on the effectiveness of the discrimina-
tive coding with threshold γ∗. A threshold in coding is crucial to encode the local
pixel intensities into a binary pattern, while weighting works just for assigning
significance to those patterns. Comparing the methods of w = 1, thresholds μ
and γ∗ are superior to the ordinary threshold I(c) and in particular, our dis-
criminative threshold γ∗ significantly outperforms both of μ and I(c). Thus,
it is confirmed that the proposed method which discriminatively optimizes the
threshold can effectively work in constructing local binary patterns for image
features. By incorporating discriminative weights, the performance is further
improved as shown in lines 4-5 and 8-9.

Dimensionality. By controlling a local patch Lc and applying the uniform
pattern (Section 3), the feature dimensionality is halved, accordingly causing a
little performance degeneration; compare (a) with (b), and lines 2-5 with 6-9 in
Table 2. Note that in the case that a local patch Lc is of N = 8, the proposed and
statistics-based methods do not take into account the center pixel intensity I(c)
at all in coding and weighting. Figure 3 graphically summarizes the performance
results from the viewpoint of the feature dimensionalities. The performance gain
achieved by the proposed method is larger in the lower dimensional features.
This is because the discriminative power per feature element (binary pattern) is
higher in the proposed method due to the discriminative coding and thus even
lower dimensional features work well in classification. Thus, we can say that
the proposed method is effective especially for lower dimensional LBP features
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Fig. 3. Performance analysis on the Daimler Chrysler dataset in terms of feature dimen-
sionality. Empty and filled markers indicate the performances of full binary patterns
and uniform patterns, respectively. The horizontal axis shows dimensionality in log
scale. This figure is best viewed in color.

Table 3. Performance comparison to the other methods.

Method Ours, N =9, full Ours, N =9, uniform HOG [3] [12] [23] [9]

Acc. (%) 95.25 95.16 86.41 89.25 91.10 94.32

such as by applying the uniform pattern, which is practically useful by saving
memory usage for features. Based on the trade-off between performance and
dimensionality, we recommend to apply the proposed method with the uniform
pattern and N = 9 local patch including the center pixel.

Comparison to the Other Methods. The proposed method is compared to
the other methods than LBP; HOG [3], additive kernel based feature maps [12,
23] and higher-order co-occurrence [9]. Although our method is quite simple, the
performance is superior to those methods; note that even the method of N = 9
with the uniform pattern outperforms those state-of-the-arts.

4.2 INRIA Person Dataset

Next, the proposed method is tested on the INRIA person dataset [3]. It contains
2,416 person annotations and 1,218 person-free images for training, and 1,132
person annotations and 453 person-free images for test; the person annotations
(bounding boxes) are scaled into a fixed size of 64 × 128 pixels. Cell-structured
features are computed on cells of 8 × 8 or 16 × 16 pixels, producing 8 × 16 or
4 × 8 cells on a detection window of 64 × 128 pixels. In each cell, LBP-based
features with uniform patterns of N = 9 are extracted to reduce the feature
dimensionality. The performance is shown in Figure 4 where for quantifying and
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Fig. 4. Performance comparison on the INRIA dataset. The solid lines show the per-
formance of LBP-based features with cells of 8 × 8 pixels while the dashed lines are
for cells of 16 × 16 pixels. Note that the uniform patterns are applied to LBP-based
features. The performance of single type of feature is shown in (a), while that of com-
bined features with HOG is in (b). The ordinary HOG-LBP method [24] is denoted by
HOG-LBP.

comparing methods, we plotted detection error trade-off curves by calculating
miss rate and false positive rate per detection window.

As shown in Figure 4a, the proposed method outperforms LBP-related meth-
ods [10,15] and HOG [3] in both cases of 8 × 8 and 16 × 16 px cells. Note that
the method with cells of 16×16 pixels produces 3648-dimensional feature vector
which is close to HOG dimensionality (3780 dimension). The larger cell of 16×16
pixels contains a substantial number of pixels, i.e., LBP codes, to construct fea-
tures, which statistically contributes to increase robustness of noise-sensitive
LBP features; the LBP method becomes even comparable to the statistics-based
LBP method [10] as shown in Figure 4a (comparing dashed lines for 16 × 16
px cells with solid ones for 8 × 8 px cells). In contrast, the proposed method is
superior to the LBP method in any cases due to discriminative coding.

Finally, the LBP-based features are combined with HOG as proposed in [24];
Figure 4b shows the performance results. The performance is improved by the
combination and the proposed method again outperforms the ordinary HOG-
LBP [24].

5 Conclusion

In this paper, we have proposed a novel LBP-based method to extract effec-
tive image features. We generalize the LBP formulation by focusing on the two
fundamental processes of coding and weighting, and the proposed method pro-
vides a discriminative approach to determine those two fundamentals. In the
discriminative approach, LBP coding which actually binarizes pixel intensities
by a threshold is regarded as separating a local pixel intensity distribution into
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two modes, and from that viewpoint the threshold is optimized by maximizing
the Fisher discriminant score which is subsequently employed in weighting. The
experimental results on pedestrian detection show that the proposed method
exhibits favorable performance compared to the other methods, and in particu-
lar, the method works well for lower-dimensional features.
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