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a b s t r a c t

For improving the classification performance on the cheap, it is necessary to exploit both labeled and
unlabeled samples by applying semi-supervised learning methods, most of which are built upon the pair-
wise similarities between the samples. While the similarities have so far been formulated in a heuristic
manner such as by k-NN, we propose methods to construct similarities from the probabilistic viewpoint.
The kernel-based formulation of a transition probability is first proposed via comparing kernel least
squares to variational least squares in the probabilistic framework. The formulation results in a simple
quadratic programming which flexibly introduces the constraint to improve practical robustness and is
efficiently computed by SMO. The kernel-based transition probability is by nature favorably sparse even
without applying k-NN and induces the similarity measure of the same characteristics. Besides, to cope
with multiple types of kernel functions, the multiple transition probabilities obtained correspondingly
from the kernels can be probabilistically integrated with prior probabilities represented by linear
weights. We propose a computationally efficient method to optimize the weights in a discriminative
manner. The optimized weights contribute to a composite similarity measure straightforwardly as well as
to integrate the multiple kernels themselves as multiple kernel learning does, which consequently derives
various types of multiple kernel based semi-supervised classification methods. In the experiments
on semi-supervised classification tasks, the proposed methods demonstrate favorable performances,
compared to the other methods, in terms of classification performances and computation time.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The methods of pattern classification have been developed
mainly to deal with labeled samples in the framework of super-
vised learning. In practice, however, it requires exhaustive human
labor to assign with labels/annotations especially large-scaled
samples. On the other hand, we can cheaply collect only samples
without labeling, i.e., unlabeled samples, and thus semi-supervised
learning methods have attracted keen attention to incorporate
such unlabeled samples for classification [1].

There are mainly two approaches for the semi-supervised
classification. One is based on co-training [2]. The method of co-
training starts with the initial classifier which is usually learnt by
using a few labeled samples and then gradually adds unlabeled
samples into the set of labeled samples in an iterative manner
based on the classification results over those unlabeled samples.
The co-training works well such as on car detection [3], video-
concept detection [4] and multi-view learning [5]. It, however, is
affected by both the initial classification and the way of turning
the unlabeled samples into labeled ones through iterations, being

amenable to local minima. The other line for semi-supervised
learning is built on a graph structure consisting of samples (nodes)
linked each other by weighted edges according to the pair-wise
similarities [6]. The unlabeled samples are naturally incorporated
into the graph and the optimization problems are formulated by
utilizing the energy over the graph; for example, the label
propagation methods [7–10] directly estimate the labels of the
unlabeled samples by minimizing the graph energy with the
information of the labeled samples, and the other semi-
supervised methods can be developed by incorporating the graph
energy as a regularization to the optimization problem defined in
the supervised manner [11–14]. The global structure (manifold) of
samples is exploited via the graph without resorting to iterative
classification that the co-training is based on, nor the model-based
marginal probability of samples [15]. And the optimization pro-
blem containing minimization of the graph energy is usually
formulated in a convex form with the global optimum. In these
graph-based semi-supervised methods, the similarity measure is
fundamental for connecting labeled and unlabeled samples on the
manifold of sample distribution. Thus, how to construct the
similarities for improving the performance is an important issue.

The most commonly used similarity is measured by the
Gaussian kernel expð�ð1=hÞ‖xi�xj‖2Þ on neighboring samples,
called Gaussian kernel similarity (GKS). This is an ad hoc model
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solely depending on the Euclidean distance between sample
feature vectors xi and xj. The bandwidth parameter h and the
number of neighbors have to be determined in advance, requiring
exhaustive manual tuning. In recent years, more sophisticated
methods have been proposed for the similarities by considering
the linear relationship among sample vectors [8,9]. The models
employed in those methods, however, are derived somewhat
heuristically. There are some other works [10,12] to construct
similarities by improving the GKS, and we briefly review them in
the next section.

In this paper, we propose methods to construct the pair-wise
similarity measure from the probabilistic viewpoint for boosting
performance of the graph-based semi-supervised methods. In the
probabilistic framework, by comparing the kernel least squares
[16] with the variational least squares [17] that gives Bayesian
optimal solution, we first propose the kernel-based formulation to
approximate the transition probabilities between samples. The
kernel-based transition probability (KTP), which can also be
interpreted from algebraic and geometric viewpoints, is essential
for inducing subsequent methods regarding similarity measure. By
using a single kernel function, the KTP is formulated as the simple
quadratic programming that is solved in quite a low computation
time via sequential minimal optimization [18] and that enables us
to introduce some constraints so as to provide favorably sparse
probabilities circumventing some practical issues. Those probabil-
ities are turned into the (symmetric) pair-wise similarity measure
based on the probabilistic metric. The proposed similarity is
inherently sparse due to the favorable sparseness of KTP without
resorting to k-NN.

In real-world classification problems, multiple types of kernel
function are often available for improving performance such as by
extracting multiple features. We also propose a novel method to
integrate the multiple kernel functions through the KTP. Once
transforming the respective kernel functions to the forms of KTP
correspondingly, those KTPs are probabilistically integrated with
prior probabilities represented by linear weights. We efficiently
optimize the integration weights in a discriminative manner, as in
multiple kernel learning (MKL) [19], and thus the multiple transi-
tion probabilities are effectively combined into a new composite
one. It is straightforward to derive a novel similarity from the
composite KTP, and besides we further exploit the optimized
weights for integrating the kernel functions themselves to render
novel multiple-kernel methods. We present various types of
multiple-kernel semi-supervised methods and compare them
thoroughly in the experiments, showing that the proposed
method of multiple kernel integration favorably works even in
comparison to the MKL methods.

Our contributions are summarized as follows:

1. We formulate (constrained) kernel-based transition probabil-
ities by comparing the kernel least squares to the variational
one in the probabilistic framework.

2. Inherently sparse similarity measure is constructed from the
kernel-based transition probabilities without requiring ad hoc
k-NN.

3. We propose a novel method for integrating multiple kernels
into the novel similarity via the probabilistic formulation.

4. Based on the multiple kernel integration, various types of
multiple kernel semi-supervised classification methods are
presented and thoroughly evaluated in the experiments.

The rest of this paper is organized as follows: in the next
section, we briefly review the related works in terms of designing
similarity measure and integrating multiple kernels in the semi-
supervised framework. Section 3 details the kernel-based transi-
tion probability, and Section 4 shows the formulation of the

proposed similarity. Consequently, we propose the method for
integrating multiple kernels and derive multiple kernel semi-
supervised methods in Section 5. The experimental results on
semi-supervised classification tasks are shown in Section 6, and
finally Section 7 contains our concluding remarks.

This paper is extended from the ECCV2012 conference paper
[20], including the substantial improvements mainly in that
multiple kernel semi-supervised methods are proposed and thor-
oughly compared in the experiments from various aspects. The
minor improvements are related to the kernel-based transition
probability, such as the algebraic interpretation and the extension
to the constrained version.

Throughout this paper, we use the following notations; the
bold lower cases for representing vectors, e.g., x, bold upper cases
for matrices, e.g., K , and normal cases for scalar elements in the
vector or matrix, e.g., xi and Kij, with the index subscript. As to
functions, the ones that produce a scalar output are represented by
k, p and q, while their bold notations, e.g., p, denote the functions
outputting a vector.

2. Related works

We first mention the graph Laplacian [6] on which the graph-
based semi-supervised methods [7–14] are built. Let Sij denote the
similarity between the i, j-th samples and fðxÞ be the projection
function, such as classifier, of the sample x. The projections of
samples are expected to be close according to the similarity
measure, which corresponds to minimize the following energy:

1
2
∑
n

ij
SijjfðxiÞ� fðxjÞj2 ¼ ½fðx1Þ;…; fðxnÞ�ðD�SÞ½fðx1Þ;…; fðxnÞ�> ; ð1Þ

where SARn�n is the similarity matrix and DARn�n is the diagonal
matrix of fDgii ¼∑n

j Sij. The similarity measure works through the
graph Laplacian L9D�S for the graph-based semi-supervised
methods that utilize (1) as a regularization.

There are some works to formulate the similarity itself other
than GKS. The linear neighborhood propagation (LNP) [9] has
presented a similar formulation to ours in a linear input space. The
method somewhat heuristically assumes that a sample vector is
approximated by using its neighbors in a linear form, while in the
proposed method we derive the kernel-based transition probabil-
ities via considering kernel least squares in the probabilistic
framework, which also induces the method for probabilistically
integrating multiple kernels. In addition, we provide (1) the
computationally efficient method to compute them by using
SMO, (2) algebraic/geometrical characteristics to endow the spar-
sity inherently without ad hoc k-NN, and (3) the constrained
kernel-based transition probability. The kernel LNP has also been
proposed in [21] but it differs from our method in that it lacks a
probabilistic constraint. Cheng et al. [8] applied the compressed
sensing approach to construct sparse similarities by assuming the
(strict) linear dependency x¼∑iαixi as in [9]. Such linear depen-
dency (equality), however, is a too strong constraint to hold,
especially in a high dimensional feature space. Kobayashi and
Otsu [22] proposed the cone-based formulation of similarity
measure for one-class classification. In that method, the local cone
composed of neighbor samples is applied to each sample, but to
achieve meaningful similarity, the locality is appropriately defined
in advance such as by k-NN. Zhang and Yeung [12] has proposed
the path-based similarity which is measured by searching the
optimum path in min–max criterion on the initial graph. However,
a problem remains on how to construct the initial graph (similarity),
and the authors employ GKS. The parameter settings in GKS still
affect the performances of the resulting similarity.
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Liu and Chang [10] proposed an interesting method to produce
a discriminative similarity. In that method, the similarity is
sequentially updated by using given label information, although
the method also starts from the GKS-based initial graph. Note that
the proposed similarity (Section 4) other than multiple kernel
integration is computed in unsupervisedmanner; it is subsequently
fed into semi-supervised methods for classification. From the
viewpoint of optimizing the similarity with a small amount of
given label information, the method [10] is slightly close to the
proposed method that integrates multiple kernels (Section 5). It,
however, should be noted that the method to construct similarity
measure from the multiple kernels has been rarely addressed so
far in the framework of semi-supervised learning, except for
[23,24].

The proposed method for integrating similarities derived from
multiple kernels is closely related to [23]. The method in [23]
combines multiple types of similarity measure in the framework of
label propagation [7], which results in convex optimization pro-
blem. However, the LP-based optimization is dominated by the
graph energy minimization, being less discriminative compared to
the multiple kernel learning (MKL) [19,25]. Wang et al. [24]
proposed the method of semi-supervised MKL, though it requires
prior knowledge regarding class categories and is specific to the
exponential family parametric model. Our proposed method con-
tributes to integrate not only the similarities but also the kernel
functions, and thereby several kinds of multiple kernel semi-
supervised methods are proposed in general forms without relying
on any specific knowledge.

In the Gaussian process (GP) [16], the kernel least squares also
emerge in a probabilistic manner. But, the GP assumes the
parametric (Gaussian) model for the whole samples and it cannot
give explicit connection to the pair-wise transition probability that
is our main concern for inducing similarity measure. In this paper,
by comparing the kernel-based and the variational approaches
based on the identical least-square criterion in the probabilistic
framework, we propose the kernel-based transition probability
(Section 3). The proposed transition probability benefits to con-
struction of the similarity (Section 4) as well as multiple kernel
integration (Section 5).

3. Kernel-based transition probability

Let us fist consider the regression problem from the feature x to
the labels y, which is formulated based on the least-square
criterion. As shown in Fig. 1, we begin with the least squares in
the probabilistic framework, followed by the variational optimiza-
tion [17] and kernel-based approach [16], and then finally compare
those two solutions to induce the kernel-based formulation of the

transition probabilities between samples, called the kernel-based
transition probability (KTP). Note that the identical least square
criterion is employed in both methods so as to make the
comparison reasonable. The proposed KTP is fundamental not
only for the similarity measure (Section 4) but also for the multiple
kernel integration (Section 5).

3.1. Least squares in probabilistic framework

Let xARD be the input vector and yARC be a (multiple)
objective variable(s) associated with x. The regression model is
generally formulated as y¼ qðxÞþϵ using a non-linear function q

with the residual errors ϵ. Here, we suppose a C-class problem. Let
cj (j¼ 1;…;C) denote the j-th class and ej be the C-dimensional
binary vector representing the j-th class, in which only the j-th
element is 1 and the others are 0. Suppose those class-
representative vectors ej are targets, yAfe1;…; eCg. Thus, the
regression function q is optimized based on the following least
squares:

E½‖ϵ‖2� ¼ JðqÞ9 ∑
C

j
pðcjÞ

Z
pðxjcjÞ‖ej�qðxÞ‖2 dx-min

q
: ð2Þ

By applying the variational method, we obtain the optimum form
of q [17] by

δJ ¼ JðqþδqÞ� JðqÞ ¼ 2
Z
δqðxÞ> ∑

C

j
pðcjÞpðxjcjÞfej�qðxÞg

" #
dx; ð3Þ

) pðx; cÞ�pðxÞqðxÞ ¼ 0; ‘ qðxÞ ¼ ½pðc1jxÞ;…; pðcmjxÞ�> ¼ pðcjxÞ;
ð4Þ

where we use pðx; cjÞ ¼ pðcjÞpðxjcjÞ; pðxÞ ¼∑C
j pðx; cjÞ, and pðx; cÞ ¼

½pðx; c1Þ;…; pðx; cCÞ�> ARC . The regression function results in the
posterior probabilities for the classes and it is further decomposed
by using the finite sample set fxigi ¼ 1;…;n as follows:

y� pðcjxÞ ¼
Z

pðcj ~xÞpð ~xjxÞ d ~x ð5Þ

� ∑
n

i
pðcjxiÞpðxijxÞ ¼ P> ½pðx1jxÞ;…; pðxnjxÞ�> ; ð6Þ

where PARn�C is a posterior probability matrix of Pij ¼ pðcjjxiÞ;
P ¼ ½pðcjx1Þ;…;pðcjxnÞ�> . Though it is well-known that the optimal
classifier is the posterior probability from the Bayesian viewpoint,
it should be noted here that the posterior probability is induced
from the above least squares criterion via the variational approach.

On the other hand, from the practical viewpoint, the regression
function q is often approximated by q� A>kX ðxÞ using a kernel
function k and kX ðxÞ ¼ ½kðx1; xÞ;…; kðxn; xÞ�> ARn with the coeffi-
cients AARn�C . In this case, the target to be optimized is the
matrix A in the kernel least squares:

JðAÞ ¼ ∑
C

j
pðcjÞ∑

n

i
pðxijcjÞ‖ej�A>kX ðxiÞ‖2 ð7Þ

¼ trace ðA>KΛKA�2A>KΘþ1Þ-min
A

ð8Þ

‘ A¼K �1Λ�1Θ; ð9Þ
where KARn�n is a (nonsingular) kernel Gram matrix of
Kij ¼ kðxi; xjÞ, and Λ¼ diagð½pðx1Þ;…; pðxnÞ�ÞARn�n, Θ¼ ½pðxi; cÞ;…;

pðxn; cÞ�> ARn�C . By using pðcjjxiÞ ¼ pðxi; cjÞ=pðxiÞ, we finally obtain
the following regression form:

A¼K �1Λ�1Θ¼K �1P; y� P>K �1kX ðxÞ: ð10Þ
Details of these derivations are shown in Appendix A.

Least Squares

Regression

Variational Optimization 

Comparable

Kernel-based Approximation
(Kernel Least Squares)

Fig. 1. Flow chart for inducing the kernel-based transition probability (KTP).
Starting with the identical least squares, both the variational and the kernel-based
approaches are compared.
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Both of the abovementioned results (6) and (10) are compar-
able since they are derived from the identical least-square criter-
ion, and thus we can find the kernel-based approximation of the
transition probabilities:

½pðx1jxÞ;…; pðxnjxÞ�> �K �1kX ðxÞ9αARn: ð11Þ
The right-hand side α, however, might take any values, while the
transition probabilities in the left-hand side are subject to the
probabilistic constraints of non-negativity 0rpðxijxÞðr1Þ and
unit sum ∑ipðxijxÞ ¼ 1. In what follows, we impose these prob-
abilistic constraints on α in order to approximate the transition
probability more accurately from the probabilistic perspective.

3.2. Definition of kernel-based transition probability

The vector α9K �1kX ðxÞ can also be regarded as the solution of
the following regression in reproducing kernel Hilbert space
(RKHS):

α¼ arg min
α

‖ΦXα�ϕx‖
2 ¼ ðΦ>

X ΦXÞ�1Φ>
X ϕx ¼K �1kX ðxÞ; ð12Þ

where x is represented by ϕx in RKHS which is endowed with the
inner product ϕ>

xi ϕxj ¼ kðxi; xjÞ and ΦX ¼ ½ϕx1 ;…;ϕxn �. We impose
the probabilistic constraints on (12) to propose the kernel-based
formulation for approximating the transition probabilities more
accurately:

min
0rαr1;∑iαi ¼ 1

‖ΦXα�ϕx‖
23 min

0rαr1;∑iαi ¼ 1

1
2
α>Kα�α>kX ðxÞ:

ð13Þ
This may be viewed as a kernel-based extension of LNP [9], but is
different from the kernel LNP [21] which lacks the probabilistic
constraint 0rαr1. We call the optimizer α in (13) as the kernel-
based transition probability (KTP). In this study, we use the kernel
function that is normalized in unit norm, i.e., kðx; xÞ ¼ 1; 8x, to
render the desirable property which is described below. Note that
the kernel function is often (or inherently) normalized, e.g., in
Gaussian kernel kðxi; xjÞ ¼ expð�ð1=hÞ‖xi�xj‖2Þ.

Eq. (13) produces favorably sparse KTP values α even though
neither the regularization nor the constraint regarding the sparse-
ness of α is introduced in that formulation. The “favorable
sparseness” means that α consists of sparse non-zero components
assigned to the neighbor samples; for instance, Fig. 3 illustrates the
favorable sparseness of the KTP compared to the Gaussian kernel.
To discuss such a property of the KTP, we give two interpretations
from the algebraic and the geometric perspectives, which have not
been mentioned so far.

Algebraic interpretation: The formulation (13) is analogous to
the dual (quadratic-)problem of SVM [26]. To make it clear, we
newly introduce the following primal problem that has the dual in
the form of (13), as

min
v;ξ;fξigi

1
2
‖v‖2þξþC∑

n

i
ξi

s:t: v>ϕxþbZ1�ξ; 8 i; v>ϕxi þbr�1þξi; ξiZ0; ð14Þ

where ξ, ξi are the slack variables and C is the (cost) parameter
which is set as C¼1 to get (13). This formulation is similar to SVM
in that the sample ϕx assigned with positive class y¼ þ1 is
linearly separated from the other samples ϕxi of negative class
yi ¼ �1, though the slack variable ξ for ϕx is slightly differently
defined from SVM1; see Appendix B for the primal–dual relation-
ship between (14) and (13). The samples of αi40 are the support

vectors composing the hyperplane to separate ϕx from the others
ϕxi , which thus form a sparse set. Besides, in the case that the
samples are distributed on a convex surface, such as a unit
hypersphere, those support samples are located near to the target
sample ϕx. We only apply the normalized kernel function to
achieve such favorable property for the KTP without resorting to
k-NN.

Geometric interpretation: Suppose that all the samples ϕx and
ϕxi lie on the unit hypersphere in RKHS via the normalized kernel
function, kðx; xÞ ¼ϕ>

x ϕx ¼ 1; 8x. The optimization (13) is also
regarded as the projection from ϕx to the convex hull2 that are
spanned by the sample vectors ΦX . When ϕx is contained in the
convex cone by ΦX, the small hull is selected to minimize the
distance from ϕx to the hull (Fig. 2a). On the other hand, when ϕx
lies outside the convex cone, the hull by the basis sample vectors
closer to ϕx is selected (Fig. 2b). Thus, KTP has only a few non-zero
components associated with the samples that span such a convex
hull nearby the target ϕx.

3.3. Constrained KTP

The KTP is inherently sparse as mentioned above, but such
sparsity might occasionally harm classification performance for
the case that samples are close enough to each other, i.e., nearly
duplicated. This is illustrated in Fig. 4 where the samples indicated
by ‘a’ and ‘f’ are closely located. The KTP values from the samples
‘a’ and ‘f’ are shown in the left column of Fig. 4, indicating that the
nearly duplicated sample dominates the transition probabilities
though there are some other close samples. In such a case, those
duplicated samples ‘a’ and ‘f’ are connected too strongly and
are unfavorably isolated from the others, not reflecting the
intrinsic neighborhood (manifold) structure. To alleviate it, we
introduce into the KTP the upper bound controlled by the para-
meter νðZ1Þ as

min
0rαr1=ν;∑iαi ¼ 1

1
2
α>Kα�α>kX ðxÞ: ð15Þ

In terms of ∑iαi ¼ 1, the number of non-zero KTPs is larger than ν,
i.e., ‖α‖0Zν (see Appendix C). Thus, the parameter ν implies the
lower bound for the number of non-zeros. The middle column of
Fig. 4 shows the case of ν¼ 2 where the samples other than the
duplicate one are also assigned with favorably high KTP values as
is the case with that the duplicated sample is excluded (the right
column in Fig. 4). In this paper, we use ν¼ 2, the effectiveness of
which is validated in the experiment.

Finally, we address the practical issue for computing (15). It is a
convex quadratic programming (QP) which is usually solved by
using standard QP solvers, such as MOSEK optimization toolbox.3

However, it requires significant computational cost, making the

Fig. 2. Geometrical interpretation of KTP. Circle points denote samples and the star
point is an input sample in RKHS. Only black dots have non-zero weights αi in (13),
and black solid lines show the contour of the convex hull spanned by those black
points. (a) Inside and (b) Outside.

1 One might think that the original SVM is applied to produce KTP α instead of
(13). We empirically checked that it results in almost the same results as the
proposed method without any performance difference.

2 Such convex hull is the intersection between the hypersphere and the
hyperplane produced by (14).

3 The MOSEK optimization software http://www.mosek.com/.
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method inapplicable to large-scaled samples. As mentioned in
Section 3.2, Eq. (15) is similar to the dual of SVM, especially almost
the same as the dual problem in SVDD [27] except for the linear
term of α, which is formulated by

SVDD : min
0rαr1=ν;∑iαi ¼ 1

1
2
α>Kα�α> ½kðx1; x1Þ;…; kðxn; xnÞ�> : ð16Þ

Various approaches have been developed to efficiently solve the
dual problem [28], and in this study, we apply the sequential
minimal optimization (SMO) approach [18], implemented in
LIBSVM [29], due to which the proposed method is computation-
ally efficient and thus applicable to large-scaled samples.

4. KTP-based similarity

The similarity measure is derived from the kernel-based
transition probabilities (KTPs) in (15). We first calculate the KTP
α from respective xi; i¼ 1;…;n to the others in a leave-one-out
scheme; at the i-th sample, Eq. (15) is solved for ΦX ¼ ½…;ϕxi� 1

;

ϕxiþ 1
;…� and ϕxi to produce αiARn in which αji ¼ pðxjjxiÞ and

αii ¼ 0,4 finally gathered into P ¼ ½α1;…;αn�> ; Pij ¼ pðxjjxiÞ. For
speeding up the computation of KTP, we can apply a preprocessing

of k-NN with somewhat larger k to reduce the size of (15) since
only a small portion of neighbor samples has actually non-zero
KTP as discussed in the previous section. The procedure for
computing KTP is shown in Algorithm 1.

Then, we define the metric between xi and xj based on the
transition probability (information) by

Dðxj JxiÞ ¼ � log pðxjjxiÞ; Dðxi; xjÞ ¼Dðxj JxiÞþDðxi JxjÞ: ð17Þ
This is a symmetric metric as in symmetrized Kullback–
Leibler divergence [30]. By using this metric, the similarity is
formulated as

Sij9exp �1
λ
Dðxi; xjÞ

� �
¼ fpðxjjxiÞpðxijxjÞg1=λ ¼ ðPijPjiÞ1=λ; ð18Þ

where the bandwidth parameter is simply set as λ¼ 1 which is
empirically validated in the experiment, and thereby the similarity
matrix is

S ¼ ðP○P> Þ1=λARn�n; ð19Þ
where ○ denotes the Hadamard product. This KTP-based similarity,
called KTPS, ranges from 0 to 1 and the sparseness is further
enhanced than the KTP since Sij40 iff Pij404Pji40.

Algorithm 1. Kernel-based transition probability.

Input: KARn�n: normalized Kernel Gram matrix, i.e., Kii ¼ 1; 8 i,
ν: parameter in KTP, usually ν¼ 2
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Fig. 4. Toy example for constrained KTP. ‘a’–‘f’ indicate the sample indices, and the samples of ‘a’ and ‘f’ are nearly duplicated. Top row shows KTP from the sample ‘a’, and
bottom row is from ‘f’, where the KTP values are shown in pseudo-colored scatter plot and in bar plot. Left column shows the case of KTP in (13), i.e., αr1, the middle column
is for constrained KTP in (15) with ν¼ 2, i.e., αr1

2 , and the right column is the case when the duplicated sample is excluded.

4 Since the self similarity does not affect the graph Laplacian [6], we simply set
αii ¼ 0.
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1: for i¼1 to n do
2: ðk�NN searchÞ find the first k sample indices that have larger Kij;

J¼ arg k�maxjA f1;…;i�1;iþ1;…;ngKij

or ðfull searchÞ J¼ f1;…; i�1; iþ1;…;ng

8><
>:

3: ~K ¼ fKjj′gj′A J
jA J ARjJj�jJj, ~k ¼ fKjigjA JARjJj

4: α¼ arg min0rαr 1
ν;1

> α ¼ 1
1
2α

> ~Kα�α> ~k

5:
Pij ¼

0 j=2J
αl jA J; l is the order of j in the set J; i:e:; Jl ¼ j

(

6: end for

Output: P ¼ fPijgj ¼ 1;…;n
i ¼ 1;…;nARn�n: transition probability matrix,

Pij ¼ pðxjjxiÞ

5. Multiple kernel integration

We have proposed the kernel-based transition probability
(KTP) and consequently KTPS by using a single type of kernel
function. In practical classification tasks, multiple types of kernel
functions are naturally available rather than only a single type,
such as by extracting multiple types of features. In such a case, we
obtain multiple transition probabilities (KTP) correspondingly, and
as in multiple kernel learning (MKL) [19], it is desirable to
integrate those multiple KTPs such that the resulting KTPS has
high discriminative power. In this section, we propose the method
for linearly integrating the KTPs derived frommultiple kernels into
the novel KTPS (Section 5.3) and then present the classification
method using the multiple types of kernels as well as the
composite KTPS (Section 5.3).

5.1. Multiple kernel KTP and KTPS

Suppose M types of kernel functions are given, k½l�; l¼ 1;…;M.
Let pðxjjxi; k½l�Þ ¼ P½l�

ij be the transition probability conditioned on
the l-th type of kernel function k½l�. From the probabilistic view-
point, those probabilities are integrated by

pðxjjxiÞ ¼ ∑
M

l ¼ 1
pðk½l�Þpðxjjxi; k½l�Þ ¼ ∑

M

l ¼ 1
ωlP

½l�
ij ; ð20Þ

where pðk½l�Þ is the prior probability of the l-th type of kernel and it
is regarded as the linear weight ωl to be optimized subject to
ωlZ0; ∑lωl ¼ 1. We optimize it in a discriminative manner using
(a small amount of) labeled samples since there is no any prior
knowledge of ωl9pðk½l�Þ.

Let the set of labeled samples be denoted by G. The labeled
sample pairs in G� G are categorized into P¼ fði; jÞjci ¼ cj; i; jAGg
and N¼ fði; jÞjciacj; i; jAGg, where ci indicates the class label of the
i-th sample xi. For each labeled sample iAG, from the discrimina-
tive perspective, it is expected that the transition probability to the
same class, ∑jjði;jÞAPpðxjjxiÞ, be maximized, while minimizing the
probabilities to the different classes, ∑jjði;jÞANpðxjjxiÞ. Thus, we
define the following optimization problem with respect to
ω¼ fωlgMl ¼ 1ARM:

min
ωjωZ0;1>ω ¼ 1

∑
iAG

� log ∑
jjði;jÞAP

pðxjjxiÞ
( )

� log 1� ∑
jjði;jÞAN

pðxjjxiÞ
( )

;

ð21Þ

) min
ωjωZ0;1>ω ¼ 1

JðωÞ9 ∑
iAG

� log ω>pP
i

� �� log 1�ω>pN
i

� �" #
;

ð22Þ

where

pP
i ¼ ∑

jjði;jÞAP
P½1�
ij ;…; ∑

jjði;jÞAP
P½M�
ij

" #>

ARM ;

pN
i ¼ ∑

jjði;jÞAN
P½1�
ij ;…; ∑

jjði;jÞAN
P½M�
ij

" #>

ARM ;

and we use the probabilistic constraint, ∑jjði;jÞANpðxjjxiÞ ¼
ω>pN

i r1. Note that the union set P [ N does not cover the whole
sample since there exist unlabeled samples, resulting in
∑jjði;jÞAPpðxjjxiÞþ∑jjði;jÞANpðxjjxiÞr1; 8 i, and thus the two terms
in (22) imply different types of cost. The derivative and Hessian of J
are given by

∇J ¼ ∑
iAG

� pP
i

ω>pP
i

þ pN
i

1�ω>pN
i

; ∇2J ¼ ∑
iAG

pP
i p

P
i >

ðω>pP
i Þ2

þ pN
i p

N
i >

ð1�ω>pN
i Þ2

≽0;

which shows that (22) is convex with the unique global optimum. We
apply the reduced gradient descent method [25] to minimize J under
the probabilistic constraint, ωZ0, 1>ω¼ 1, see Algorithm 2. The
transition probabilities are finally unified into P ¼∑lωlP

½l� (multiple
KTP: MKTP) via the optimized ω, and the novel KTPS is subsequently
obtained by (18) as S ¼ P○P

>
(MKTPS). In practice, we use log ð�þεÞ,

say ε¼ 1e�4, instead of log ð�Þ in (22) to avoid numerical instability.
The above proposed method is advantageous in terms of

computation cost as compared to the standard MKL such as [25].
The size of training samples in (22) is OðjGjMÞ which is indepen-
dent of the number of classes. The class information is reduced
into only the two categories P;N indicating the coincidence of
class labels in pairwise samples. Then, for each labeled sample,
such pairwise information is merged into pP

i ;p
N
i , which suppresses

the combinatorial increase of training sample vectors. Therefore,
the computation cost for (22) depends only on the number of
kernel functions M and that of labeled samples jGj even on multi-
class problems. In addition, the proposed method does not contain
any parameters to be set by users, such as a cost parameter in
SVM-based MKL [25].

Algorithm 2. Multiple kernel-based transition probability
similarity.

Input: fP½l�ARn�ngl ¼ 1;…;M: KTP matrices computed by using

respective kernel functions k½l�

G: the labeled sample indices
P¼ fði; jÞjci ¼ cj; i; jAGg, N¼ fði; jÞjciacj; i; jAGg

1: Initialize ω¼ 1
M1ARM

2: pP
i ¼ ½∑jjði;jÞAPP

½1�
ij ;…;∑jjði;jÞAPP

½M�
ij �> ARM

pN
i ¼ ½∑jjði;jÞANP

½1�
ij ;…;∑jjði;jÞANP

½M�
ij �> ARM

3: repeat
4: g ¼∇J ¼∑iAG� pP

i
ω> pP

i
þ pN

i
1�ω> pN

i

5: ln ¼ arg maxlωl

6:
~g : ~gl ¼

gl�gln ðωl403gl�gln o0Þ4 la ln

�∑ljωl 403gl �gln o0gl�gln l¼ ln

0 otherwise

8><
>:

7: ηn ¼ argminηjω�η ~g Z0Jðω�η ~g Þ
8: ω’ω�ηn ~g
9: until convergence

Output: ωARM , P ¼∑lωM
l P

½l�

5.2. Comparison to unsupervised learning

In the previous section, we derive the method for integrating
the multiple kernels in terms of KTP based on the discriminative,

T. Kobayashi / Pattern Recognition 47 (2014) 1994–2010 1999



i.e., supervised, learning. It might seem to be slightly inconsistent
with the KTP learning which is performed in the unsupervised
framework (15). In what follows, we argue that the discriminative
learning is required to the integration of multiple KTPs.

It is conceivable to incorporate the multiple kernel integration
into the KTP learning (15) such as by

min
ωx ARM ;fα½l� gl ¼ 1;…;M

∑
M

l
‖ωxlΦ½l�

Xα
½l� �ωxlϕ

½l�
x ‖

2;

s:t: ωxZ0; 1>ωx ¼ 1; 8 l; 1
ν
Zα½l�Z0; 1>α½l� ¼ 1; ð23Þ

and the KTP is retrieved by α¼∑lωxlα½l�. Note that the weight ωx

is defined at each sample. Recalling that (15) implies separability
between the sample x and the others, the above formulation
favors the kernel that embeds the samples onto a “smooth”
distribution; that is, the high weight ωxl is assigned with such
“smooth” kernel. Actually, the optimal weights are obtained as

ωxl ¼
‖Φ½l�

Xα½l� �ϕ½l�
x ‖�2

∑l′‖Φ½l′�
X α½l′� �ϕ½l′�

x ‖�2
: ð24Þ

For instance, in the case of multiple Gaussian kernels
kðxi; xjÞ ¼ expð�ð1=hÞ‖xi�xj‖2Þ with different bandwidths h, the
unsupervised integration (23) produces the weights in which the
Gaussian of the larger bandwidth is highly weighted, no matter
how the label distribution is, degrading discriminative power.
Thus, we insist on the discriminative learning (22) for integrating
the multiple kernels.

5.3. Multiple kernel based classification

The proposed method to integrate multiple kernels via KTP
(Section 5.1) produces the integration weight ω which is subse-
quently utilized to induce the composite similarity measure
(MKTPS S). The weights are optimized by maximizing the dis-
criminativity of the KTPs, each of which is derived from each
kernel function. The KTP characterizes the kernel function, exploit-
ing the inherent manifold structure of sample distribution in the
kernel space. Thus, the optimumweight must somehow reflect the
contributions of the respective kernel functions for discrimination,
which leads to combine the multiple kernels via the weights;
K ¼∑M

l ωlK
½l�, as the MKL [19] does. It should be noted that the

weight is not optimized directly in terms of specific classification
but from the viewpoint of discriminative transition probabilities.
Due to the generality, we can expect that the weight also conveys
favorable discriminative power to the kernel functions used for the
classifier, as well as the similarity measure.

As a result, given multiple types of kernel functions, we
obtain four kinds of feature pool available for classification:
fS½l� ¼ P½l�○P½l� > gl, S , fK ½l�gl, K . By exploiting these, we propose

multiple kernel based classification methods in semi-supervised/
supervised learning, which are summarized in Table 1.

i. Only multiple similarities fS½l�gl (semi-supervised): Tsuda et al.
[23] proposed the method for combining the multiple similarity
measures in the framework of the label propagation [7]. The
method is related to our proposed method (Section 5.1) in that
the multiple types of similarities are combined, though taking
a different way. The proposed method works on the KTP
by P ¼∑lωlP

½l� to produce S ¼ ð∑lωlP
½l�Þ○ð∑lωlP

½l�Þ> , while
the method [23] directly combines the similarity measure as
S ¼∑lωlðP½l�○P½l� > Þ. In the proposed method, we can further
exploit the relationships between different types of KTP via
ωlωl′P

½l�○P½l′� > , la l′.
ii. Only MKTPS S (semi-supervised): The MKTPS is simply applied

to label propagation for (transductive) classification.
iii. MKTPS S and composite kernel K (semi-supervised): In the

following, we provide the kernel-based classification methods
which are applicable to transductive/inductive classification. Both
the composite similarity S (MKTPS) and the composite kernel K
mentioned above are fed into the kernel-based semi-supervised
methods, such as Laplacian SVM (Lap-SVM) [13] and semi-
supervised discriminant analysis [11]. Those methods are based
on a single kernel function and a single similarity measure for
training the classifier.

iv. MKTPS S and multiple kernels fK ½l�gl (semi-supervised): Here,
we substitute the composite kernel K in the above method with
multiple kernels fK ½l�gl, which raises semi-supervised MKL using
MKTPS. The semi-supervised MKL has been mentioned in [24],
though it requires prior knowledge regarding class categories and
is specific to the exponential family parametric model. In this
paper, we extend the method of simpleMKL [25] to formulate the
semi-supervised method based on the graph Laplacian in a general
form; this method is a counterpart of the Lap-SVM [13], as is the
case that simpleMKL is regarded as multiple-kernel version of
SVM in the supervised learning.

We newly introduce the kernel weight d¼ fdlgl ¼ 1;…;M to
integrate multiple kernel functions into the classifier, and thereby
define the following formulation (see Appendix D):

min
d;fv½l�gl ;fξigi

1
2
∑
M

l

1
dl
‖v½l�‖2þθ

4
∑
M

l

1
dl

∑
nþN

ij
Sij‖v½l�

> ðϕ½l�
xi �ϕ½l�

xj Þ‖2þC∑
n

i
ξi

s:t: 8 iAf1;…;ng; yi ∑
M

l
v½l�

>
ϕ½l�

xi þb

 !

Z1�ξi; ξiZ0; 8 l; dlZ0;∑
M

l
dl ¼ 1; ð25Þ

where the n samples of i¼ 1;…;n are labeled while the rest N
samples of i¼ nþ1;…;nþN are unlabeled, Sij indicates the MKTPS
between the i, j-th samples and θ is a regularization parameter.
The second term in the objective cost is introduced for dealing
with the unlabeled samples via the graph Laplacian (1) in a
manner similar to Lap-SVM. Note that the formulation (25) is
convex by virtue of the convexity in the regularization (1). This
proposed method contains two types of integration weights for
similarity and kernels which are separately optimized; after
obtaining the integrated similarity (Section 5.1), we apply the
Laplacian simpleMKL, which is referred to as Lap-MKL.

v. Only composite kernel K (supervised): In the last two methods,
we mention the classification in the supervised learning, for
comparison. The composite kernel K is simply applied to any
kinds of kernel-based classification methods, such as SVM.

vi. Only multiple kernels fK ½l�gl (supervised): Multiple types of
kernels are usually treated in the supervised framework, such as
simpleMKL [25].

In summary, while the last two methods are supervised, the
first four methods are semi-supervised methods; especially, the

Table 1
Classification approaches using similarity measure. Here, the similarity matrix is

obtained via (22) S ¼ ð∑lwlP
½l�Þ○ð∑lwlP

½l�Þ> . The last row indicates the supervised
method for comparison. The columns of ‘Similarity’ and ‘Kernel’ indicate the
similarity matrix and the kernel Gram matrix input into the methods.

Method Similarity Kernel Learning

fS½l�gl S fK ½l�gl K

i [23] ✓ Semi-supervised
ii LP ✓ Semi-supervised
iii Lap-SVM ✓ ✓ Semi-supervised
iv Lap-MKL ✓ ✓ Semi-supervised
v SVM ✓ Supervised
vi MKL [25] ✓ Supervised
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methods of [23] and LP are intended for transductive classification,
which could have difficulty in predicting unseen samples. In terms
of the weight ω learnt by the proposed method (Section 5.1), we
highly contribute to the method of iii. Lap-SVM that utilizes the
weight both for similarity and kernel, as well as iv. Lap-MKL and v.
SVM that use it for similarity and kernel, respectively. Thus, it
should be noted that those methods (Table 1 iii–v) are novel in this
work by integrating the proposed method (Section 5.1) into the
classification frameworks that have been proposed in [13,26] and
the proposed framework (Table 1 iv).

6. Experimental results

We conducted experiments in the framework of semi-
supervised learning using similarities to validate the proposed
methods (Sections 4 and 5). The experiments are categorized into
two parts: the first part in Sections 6.1 and 6.2 deals with the
similarity derived from a single kernel, while the second part in
Sections 6.3 and 6.4 focuses on the integration of multiple kernels.

6.1. Similarity learning from a single kernel

We apply the similarity to label propagation [7] for estimating
the labels based on a few labeled samples. This transductive
classification using LP enables us to simply evaluate the perfor-
mance of the similarity measure itself.

USPS dataset [31] is used for this experiment, containing 7291
hand-written digits (0–9) images (16�16 pixels) to form a 10-
class problem. The image vector whose dimensionality D¼ 256 is
simply employed as the image feature. We used the Gaussian
kernel expð�ð1=hÞ‖xi�xj‖2Þ of which bandwidth parameter h is
determined as the mean of the pairwise distances denoted by γ.
The labeled samples are randomly drawn from the whole dataset
and the classification accuracy is measured on the remaining
unlabeled samples; the ratio of the labeled samples ranges from
1% to 10% per category. The trial is repeated 10 times and the
average performance is reported.

We investigate the settings in the proposed KTPS described in
Section 4, regarding both the formulation (18) itself and λ in (18).
Fig. 5 shows the performance results at 2% labeled samples. The
formulation (18) to compute similarity (KTPS) from the transition
probabilities (KTP) is a sort of geometric mean, for which the
arithmetic mean is conceivable as an alternative; S ¼ ðPþP> Þ=2.
The comparison of those two approaches is shown in Fig. 5a,
demonstrating that the proposed method (18) significantly out-
performs the arithmetic mean. As described in Section 4, (18) is
derived based on the probabilistic metric of the transition prob-
ability KTP, and besides it renders sparser similarities compared to

the arithmetic mean. Then, various parameter values of λ control-
ling the bandwidth in (18) are tested as shown in Fig. 5b. The best
performance is achieved at the case of λ¼ 1 simply retaining the
form of the transition probabilities pðxjjxiÞ in KTPS. Thus, we set
λ¼ 1 in KTPS.

Next, the proposed KTPS is compared to the other types of
similarity listed in Table 2; linear neighborhood similarity (LNS)
[9], kernel cone-based similarity (KCS) [22], sparsity induced
similarity (SIS) [8], and (Gaussian) kernel-based similarity (KS).
For LNS, we utilized the coefficients obtained in linear neighbor-
hood propagation [9] for similarities as in [8]. In [8], SIS is
proposed in linear (original) input space (LSIS), and in this paper
we also develop it to the kernel-based similarity (KSIS) via kernel
tricks. For KS, we directly utilize the (Gaussian) kernel values as
similarities, Sij ¼ kðxi; xjÞ ¼ expð�ð1=hÞ‖xi�xj‖2Þ, corresponding to
Gaussian kernel similarity (GKS) in this experiment. For computa-
tional efficiency, all the methods compute the similarities on k
nearest neighbors with somewhat larger k. In KS, however, since
the number of neighbors k has to be carefully tuned for better
performance, we additionally apply improved KS with tuned k so
as to produce favorable performances, which is denoted by
KS-tuned. The kernel-based methods, KTPS, KCS, KSIS and KS,
use the identical Gaussian kernel for fair comparison. We imple-
mented these methods on 3.33 GHz PC by using MATLAB with
MOSEK toolbox for LNS, FNNLS [32] for KCS and L1-magic toolbox5

for LSIS/KSIS.6 The number of neighbors k is set by k¼ 1:5�
256¼ 384, as in [8], and for KS-tuned, k¼ 100.

The performance results are shown in Fig. 6. The proposed
KTPS significantly outperforms the others; in particular, the
performance is over 90% even when only 1% samples are labeled.
To account for the high performance in KTPS, we analyze the
characteristics of the similarity in detail, focusing on the precision
in (non-zero) similarities. The non-zero similarity Sijð40Þ is
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Fig. 5. Comparison with respect to (18) for constructing KTPS. The performance is reported at 2% labeled samples. (a) Comparison to the arithmetic mean and (b)
parameter λ.

Table 2
Similarities.

KTPS Proposed similarity (Section 4)
LNS Linear neighborhood similarity [9]
KCS Kernel cone-based similarity [22]
LSIS (Linear) sparsity induced similarity [8]
KSIS Kernel extension of sparsity induced similarity [8]
KS (Gaussian) kernel-based similarity with k-NN
KS-tuned (Gaussian) kernel-based similarity with tuned k

5 L1-Magic http://www.acm.caltech.edu/l1magic/.
6 For SIS [8], we apply PCA to k-NN samples so as to satisfy the linear

dependency defined in equality constraint, since such dependency rarely holds in
our experiments. The violation of the linear dependency in the intrinsic sample
distribution seem to degenerate the performance of SIS.
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assigned with the binary label yij where yij ¼ þ1 for ci¼cj and
yij ¼ �1 for ciacj. Based on the labels with certain threshold
τZ0, the precision in the similarity is computed by

precðτÞ ¼ jfði; jÞji4 j; Sij4τ; yij ¼ þ1gj
jfði; jÞji4 j; Sij4τgj ; ð26Þ

together with the ratio of the samples

ratioðτÞ ¼ jfði; jÞji4 j; Sij4τgj
jfði; jÞji4 j; Sij40gj: ð27Þ

The couples of fprecðτÞ; ratioðτÞg are shown in Fig. 7 for various τ.
This result shows that KTPS is quite clean predominantly contain-
ing correct similarities, e.g., precð0Þ40:85, with a small amount of
wrong ones, compared to the other types of similarity. Due to the
clean similarity, the label information is precisely propagated via
LP, producing the superior performance.

There remains the practical issue regarding the robustness to
the parameter settings for the bandwidth h in the Gaussian kernel
and the number of neighbors k. We evaluated the performances for
hAf0:1γ;0:5γ; γ;5γ;10γg and kAf0:5D;D;1:5D;2D;4Dg on 2%
labeled samples. For comparison, the method of RMGT [10] is also
applied as a reference, though it constructs similarities in a
discriminative manner using labeled samples in contrast to the
other methods which produce similarities in an unsupervised
manner. The results are shown in Table 3. The performances of
KTPS are stably high and robust, whereas those of the other
similarities significantly fluctuate at lower performance accuracies.
This result shows that the proposed KTPS is robust to such
parameter settings, which is important to free us from exhaustively

tuning the parameters, as discussed in Section 3.2; especially, it is
enough to set somewhat larger k without tuning unlike GKS.

We also measured the average computation time required only
for calculating the similarity per sample except for kernel compu-
tation and k-NN search which are common across the methods.
The results are shown in Table 4, omitting the result of KS which
requires only kernel computation and k-NN, while appending the
result of KTPS using standard QP solver (mskqpopt in MOSEK) as a
reference. For RMGT, we report the averaged computation time on
the above experimental setting (Table 3). The computation time of
KTPS is significantly short compared to the others, demonstrating
that the SMO approach (Section 3.2) is effective in practice.

As shown in the above experimental results, we can say that
the proposed KTPS works in the label propagation quite effectively
in terms of the classification performance as well as the computa-
tional cost, showing also the robustness to the parameter settings.

6.2. Similarity-based semi-supervised classification using single
kernel

Next, we applied the similarity to semi-supervised classifica-
tion methods; semi-supervised discriminant analysis (SDA) [11]
and Laplacian support vector machine (Lap-SVM) [13] which
produce the classifiers directly working on the feature vector to
perform both transductive and inductive classifications. The
methods of SDA and Lap-SVM are developed by extending (super-
vised) Fisher discriminant analysis and SVM so as to incorporate
the unlabeled samples via the graph Laplacian regularization [6],
respectively. The SDA provides the projection vectors into the
discriminant space, and in this experiment, the samples are
classified by the 1-NN method in the discriminant space. On the
other hand, the Lap-SVM optimizes the classifier in the framework
of maximum margin [33], which is formulated as a linear classifier
in this experiment. We employ one-vs-rest approach to cope with
multi-classes.

We used ORL7 and UMIST face dataset [34]:
ORL face dataset is composed of ten face images for each of the

40 human subjects. While the size of original images is 92� 112,
we resized the images to 32� 32 for efficiency. The image vector
(AR1024) is simply employed as the feature vector, and the
Gaussian kernel is applied in the same manner as in USPS dataset.
We drew seven training samples per category for learning the
classification methods and the remaining samples are used for test
set. All samples are used as neighbors (k¼ 279), while k¼ 5 for
KS-tuned.
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Table 3
Average accuracy (%) and its standard deviation for virous parameter values on
USPS with 2% labeled samples.

KTPS LNS KCS LSIS KSIS KS RMGT [10]

95.4 86.1 87.0 62.8 60.7 50.4 91.9
7 0.5 72.6 72.4 714.7 719.3 719.8 76.0

Table 4
Computation time (ms) per sample for constructing similarities on USPS.

KTPS KTPS LNS KCS LSIS KSIS RMGT [10]
SMO MOSEK

2.0 113.7 124.4 3.2 177.2 185.5 107.4

7 http://www.cl.cam.ac.uk/Research/DTG/attarchive/pub/data/att_faces.zip.
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UMIST face dataset [34] consists of 575 images from 20 persons.
While the original pre-cropped images are of size 92� 112, we
resized the images to 32� 32 as in ORL dataset. The image vector
(AR1024) is simply employed as the feature vector, and the Gaussian
kernel is applied. We drew 15 training samples per category and the
remaining samples are used for test set. All samples are used as
neighbors (k¼ 299), while k¼ 5 for KS-tuned.

In each dataset, only one sample per category is labeled in the
training set, while the others in the training set are regarded as
unlabeled samples in the semi-supervised methods. We run on 50
random splits and report the averaged performance which is
evaluated in two ways; the classification accuracy on the training
unlabeled set (transductive accuracy) and on the test set (induc-
tive accuracy) [35].

The performance results are shown in Tables 5 and 6 in which
the performance by Wang et al. [35] measured in the same
protocol is also presented as a reference. Note that the methods
of DA and SVM are applied in the supervised setting using only
one labeled sample per category. Both of SDA and Lap-SVM using
the proposed KTPS outperform the other methods including [35]
and even supervised methods (DA and SVM) in terms of transduc-
tive and inductive accuracies. These results demonstrate that the
KTPS is well-suited to those semi-supervised classification meth-
ods. The KTPS can favorably boost the performances of the semi-
supervised methods via the graph Laplacian regularization; espe-
cially, the KTPSþLap-SVM is superior to KTPSþDA, exhibiting
better generalization performance of the (linear) classifier by Lap-
SVM compared to that of the 1-NN in SDA space.

We then show in Figs. 8 and 9 the effectiveness of the upper-
bound constraints by 1=ν in (15). In these experimental settings of
weak labeling (only one sample per category is labeled), the issue
of too sparse similarity discussed in Section 3.3 would be crucial.
The performance is improved by imposing the upper bound with
ν¼ 2, while the larger ν degrades it by producing the tighter
bound and thus unfavorably deteriorating the sparseness in the

similarities. We thus employ ν¼ 2 in this paper which stably
produces favorable performance in all the experiments.

6.3. Similarity learning from multiple kernels

In this section, utilizing multiple types of kernel functions, we
applied the method of multiple-kernel integration for MKTPS
described in Section 5.1. In order to simply evaluate the composite
similarity measure as in Section 6.1, the transductive classification
by LP with MKTPS (Table 1 ii) is performed on the following two
datasets:

Bird dataset [36] contains six bird classes with 100 images per
class. All samples are used as neighbors (k¼ 599), while k¼ 10 for
KS-tuned.

Butterfly dataset [37] has 619 images of seven butterfly classes.
All samples are used as neighbors (k¼ 618), while k¼ 10 for
KS-tuned.

For these datasets, we employed three types of precomputed
pairwise distances provided in the website8 of the authors [38];
for details of the distances refer to [38]. The multiple (three) types
of kernels are accordingly constructed by applying Gaussian kernel
to those precomputed distances in the same manner as in USPS
dataset. We drew labeled samples ranging from 10% to 50%, and
the remaining unlabeled samples are classified by LP [7]. The
classification accuracies averaged over 10 trials are reported.

First of all, the proposed MKTPS is compared to the best single
similarity that produces the highest performance among the three
types of kernels. Note that the similarities of KTPS, KCS, KSIS and KS
are constructed for each type of kernel, while MKTPS is obtained by
integrating those multiple kernels. Fig. 10 shows the performance
results. The multiple kernels are favorably combined in MKTPS,
improving the performance compared to the other best single
similarities, even to the single KTPS. The performance gain increases
along the number of labeled samples since the discriminative learning
(Section 5.1) becomes more effective for larger training samples.

Then, the proposed multiple kernel integration (22) is com-
pared to the other alternative formulations/methods as follows.

a. Cost function: In (22), we measure the errors based on log
likelihood from the probabilistic viewpoint. For minimizing the
erroneous transition probabilities as described in Section 5.1, the
other formulations are also induced from other types of error
function:

L2 error : min
ωjωZ0;1>ω ¼ 1

∑
iAG

f1�ω>pP
i g

2þfω>pN
i g

2

3 min
ωjωZ0;1>ω ¼ 1

ω> ∑
iAG

pP
i p

P
i >þpN

i p
N
i >

( )
ω�ω> ∑

iAG
pP
i :

L1 error : min
ωjωZ0;1>ω ¼ 1

∑
iAG

f1�ω>pP
i gþfω>pN

i g

3 min
ωjωZ0;1>ω ¼ 1

ω> ∑
iAG

fpN
i �pP

i g:

Note that 0rω>pP;N
i r1 from the probabilistic constraints

regarding ω and p. The method of L2 error results in quadratic
programming, while L1 error leads to linear programming which
produces the most sparse weight, ωla ln ¼ 0;ωln ¼ 1 where
ln ¼ arg minl∑iAGfpN ½l�

i �pP ½l�
i g.

b. Unsupervised integration: The unsupervised integration
method in Section 5.2 is applied to contrast the proposed method
(22) defined in supervised (discriminative) learning. This method
(23) produces the weight ωx at each sample, while the method
(22) outputs the single weight ω across the whole sample.

Table 5
Classification accuracy (%) by SDA.

Method (a) ORL face dataset (b) UMIST face dataset

Transductive Inductive Transductive Inductive

DA 67.6 73.0 67.5 74.1 44.173.6 46.373.6
Wang et al. [35] 72.171.9 71.372.2 63.171.9 62.671.8
KS-tunedþSDA 74.573.1 70.673.9 53.174.6 54.174.1
KS þSDA 50.572.8 54.975.0 34.073.7 36.774.3
KSISþSDA 63.073.1 64.574.9 41.373.4 43.373.9
LSISþSDA 60.273.5 62.074.8 39.374.0 41.674.2
KCS þSDA 76.273.0 65.074.1 50.773.1 48.673.2
LNS þSDA 76.173.2 65.874.3 51.973.3 50.273.3
KTPSþSDA 83.772.9 77.973.9 71.674.3 71.974.5

Table 6
Classification accuracy (%) by Lap-SVM.

Method (a) ORL face dataset (b) UMIST face dataset

Transductive Inductive Transductive Inductive

SVM 72.172.6 72.674.3 46.273.3 49.273.3
KS-tunedþLap-SVM 75.972.6 74.873.6 54.974.3 56.673.8
KS þLap-SVM 72.372.6 72.574.2 46.872.8 49.873.5
KSISþLap-SVM 72.372.7 72.574.3 46.572.9 49.773.5
LSISþLap-SVM 72.272.7 72.574.3 46.572.9 49.773.5
KCS þLap-SVM 79.572.1 73.474.1 54.373.2 52.973.0
LNS þLap-SVM 79.972.2 73.174.3 55.673.2 53.773.1
KTPSþLap-SVM 86.372.4 82.173.3 73.173.9 74.173.9

8 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/msorec/.

T. Kobayashi / Pattern Recognition 47 (2014) 1994–2010 2003

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/msorec/


c. LP-based integration [23]: Tsuda et al. [23] extended the LP-
based cost function to cope with the multiple types of similarity
measure (Table 1 i). From the viewpoint of multiple kernel/
similarity integration, the method resembles the proposed method
(22), but the criterion in cost function to be minimized is
completely different from ours.

The performance comparison is shown in Fig. 11. Fig. 12 depicts
the examples of the kernel weight; the performance by individual

KTPS is also shown in the leftmost column for comparison. As to a
cost function, MKTPS-L1 produces too sparse weights which have
only one non-zero component, and the weights by MKTPS-L2 are
also rather sparse. The proposed MKTPS-log favorably takes into
account all of the kernel functions with non-zero weights for
constructing discriminative similarities, exhibiting superior per-
formances. We can see that the weights are assigned by MKTPS-
log in accordance with the performance of the individual KTPS by
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Fig. 8. Classification accuracy on various ν for (constrained) KTPSþSDA. (a) ORL and (b) UMIST.
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Fig. 9. Classification accuracy on various ν for (constrained) KTPSþLap-SVM. (a) ORL and (b) UMIST.
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Fig. 10. Classification accuracy using similarities derived from multiple kernels. (a) Bird and (b) Butterfly.
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comparing the left two columns in Fig. 12. The unsupervised
integration results in dense weights which do not reflect the
discriminativity of the individual similarity (kernel). As described
in Section 5.2, the unsupervised method determines the weights
based on the smoothness of the kernel functions in disregard of
their discriminative power. Though the LP-based method [23]
produces rather sparse weights, it also suffers from the smooth-
ness of the similarity via the graph Laplacian regularization, hardly
taking into account the discriminativity. These experimental
results exhibit the effectiveness of the proposed MKTPS in terms
of the cost function and the discriminative learning.

6.4. Similarity-based semi-supervised classification using multiple
kernels

At the last, we evaluate the semi-supervised/supervised classi-
fication methods using multiple types of kernel functions. Based
on the results in Section 6.2 that Lap-SVM is superior to SDA, the
maximum-margin classifiers listed as Table 1 iii–vi are applied.
Note that in this experiment these methods optimize ‘kernel’-
based classifiers [28] unlike in Section 6.2. Those methods are
again summarized and categorized in Table 7; we employ the
method of simpleMKL [25] for vi. Supervised MKL, and the others
are novel methods in this paper since the iii and v methods
especially utilize the kernel weights produced via the proposed
MKTP (Section 5.1) for integrating the multiple kernels and the vi

method is newly proposed in Section 5.3. Those methods are
tested on object classification using Caltech101 [39] and
Caltech256 [40] datasets.

Caltech101 dataset [39] contains images in 102 object cate-
gories including ‘background’ category. We used ten types of
precomputed kernels provided in the website9 of the authors
[46]; for details of the kernels refer to [46]. The number of

neighbors is set to k¼ 500. We randomly draw three types of
(disjoint) set, the labeled, unlabeled training sets and the test set;
the labeled set contains 2–15 samples per category, while the
unlabeled and the test sets are composed of 15 samples per
category. The semi-supervised methods of iii and iv use the labeled
and unlabeled training sets for learning the classifier, while the
supervised methods of v and vi are trained on the labeled set. The
trial is repeated three times and the average classification accura-
cies are reported. The classification accuracies are measured over
both the unlabeled set (transductive) and the test set (inductive).

Caltech256 dataset [40] is a more challenging dataset than
Caltech101 since it consists of 256 object categories with large
intra-class variations regarding such as object locations, sizes and
poses in the images. We employed 39 types of kernels used in
[42]; for details of the kernels refer to [42]. As in Caltech101, three
types of set are randomly picked up; the labeled, unlabeled and
test sets consist of 2–30, 30 and 30 samples per category,
respectively. The averaged transductive and inductive classification
accuracies are measured on three-time trials.

Figs. 13 and 14 show the performance results on Caltech101
dataset, and Figs. 15 and 16 are for Caltech256 dataset; for
comparison, in the transductive classifications, the results by LP
(Table 1 ii) are shown and the inductive results include the
performance of the prior works. These kernel-based classifiers
exhibit superior performance compared to LP, showing that the
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Fig. 12. Weights over multiple kernels/similarities on various methods. The left-most column shows the performance of the individual KTPS. (a) Bird and (b) Butterfly.

Table 7
Categorization of methods.

Learning Kernel weight

MKTP MKL

Semi-supervised iii. Lap-SVM iv. Lap-MKL
Supervised v. SVM vi. MKL [25]

9 http://www.robots.ox.ac.uk/�vgg/software/MKL/ker-details.html.
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maximum margin framework provides highly discriminative clas-
sifiers. Then, we give detailed analysis of these methods according
to Table 7.

The effectiveness of the semi-supervised learning over the
supervised one is confirmed by comparing iii. Lap-SVM to v.
SVM, and iv. Lap-MKL to vi. MKL. The semi-supervised methods
work quite well especially on fewer labeled samples (2–15), while

the performance improvements are slightly attenuated on larger
amount of labeled samples. The supervised methods are blessed
with enough discriminative information of plenty of labeled
samples, nevertheless the semi-supervised methods gain improve-
ments even in such cases.

Surprisingly, the kernel weights learnt by MKTP (Section 5.1)
are superior to those by MKL in both the semi-supervised and
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Fig. 13. Transductive classification accuracies on Caltech101 dataset.
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Fig. 14. Inductive classification accuracies on Caltech101 dataset [41–43].
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Fig. 15. Transductive classification accuracies on Caltech256 dataset.
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supervised classifications, according to the comparison between iii.
Lap-SVM to iv. Lap-MKL, and v. SVM to vi. MKL. The MKTP is
formulated not particularly for optimizing the kernel weights but
for enhancing the discriminativity of the transition probabilities
(KTP). The (discriminative) characteristics of the kernel functions
are extracted by the KTP, and thus the criterion to maximize the
discriminative power of the KTP is so general as to be applicable
for the kernel weights. Fig. 17 shows the relationships between the
weights by MKTP and the individual classification performance of
multiple kernel functions. Roughly speaking, those two quantities
are positively correlated (correlation coefficient is 0.48), which
indicates that the larger weights are assigned to the discriminative
kernels. This is the evidence for the better performance of the
classifiers using the composite kernel produced via MKTP.

As a result, iii. Lap-SVM, which utilizes both the composite
kernel and similarity by MKTP for semi-supervised classifier,
significantly outperforms the MKL method [25]. In the inductive
classifications (Figs. 14 and 16) that enable us to fairly compare the
semi-supervised with supervised methods, the performance of the
Lap-SVM is favorably compared to those of the other prior works.
It particularly outperforms the others in the case of fewer labeled
samples (r15 labeled samples) in virtue of the semi-supervised
classification. The recent work [47] reports slightly better perfor-
mance (47.4% at 30 labeled samples) by using powerful Fisher
kernel features, while in this experiment our methods utilize
multiple weak kernels. Finally, we show the efficiency of the
proposed method in terms of the computation time in Fig. 18.
The Lap-SVM using the proposed MKTP is greatly faster than the
MKL methods; as the amount of labeled samples becomes large,
the method gains greater efficiency, for example, over 100 times
faster than [25] at 30 labeled samples. Note that the method [42]

using the sample kernels as ours requires a similar computation
time to the MKL [25]: the paper [42] reported the computation
time of 3.4 h at 15 labeled samples.

We conclude that the proposed MKTP contributes to integrate
the multiple kernel functions as well as the similarities. Apart from
semi-supervised learning, we especially mention the applicability
of the method to MKL even in the supervised setting. In such a
case, MKTP is applied to the KTP only for producing the weights to
integrate kernel functions without providing any similarity mea-
sure; the KTP is utilized just as ‘steppingstone’ for multiple kernel
integration. As shown in the above-mentioned experimental
results, v. supervised SVM that is built on the composite kernel
by MKTP exhibits favorable performance, and besides the compu-
tation time for optimizing the kernel weights as well as learning
the classifier is significantly short compared to the MKL methods.

7. Conclusion

We have proposed methods to construct pair-wise similarity
measure from the probabilistic viewpoint for improving perfor-
mance of semi-supervised classification methods. The kernel-
based transition probability (KTP) is first defined by using a single
kernel function through the comparison between kernel-based
and variational least squares in the probabilistic framework, which
subsequently induces the similarities. It is simply formulated in a
quadratic programming which flexibly introduces the constraint to
improve practical robustness and is efficiently computed by
applying SMO. From algebraic and geometrical viewpoints, the
KTP is by nature favorably sparse even without ad hoc k-NN, and
thereby the similarity measure derived from the KTP inherits such
a characteristic. Besides, in order to cope with multiple types of
kernel function which are practically available, we also proposed a
method to effectively integrate them into a novel similarity via
probabilistic formulation. The method discriminatively learns the
linear weights for combining the multiple transition probabilities
derived from multiple kernels, and the computation time required
in that learning is quite low in disregard of number of classes.
Those weights contribute to a composite similarity measure via
combining KTPs straightforwardly as well as to integrate multiple
kernel functions themselves as multiple kernel learning does. As a
result, various types of multiple kernel based semi-supervised
methods are proposed based on the method of multiple kernel
integration. In the experiments on semi-supervised classifications
using various datasets, the proposed similarities both of single and
multiple kernels exhibit favorable performance compared to the
other methods in transductive/inductive classifications. In addi-
tion, the proposed multiple kernel based semi-supervised methods
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are thoroughly compared and outperform the MKL methods in
terms of classification accuracies and computation time.
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Appendix A. Details of derivation in probabilistic kernel least-
squares

The kernel least-squares is defined in the probabilistic frame-
work as the following minimization problem:

JðAÞ ¼∑
j
pðcjÞ∑

i
pðxijcjÞ‖ej�A>kX ðxiÞ‖2
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Then, each term is rewritten by
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where Λ¼ diagð½pðx1Þ;…; pðxnÞ�ÞARn�n, pðxi; cÞ ¼ ½pðxi; c1Þ;…;

pðxi; cCÞ�> ARC , Θ¼ ½pðxi; cÞ;…;pðxn; cÞ�> ARn�C .
Thus, we obtain

JðAÞ ¼ traceðA>KΛKA�2A>KΘÞþ1;

and its minimizer is given by

A¼K �1Λ�1Θ¼K �1
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where we use pðcjjxiÞ ¼ pðxi; cjÞ=pðxiÞ and PARn�C is a posterior
probability matrix of Pij ¼ pðcjjxiÞ.

Appendix B. The primal problem of KTP

We show that the problem (14) has the dual form (13).
The Lagrangian of (14) is written as

L¼ 1
2
‖v‖2þξ�α v>ϕxþb�1þξ

� �
þC∑

i
ξi�∑

i
αi �v>ϕxi �b�1þξi
n o

�∑
i
βiξi; ðB:1Þ

where αZ0; αiZ0; βiZ0. The derivatives are given by

∂L
∂ξ

¼ 1�α¼ 0 ) α¼ 1; ðB:2Þ

∂L
∂v

¼ v�αϕxþ∑
i
αiϕxi ¼ 0 ) v¼ϕx�∑

i
αiϕxi ; ðB:3Þ

∂L
∂ξi

¼ C�αi�βi ¼ 0 ) 0rαirC; ðB:4Þ

∂L
∂b

¼ �αþ∑
i
αi ¼ 0 ) ∑

i
αi ¼ 1: ðB:5Þ

By using above relationships, we finally obtain the dual in the
following form:

max
0rαrC;1> α ¼ 1

�1
2
α>Φ>

X ΦXαþϕ>
x ΦXα�1

2
ϕ>

x ϕxþ1þ∑
i
αi

ðB:6Þ

3 min
0rαrC;1> α ¼ 1

1
2
α>Kα�α>kX ðxÞ: ðB:7Þ

This is exactly the same as (13).

Appendix C. Lower bound for the number of non-zeros in
constrained KTP

The constrained KTP values in (15) are subject to

0rαir
1
ν
; 8 i; ∑

i
αi ¼ 1:

Thus, we obtain the following lower bound for the number of non-
zero αi:

1¼∑
i
αi ¼ ∑

ijαi 40
αir ∑

ijαi 40

1
ν
¼ ‖α‖0

ν
; ‘ ‖α‖0Zν;

where ‖α‖0 corresponds to the number of non-zero elements in α,
that is the cardinality of fijαi40g.

Appendix D. Semi-supervised simpleMKL

This appendix gives the details of the Laplacian simpleMKL
(Lap-SMKL) in (25). Suppose reproducing kernel Hilbert space
(RKHS) H½l�, l¼ 1;…;M, each of which is endowed with an inner
product via the kernel function k½l�ðxi; xjÞ ¼ϕ½l�

xi >ϕ½l�
xj , ϕ

½l�
xi AH½l�. The

simpleMKL [25] is formulated as

min
d;fv½l�gl ;fξigi

1
2
∑
l

1
dl
‖v½l�‖2þC∑

i
ξi ðD:1Þ

s:t: 8 i; yi ∑
l
v½l�

>
ϕ½l�

xi þb

 !
Z1�ξi; ξiZ0; 8 l; dlZ0;∑

l
dl ¼ 1;

ðD:2Þ
where ‖v‖2 ¼ v> v, dARM is the weight for integrating the kernels
and fv½l�gl ¼ 1;…;M are the classifier vectors in respective RKHSs. This
is proved to be a convex formulation and is optimized iteratively
by applying the off-the-shelf SVM solver with fixing the weights d.

We introduce the graph Laplacian (1) to (D.1) for incorporating
unlabeled samples, which results in

min
d;fv½l�gl ¼ 1;…;M

1
2
∑
l

1
dl
‖v½l�‖2þθ

4
∑
l

1
dl

∑
nþN

ij
Sij‖v½l�

> ðϕ½l�
xi �ϕ½l�

xj Þ‖2þC∑
i
ξi

s:t: 8 iAf1;…;ng; yi ∑
M

l
v½l�

>
ϕ½l�

xi þb

 !

Z1�ξi; ξiZ0; 8 l; dlZ0;∑
M

l
dl ¼ 1; ðD:3Þ

where the n samples of i¼ 1;…;n are labeled while the rest N
samples of i¼ nþ1;…;nþN are unlabeled. The graph Laplacian
works as a regularization to enforce that similar samples take
similar classification outputs. The graph Laplacian is obviously
convex, which does not deteriorate the convexity of (D.1), and
consequently the formulation (25) is also convex. The Lagrangian
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is given by

L¼ 1
2
∑
M

l

1
dl
‖v½l�‖2þθ

4
∑
M

l

1
dl

∑
nþN

ij
Sij‖v½l�

> ðϕ½l�
xi �ϕ½l�

xj Þ‖
2þC∑

n

i
ξi ðD:4Þ

� ∑
n

i
αi yi ∑

l
v½l�

>
ϕ½l�

xi þb

 !
�1þξi

( )
� ∑

n

i
βiξiþγ ∑

M

l
dl�1

 !
� ∑

M

l
ηldl;

ðD:5Þ
and its derivatives are also written as

∂L
∂b

¼ ∑
n

i
αiyi ¼ 0; ðD:6Þ

∂L
∂ξi

¼ C�αi�βi ¼ 0; ðD:7Þ

∂L
∂dl

¼ � 1

2d2l
v½l�

> ðIþθΦ½l�LΦ½l� > Þv½l� þγ�ηl ¼ 0; ðD:8Þ

∂L
∂v½l�

¼ 1
dl
ðIþθΦ½l�LΦ½l� > Þv½l� �Φ½l�Jðα○yÞ ¼ 0; ðD:9Þ

‘ v½l� ¼ dlΦ½l�ðIþθLK ½l�ÞJðα○yÞ; ðD:10Þ

where ○ denotes the Hadamard product, K ½l� ¼Φ½l� >Φ½l�A
RðnþNÞ�ðnþNÞ, J ¼ ½I;0� of which the first n columns form the
identity matrix IARn�n and the others are zeros, and we use the
following matrix algebra to get (D.10):

ðIþθΦ½l�LΦ½l� > Þ�1Φ½l� ¼ fI�θΦ½l�ðL�1þθΦ½l� >Φ½l�Þ�1Φ½l� > gΦ½l�

ðD:11Þ

¼Φ½l�fI�ðL�1þθK ½l�Þ�1θK ½l�g ðD:12Þ

¼Φ½l�fðL�1þθK ½l�Þ�1ðL�1þθK ½l� �θK ½l�Þg ¼Φ½l�ðIþθLK ½l�Þ�1:

ðD:13Þ
By using (D.6)–(D.10), the dual problem is obtained as

max
α;γ

∑
i
αi�γ ðD:14Þ

s:t: 8 l; 1
2
ðα○yÞ> J >K ½l�ðIþθLK ½l�Þ�1Jðα○yÞrγ; ðD:15Þ

8 i; 0rαirC; ∑
i
yiαi ¼ 0: ðD:16Þ

The lap-MKL is actually optimized by iteratively applying SVM
solver to the following subproblem under the fixed wight d:

max
α

�1
2
ðα○yÞ> J > ∑

M

l
dlK

½l�ðIþθLK ½l�Þ�1

( )
Jðα○yÞþ ∑

n

i
αi ðD:17Þ

s:t: 8 i; 0rαirC; ∑
i
yiαi ¼ 0; ðD:18Þ

while the weight d is optimized via the projected gradient descent
[25] using

∂J
∂dl

¼ �1
2
ðα○yÞ> J>K ½l�ðIþθLK ½l�Þ�1Jðα○yÞ; ðD:19Þ

s:t: 8 l; dlZ0;∑
l
dl ¼ 1: ðD:20Þ

In the above formulations, the lap-MKL is analogous to the original
simpleMKL in that the kernel Gram matrix K ½l� is replaced with the
modified one JK ½l�ðIþθLK ½l�Þ�1J based on the graph Laplacian.
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