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Abstract In pattern classification, it is needed to efficiently
treat not only feature vectors but also feature matrices defined
as two-way data, while preserving the two-way structure such
as spatio-temporal relationships. The classifier for the feature
matrix is generally formulated in a bilinear form composed
of row and column weights which jointly result in a matrix
weight. The rank of the matrix should be low from the view-
point of generalization performance and computational cost.
For that purpose, we propose a low-rank bilinear classifier
based on the efficient convex optimization. In the proposed
method, the classifier is optimized by minimizing the trace
norm of the classifier (matrix) to reduce the rank without any
hard constraint on it. We formulate the optimization prob-
lem in a tractable convex form and provide the procedure
to solve it efficiently with the global optimum. In addition,
we propose two novel extensions of the bilinear classifier in
terms of multiple kernel learning and cross-modal learning.
Through kernelizing the bilinear method, we naturally induce
a novel multiple kernel learning. The method integrates both
the inter kernels between heterogeneous reproducing ker-
nel Hilbert spaces (RKHSs) and the ordinary kernels within
respective RKHSs into a new discriminative kernel in a uni-
fied manner using the bilinear model. Besides, for cross-
modal learning, we consider to map into the common space
the multi-modal features which are subsequently classified in
that space. We show that the projection and the classification
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are jointly represented by the bilinear model, and then pro-
pose the method to optimize both of them simultaneously in
the bilinear framework. In the experiments on various visual
classification tasks, the proposed methods exhibit favorable
performances compared to the other methods.
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1 Introduction

Various applications related to pattern classification are built
upon classifying the features which are extracted from the tar-
get domains such as images (Dalal and Triggs 2005; Csurka
et al. 2004) and motion sequences (Kobayashi and Otsu 2009,
2012b). Those features are usually represented in a vec-
tor form (one-way) such as by concatenation, even though
they are inherently defined in a matrix form (two-way). For
example, the matrix forms are typically found in image
pixels, arrays of (local) feature vectors extracted at spatio-
temporal (grid) points, and co-occurrence features (Fig. 1).
The dimensionality of the concatenated feature vector cor-
responds to the product of two-way’s dimensions, resulting
in high dimensionality, and the inherent structure of the two-
way features, e.g., spatial relationship, is unfortunately col-
lapsed (Tenenbaum and Freeman 2000).

There are some works to directly deal with the features in
a matrix form; 2D-PCA (Yang et al. 2004) and 2D-LDA (Ye
et al. 2005) are extended from principal component analy-
sis (PCA) and linear discriminant analysis (LDA) to matrix-
based formulations for dimensionality reduction, and the
factorization methods of the feature matrix are also
proposed by Lee and Seung (1999) and Eriksson and van den

123

Author's personal copy



Int J Comput Vis

F
ea

tu
re

 v
ec

to
r

F
ea

tu
re

 v
ec

to
r

position

ABDDwords:
word

w
or

d

(a) (b) (c)

Fig. 1 Examples of feature matrices. Matrix forms are found in arrays of feature vectors extracted from a time-series and b image data, and in c
co-occurrence features

Hengel (2010). Those methods are formulated mainly to
learn effective image representations in a matrix form and
are not explicitly intended for classification problems in a
supervised framework.

As to classification, significant research efforts have been
made on training linear classifiers for feature vectors; e.g.,
SVM (Vapnik 1998) and L1-SVM (Graepel et al. 1999) in
the maximum-margin framework (Smola et al. 2000), which
can be further extended to kernel-based methods (Schölkopf
and Smola 2001). On the other hand, the classifier for feature
matrices is naturally defined as a bilinear model (Tenenbaum
and Freeman 2000) comprising two kinds of weights for row
and column which jointly form a matrix weight in general.
Along with the advances of the linear classifiers, some bilin-
ear classifiers have been recently proposed by Pirsiavash et
al. (2009) and Wolf et al. (2007). The main concern in the
bilinear methods is to construct the low-rank bilinear (matrix)
classifier in a manner similar to the maximum-margin frame-
work since the VC-dimension of the low-rank bilinear model
is proven to be less than that of the concatenated linear mod-
els (Wolf et al. 2007). The bilinear model has also attracted
attention in the field of the collaborative filtering (Rennie
and Srebro 2005; Loeff and Farhadi 2008) and it is defined
in a way similar to the above-mentioned classifier. Those
bilinear-related methods formulate the optimization prob-
lems in a biconvex (non-convex) form and semi-definite pro-
gramming (SDP) which is computationally less efficient, and
in order to cope with the non-convexity and computationally
inefficiency, the approximated optimization approaches are
employed, though resulting in local minima. In addition, the
hard constraint regarding the rank is explicitly introduced as
a free parameter; that is, users are required to determine the
classifier rank in advance.

In this paper, we propose a novel method to efficiently
optimize the bilinear classifier. Without approximations nor
hard constraints on the rank, the method automatically pro-
duces the optimal low-rank classifier by minimizing the trace
norm of the classifier matrix, while reducing the classification
errors on training samples. Our contributions are to formu-
late a tractable convex optimization problem for learning the

low-rank bilinear classifier and to present an optimization
procedure to computationally efficiently provide the global
minimum. The SDP has so far been mentioned as a convex
formulation for the bilinear model, although it suffers from
large computational burden. The proposed convex formula-
tion is defined in a different way from the ordinary SDP and
it is much faster than the SDP.

In addition, we also propose two novel extensions of the
above-mentioned bilinear model in terms of multiple ker-
nel learning (MKL) (Lanckriet et al. 2004) and cross-modal
learning (Kan et al. 2012). First, by introducing multiple
types of non-linear kernels into the bilinear classifier, we
naturally induce a novel MKL method, heterogeneous MKL.
The MKL methods have been successfully applied to exploit
the discriminative power in the form of the composite kernel
to which the multiple kernels are (linearly) integrated (Lanck-
riet et al. 2004; Rakotomamonjy et al. 2008; Varma and
Ray 2007). In the proposed heterogeneous MKL, the feature
matrix used in the bilinear model is formulated based on the
multiple types of reproducing kernel Hilbert space (RKHS).
Thereby, we introduce a novel concept of the inter kernels
between the heterogeneous types of RKHS features, while
the ordinary kernels are also incorporated as intra kernels.
The proposed method integrates both the inter and intra ker-
nels into a new discriminative kernel via the bilinear model.

Second, for cross-modal learning, we deal with the multi-
modal features which are projected into the common space
shared across the multiple modalities (Kan et al. 2012;
Sharma and Jacobs 2011). In the common space, we can
leverage the knowledge (training samples) transferred from
all the modalities; we assume the linear classification in that
space. In the case of the multi-modal feature vectors in the
multi-class setting, it is shown that both the projections into
the common space and the linear classifier are jointly rep-
resented by the bilinear model. Accordingly, we propose a
method to simultaneously learn both of them in the bilinear
framework.

The rest of this paper is organized as follows. In Sect.2, we
define the model of bilinear classifier and briefly review the
previous methods related to the optimization for the bilinear
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model, and then Sect.3 details the proposed convex formu-
lation for learning the bilinear classifier and its optimization
approach. In the subsequent two sections, we present two
extensions of the bilinear model. By introducing the non-
linear kernel functions into the bilinear classifier, the het-
erogeneous multiple kernel learning is proposed in Sec.4.
The cross-modal learning is casted into the bilinear frame-
work and thereby we propose in Sect.5 the method to clas-
sify multi-class multi-modal feature vectors via the bilin-
ear model. In Sect.6, we show the experimental results by
applying the proposed methods to various visual classifica-
tion tasks, and finally conclude this paper in Sect.7.

This paper contains the substantial improvements over the
ECCV 2012 conference article (Kobayashi and Otsu 2012a)
in the following points; (1) the bilinear model is extended to
a new cross-modal learning method for dealing with multi-
modal features in the multi-class setting, (2) the experiments
on cross-modal learning are conducted to show the capability
of that new method, and (3) some technical contents, such as
the optimization procedure in Sect.3.2, are presented in more
detail.

2 Bilinear Classifier

Let X be a feature matrix whose dimensions are denoted
by h and w (X ∈ R

h×w). For example, X is regarded as
the array of the h-dimensional feature vectors extracted at
w points, such as in xy-coordinates for images or along t-
axis for time-series signals, as shown in Fig. 1. To deal with
the feature matrix, a bilinear classifier is simply formulated
as ŷ = w�h Xww + b where wh ∈ R

h, ww ∈ R
w. This is

regarded as a ‘1-rank’ classifier, and by integrating multiple
such classifiers, the multi-rank bilinear classifier is generally
defined by

ŷ = tr(W�h XWw)+ b = tr(W�X)+ b, (1)

where tr(·) denotes the trace of a matrix, b is the bias and W =
WhW�w ∈ R

h×w is the classifier matrix (Wh ∈ R
h×r , Ww ∈

R
w×r where the rank r ≤ min[w, h]). For simplicity, we

consider a two-class classification problem, given n samples
{X i , yi }i=1,···,n where yi is the class label (yi ∈ {+1,−1}) of
the i-th sample. This is straightforwardly extended to multi-
class classifiers by using a one-vs-rest approach.

For training the bilinear classifier, as in the maximum-
margin framework (Smola et al. 2000), we measure the mar-
gin of the bilinear classifier (1) by the matrix trace norm, i.e.,
sum of singular values, to minimize the matrix rank, which
renders the following optimization problem:

min
W ,b
||W ||Σ + C

n∑

i=1

max
[
0, 1−yi {tr(W�X i )+ b}], (2)

where || · ||Σ indicates the trace norm of a matrix and C is
the balancing parameter between the margin and the classi-
fication errors.

Let the singular values of W be denoted by σ ∈ R
r . The

trace norm is represented by ||W ||Σ = ||σ ||1, while the rank
is measured as rank(W) = ||σ ||0. Thereby, in the formu-
lation (2), the L1 norm (trace norm) in the objective cost
is regarded as a relaxation of the L0 norm which directly
minimizes the rank. Generally speaking, such L1-norm mini-
mization induces sparsity (Graepel et al. 1999) in the singular
values, minimizing the rank accordingly.

In the following, we briefly review the previous meth-
ods regarding the optimization of the bilinear classifier; they
modify the form of the margin since it is difficult to directly
treat the trace norm in the optimization.

2.1 SDP Formulation for Bilinear Model

Srebro et al. (2005) showed the way to reformulate (2) into
SDP. By introducing the following augmented variables,

X̃ i =
[

0 X i

X�i 0

]
, W̃=

[
Wh
Ww

][
Wh
Ww

]�

=
[

WhW�h W
W� WwW�w

]
, (3)

the formulation (2) results in

min
W̃�0,b

1

2
tr(W̃)+ C

n∑

i=1

max
[
0, 1−yi

{1

2
tr(W̃

�
X̃ i )+b

}]
.

(4)

The trace norm ||W ||Σ is replaced with 1
2 tr(W̃) since

||W ||Σ ≤ 1
2 tr(W̃) and the equality holds at the opti-

mum (Srebro et al. 2005). In this convex problem (4), the
global optimum is obtained by SDP (Boyd and Vandenberghe
2004), but with a high computational cost, which makes it
infeasible for large-scaled samples.

This kind of bilinear model is also addressed in the lit-
erature of the collaborative filtering by Rennie and Srebro
(2005) and Loeff and Farhadi (2008) who employ the trace
norm ||W ||Σ as in (2). Those authors also mentioned that
the resulting SDP is exhaustive and difficult to solve for
large-scale samples, and thus they apply the approximated
optimization approaches, though resulting in local minima.

2.2 Bilinear SVM

Pirsiavash et al. (2009) formulate the optimization problem
slightly differently from (2) by
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min
Wh,Ww,b

1

2
tr(WhW�w WwW�h ) (5)

+ C
∑

i

max
[
0, 1− yi {tr(WwW�h X i )+ b}].

In this formulation, the margin is measured by the Frobe-
nius norm, ‖WhW�w‖2F = tr(WhW�w WwW�h ), instead of
the trace norm. Due to employing the Frobenius norm, (5)
is quite similar to the linear SVM (Vapnik 1998); in case
that we introduce W = WhW�w as the classifier weight
to be optimized without decomposition, (5) results in the
same formulation as the SVM by unfolding matrices to vec-
tors. The Frobenius norm corresponds to the L2 norm of
the singular values σ and the optimized classifier tends to
have dense singular values, resulting in the full-rank classi-
fier, unlike the trace norm (the L1 norm of σ ). Therefore, to
achieve low-rank SVM, Wolf et al. (2007) and Pirsiavash et
al. (2009) additionally introduce a hard constraint on the rank,
rank(W) ≤ k or correspondingly the explicit representation
of Wh ∈ R

h×k, Ww ∈ R
w×k in the formulation (5). It, how-

ever, usually produces the classifier of the full (maximum)
rank under that constraint, i.e., rank(W) = k, since the objec-
tive cost including the Frobenius norm ‖W‖2F favors dense
singular values as discussed above, and the optimal rank k is
generally difficult to determine in advance; it depends on the
recognition task. Besides, it should be noted that (5) is not
convex but biconvex with respect to Wh and Ww, and those
two types of weights are alternatively optimized, converging
to the local minima.

3 Efficient Convex Optimization

3.1 Proposed Formulation

By using Wh, Ww as in (5), we can simply rewrite (4) to

min
Ww

[
1

2
tr(WwW�w)+ min

Wh,b
L(Wh, b;Ww)

]
, (6)

L(Wh, b;Ww) � 1

2
tr(WhW�h ) (7)

+C
∑

i

max
[
0, 1−yi {tr(W�h X i Ww)+b}].

The formulation (6) is biconvex or bilevel (Dempe 2002),
and the iterative approach which alternately optimizes either
of Wh or Ww is applicable as described in Sect.2.2. Such an
approach is tractable in contrast to SDP (4), but it results in
local minima. In this study, we further reformulate (6) to a
tractable convex problem and propose a procedure to provide
the global optimum efficiently.

Here, we suppose the column size is smaller than the row
size, h > w, without loss of generality. The inner optimiza-
tion, maxWh,b L(Wh, b;Ww) in (6), is regarded as the SVM

quadratic programming (QP) with respect to Wh, b, and thus
it has the following dual:

max
α∈Ω

∑

i

αi − 1

2

∑

i, j

αiα j yi y j Ki j , (8)

where Ω={
α | ∀i, 0 ≤ αi ≤ C,

∑n
i=1 yiαi = 0

}
, (9)

Ki j = tr{(X i Ww)�(X j Ww)}= tr(WwW�w X�i X j ). (10)

Thereby, given the optimum W∗w, we get the optimum bilin-
ear classifier as

W∗h =
∑

i

α∗i yi X i W∗w, ŷ = tr(W∗wW∗w
�∑

iα
∗
i yi X�i X),

(11)

where α∗i are the optimizers in (8) using W∗w. In the forms
(6,10,11), we can see that the key variable is Σw �
WwW�w � 0 rather than Ww itself. And, since the inner
optimization in (6) can be replaced with its dual (8) due to
the string duality (Rakotomamonjy et al. 2008; Varma and
Ray 2007), the optimization (6) is reformulated into

min
Σw�0

[
1

2
tr(Σw)+max

α∈Ω

{∑

i

αi− 1

2

∑

i, j

αiα j yi y j Ki j (Σw)

}]
,

(12)

where Ki j (Σw) = tr(Σw X�i X j ). (13)

This is still one form of bilevel optimization (Dempe 2002),
but by using the unique optimizer α∗ in (8), we finally obtain
our proposed formulation for optimizing the bilinear classi-
fier by

min
Σw�0

[
J (Σw)� 1

2
tr(Σw)

+
∑

i

α∗i (Σw)− 1

2

∑

i, j

α∗i (Σw)α∗j (Σw)yi y j Ki j (Σw)

]
,

(14)

where α∗(Σw)=arg max
α∈Ω

∑

i

αi− 1

2

∑

i, j

αiα j yi y j Ki j (Σw).

(15)

By folding the inner optimization into α∗(Σw) (the func-
tion of Σw) via (15), the optimization problem (14) is a
single-level form with respect to Σw and it is convex (see
Appendix for the proof). The introduction of the essential
variable Σw removes the ambiguity regarding the rotations
of the classifier weights; even though any rotation matrix
Θ ∈ R

r×r (ΘΘ� = I) is applied to the row and column
weights by WhΘ and WwΘ , neither the bilinear classi-
fier nor the margin is changed: ŷ = tr(Θ�W�h XWwΘ)=
tr(W�h XWw) in the classifier and tr(WhΘΘ�W�h ) =
tr(WhW�h ), tr(WwΘΘ�W�w) = tr(WwW�w) in the margin.
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The essential rank r of the classifier W = WhW�w is usu-
ally less than min[w, h] = w (full rank), and the redundant
ranks are eventually eliminated by assigning zero singular
values through the optimization (14) which minimizes the
trace norm ||WhW�w ||Σ . The proposed method, i.e., the opti-
mization (14), produces the bilinear classifier of the optimal
low rank automatically without any hard constraint on the
rank. In summary, our contribution is to formulate the bilin-
ear classification problem in the tractable convex form (14)
by introducing Σw.

We finally obtain the global optimum Σ∗w, instead of W∗w,
and then the two types of classifier weights are retrieved
through the eigen-decomposition of Σ∗w by

Σ∗w = V ∗Λ∗V ∗�, (16)

W∗w = V ∗Λ∗
1
2 , W∗h =

∑

i

α∗(Σ∗w)yi X i V ∗Λ∗
1
2 , (17)

and the classifier weight is given by

W∗ =
∑

i

α∗(Σ∗w)yi X iΣ
∗
w. (18)

3.2 Optimization by Gradient Descent

In this study, the cost function J in (14) is minimized by
means of the following gradient-descent approach.

3.2.1 Initialization

We simply start with Σw = I (identity matrix) since the
redundant rank is automatically eliminated by assigning the
zero singular values through the optimization as mentioned
above. Note that this initialization provides α∗(I) that cor-
responds to the solution of the linear SVM using Ki j =
tr(X�i X j ). It is the optimum solution for the full-rank clas-
sifier and is regarded as a good initial point for fast conver-
gence.

3.2.2 Sub-Problem QP

We apply the off-the-shelf SVM solver to optimize the sub-
problem (15). The SMO-based SVM solver such as lib-
svm (Chang and Lin 2001) effectively works on it, while
the recently developed linear SVM solvers such as liblin-
ear (Fan et al. 2008) are also applicable by decomposing Σw

into WwW�w to provide the linear kernel in (13).

3.2.3 Gradient Descent

The derivative of J is given, as if α∗(Σw) do not depend on
Σw (see Appendix), by

∇ J = 1

2

{
I −

∑

i j

α∗i (Σw)α∗j(Σw)yi y j X�i X j

}
. (19)

In order to ensure the positive semi-definiteness Σw � 0, we
apply the projected gradient descent (Rakotomamonjy et al.
2008; Varma and Ray 2007) via the eigen decomposition of
Σw−η∇ J and cutting off both the negative eigenvalues and
their eigenvectors:

Σold
w − η∇ J = VΛV� =

w∑

i=1

λiviv
�
i , (20)

Σnew
w ←

∑

i |λi >0

λiviv
�
i = V+Λ+V�+, (21)

where η is the step size determined by the line search, say
Armijo rule (Nocedal and Wright 1999), and λi , vi are the
i-th eigenvalue and eigenvector, respectively.

In the proposed formulation (14), the dimensionality of the
variable Σw, O(w2), is much smaller than that of W̃ , O((h+
w)2), in the SDP (4). The computational complexity of the
above optimization procedure is solely dependent on that of
the sub-problem QP (15). The computationally exhaustive
step other than the QP is the eigen decomposition in (20).
In practice, however, either the dimensions h or w is low;
e.g., high-dimensional features are extracted at a few points
(h 
 w), or either of the dimensionalities can be reduced
such as by applying PCA in advance; the PCA projection
vectors U ∈ R

w×w′ transform the feature matrix X into
XU ∈ R

h×w′ . Thus, the computational costs of the eigen
decomposition are negligible compared to those of QP in
most cases.

3.3 Smoothing Regularization

Either or both of the bilinear weights, Wh, Ww, are occa-
sionally connected to physical properties; for example, Ww

works as weights on spatio-temporal positions, while Wh is
for the feature vector. In such cases, it is useful to take into
account the physical relationships between the weight com-
ponents as regularization, which would improve the gener-
alization performance. For that purpose, we introduce the
smoothing regularization. In the case of time-series (Fig.
1a), the extracted features are not independently drawn but
naturally have continuity between adjacent features, expect-
ing the smooth weights Ww. The smoothing regularization
is expressed by using the quadratic form derived from the
Laplacian of the weights, and the formulation results in

123

Author's personal copy



Int J Comput Vis

min
Ww,Wh,b

1

2
tr(WwW�w)+ 1

2
tr(WhW�h )

+ 1

2
Cwtr(W�w LwWw)+ 1

2
Chtr(W�h LhWh)

+ C
∑

i

max
[
0, 1− yi {tr(W�h X i Ww)+ b}], (22)

where Lw, Lh are the matrices to measure the smoothness
and Cw, Ch are regularization parameters. For example, in
time-series (one-way), the matrix Lw is determined based
on tr(W�w LwWw) = ∑

t,r ‖ − wt−1,r + 2wt,r − wt+1,r‖22.
In this study, the regularization parameter Cw is set so as to
equally balance the spectral norms of the two matrices I and
Lw by Cw = 1/||Lw||s , (Ch = 1/‖Lh‖s for Lh), where ‖·‖s
denotes the spectral norm (the maximum singular value) of
a matrix. Then, the above formulation is rewritten to

min
W̄w,W̄h,b

1

2
tr(W̄wW̄

�
w)+ 1

2
tr(W̄hW̄

�
h )

+ C
∑

i

max
[
0, 1−yi {tr(W̄

�
h X̄ i W̄w)+ b}], (23)

where X̄ i = (I + Ch Lh)−
1
2 X i (I + Cw Lw)−

1
2 . (24)

This is the same as (6) except for the feature matrices
X̄ , and the optimization procedure described in Sect.3.2
is directly applicable to it. We finally obtain the smoothed

classifier weights by Wh = (I + Ch Lh)− 1
2 W̄h, Ww =

(I + Ch Lw)− 1
2 W̄w.

This smoothing regularization is somewhat a naive exten-
sion of the bilinear model. In the following sections (Sect.4
and Sect.5), we propose the two noteworthy extensions of
bilinear models by utilizing the proposed method (Sect.3.1,
3.2) as a basic optimization tool.

4 Heterogeneous Multiple Kernel Learning

By considering a kernel-based extension of the bilinear clas-
sifier, we naturally induce a novel multiple kernel learn-
ing (MKL), called heterogeneous multiple kernel learning,
which effectively integrates the inter and intra kernels among
various types of RKHS.

4.1 Feature Matrix for Kernelization

To kernelize the bilinear model, we introduce the kernels for
Ri j � X�i X j ∈ R

w×w in (13). The optimized Σw works as
weights to integrate the multiple (w × w types) kernels of
Ri j into a new composite kernel which is fed into (13), as in
MKL (Lanckriet et al. 2004). In what follows, we consider
the kernel feature vector φic (c ∈ {1, · · · , w}) in the c-th
type of RKHS Kc which is derived from the feature xic and is

endowed with the kernel function kc: kc(xic, x jc) = φ�icφ jc.
Those vectors φic form the feature matrix along its (block-
)diagonal as

Xφ
i =

⎡

⎢⎣
φi1

. . .

φiw

⎤

⎥⎦ = diag(φi1, . . . ,φiw), (25)

whose column size is w. If we simply use X i = Xφ
i ,

the kernelized Ri j results in the diagonal matrix Ri j =
diag

{
k1(xi1, x j1), . . . , kw(xiw, x jw)

}
. In this case, we take

into account only the respective types of kernels in disregard
of the inter connections among those kernels, and the pro-
posed bilinear method (14) using this diagonal matrix Ri j

reduces to the MKL method by Varma and Ray (2007).
In order to exploit the relationships between the multiple

types of RKHSs, we define the feature matrix X by

X = ZXφ, (26)

where Z is a transformation matrix. For example, in case
that the RKHSs are all homogeneous with the identical kernel
function kc = k ∀c, the kernelized R can be simply obtained
as the dense matrix Ri j = {

φ�icφ jd = k(xic, x jd)
}d=1,...,w

c=1,...,w

via Z = [I, . . . , I]. In this study, by effectively determining
Z, we establish the densely kernelized R even for multi-
ple types of RKHSs, namely multiple kernel functions, to
incorporate not only the intra kernels (in diagonal) between
the homogeneous RKHSs but also the inter kernels (in off-
diagonal) among the heterogeneous RKHSs, which induces
heterogeneous MKL (hMKL) as follows.

4.2 Heterogeneous Kernel Integration

The main concern in the hMKL is to construct kernels, espe-
cially for the off-diagonal elements of Ri j ; those are inter
kernels between the heterogeneous RKHSs, which is a novel
concept in this paper. We determine the transformation Z by

Z = [U1V�1 , . . . , UwV�w] = [K−
1
2

1 Φ�1 , . . . , K
− 1

2
w Φ�w],

(27)

where Φc = [φ1c, . . . ,φnc] = V cΛcU�c (SVD). It leads to
the following form of the kernelized Ri j ,

Ri j
cd = φ�icV cU�c Ud V�d φ jd = k�ic K

− 1
2

c K
− 1

2
d kid , (28)

where K c is the c-th kernel Gram matrix using the kernel
function kc;

K c = {kc(xic, x jc)} j=1,...,n
i=1,...,n = Φ�c Φc = UcΛ

2
cU�c ∈ R

n×n,

(29)

K
− 1

2
c = UcΛ

−1
c U�c , (30)
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(a)

(b)

Fig. 2 Interpretation in the proposed kernel (28)

and the kernel vector kic corresponds to the i-th column vec-
tor of K c as

kic=[kc(xic, x1c), . . . , kc(xic, xnc)]� = Φ�c φic ∈ R
n .

(31)

The proposed kernel formulated in (28) is composed of
two parts, intra kernel (diagonal, c = d) and inter kernel
(off-diagonal, c �= d), to which we can give interpretations
as follows (Fig. 2).

4.2.1 Intra Kernel

Due to U�c Uc = I , the intra kernels in the diagonal compo-
nents of Ri j result in

Ri j
cc = k�ic K

− 1
2

c K
− 1

2
c k jc = φ�icV cV c

�φ jc, (32)

where V c is regarded as the (kernel) PCA projection vec-
tors (Schölkopf and Smola 2001) in the c-th RKHS Kc. Thus,
this is simply interpreted as the inner product on the PCA sub-
space in Kc (Fig. 2a). Especially, on the training samples, the
diagonal components of Ri j are identical to the original ker-
nels; Ri j

cc = kc(xic, x jc).

4.2.2 Inter Kernel

The formulation (28) with c �= d is closely related to (ker-
nel) canonical correlation analysis (CCA) (Akaho 2001). The
CCA provides the projections A, B for the two types of fea-
tures Φc,Φd in Kc,Kd so as to maximize the correlation
coefficient, by solving the following eigenvalue problem:

[
0 ΦcΦ

�
d

ΦdΦ�c 0

] [
A
B

]
=

[
ΦcΦ

�
c 0

0 ΦdΦ�d

] [
A
B

]
Γ ,

(33)

∴ A = V cΛ
−1
c P, B = V dΛ−1

d Q, (34)

where U�c Ud = PΓ Q� (SVD). In the CCA, the feature vec-
tors φic,φ jd are first whitened by V cΛ

−1
c , V dΛ−1

d via PCA,
and then the PCA axes are rotated by P, Q so as to ensure
the consistency, maximizing the correlation coefficient. By
using these notations, (28) is further rewritten to

Ri j
cd = φ�icV c PΓ

1
2 Γ

1
2 Q�V�d φ jd . (35)

This is a quite similar form to the CCA projection; the feature
vectors φic,φ jd are first projected by PCA vectors V c, V d ,
and then they are rotated by the CCA rotation matrices P, Q
with weighting the CCA axes by the correlation coefficients

Γ
1
2 (Fig. 2b). The differences from the CCA projections are

that (1) we use the orthogonal PCA projection, not whitening,
to preserve the magnitude (norm) of φic,φ jd and then (2) we
employ the weighting by the correlation coefficients Γ which
measure consistency along respective CCA axes. That is, the
inner product in the CCA space is enhanced along the highly
consistent axis of higher Γ .

In summary, the proposed kernel (28) is based on the inner
product by applying the PCA projections to the kernel fea-
ture vectors in RKHSs. For the intra kernel in homogeneous
RKHSs which are intrinsically consistent, the inner prod-
uct is directly employed (Fig. 2a). Whereas, the inter kernel
between heterogeneous RKHSs requires additionally CCA
rotations to ensure the consistency so that the (reasonable)
inner product is computed (Fig. 2b).

By using the transformation (27), the feature matrix that
we deal with in the proposed hMKL is explicitly represented
by

X = ZXφ = [K−
1
2

1 k1, . . . , K
− 1

2
w kw] ∈ R

n×w, (36)

kc = [kc(xc, x1c), . . . , kc(xc, xnc)]� ∈ R
n . (37)

Therefore, the bilinear classifier in the hMKL is also
described by the bilinear form (1) and the proposed bilin-
ear optimization (Sec.3) is directly applicable even to this
hMKL. It should be noted again that Σw = WwW�w is
regarded as the weights on both the intra and inter kernels;
Ki j = tr(Σw Ri j ) in (13).

5 Cross-Modal Learning in Bilinear Framework

The bilinear formulation is also applicable to cope with
multi-modal features in cross-modal learning. The objects
to be classified are occasionally represented in multiple
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Fig. 3 Classification for multi-modal features in the multi-class setting

modalities; for example, faces are depicted by photos and
sketches (Wang and Tang 2009), and animals are described
by images and attributes (Lampert et al. 2009) (Fig. 3). We
first describe in Sect.5.1 the formulation for classifying the
multi-modal feature matrices in two classes and then show
how the multi-modal feature vectors in the multi-class setting
are casted into that bilinear formulation in Sect.5.2.

5.1 Bilinear Formulation

Suppose we have M types of modalities from which the
features matrices X [m]i ∈ R

h[m]×w with labels y[m]i ∈
{+1,−1} (m = 1, . . . , M, i = 1, . . . , n[m]) are derived,
and thereby the m-th modal classifier is defined by ŷ[m] =
tr(W [m]X [m] + b[m]). Here, the classifier weight W [m] ∈
R

h[m]×w is decomposed into W [m] = W [m]h W�w and the col-
umn weight Ww is assumed to be shared across all of the
M modalities (classifiers). In this formulation, the classifi-
cation consists of the following two procedures; the m-th
modal feature X [m] is first projected into common space via
the transformation by W [m]h ∈ R

h[m]×r and the projected fea-
ture is then classified by applying Ww ∈ R

w×r in disregard
of the modalities. We can transfer the knowledge of the m-th
modality into learning the common classifier Ww via W [m]h .

The dimensionality of the common space is desired to
be low for reducing the complexity, which naturally induces
the low-rank (bilinear) classifier W [m] as follows. The multi-
modal classifiers W [m] are vertically concatenated into the
large matrix which is decomposed to

W =
⎡

⎢⎣
W [1]

...

W [M]

⎤

⎥⎦ =
⎡

⎢⎣
W [1]h

...

W [M]h

⎤

⎥⎦ W�w ∈ R
h×w, (38)

where h = ∑M
m=1 h[m] and Ww is shared across M clas-

sifiers. Thus, the minimization of the ranks of W [m] (m =
1, . . . , M) corresponds to minimize the rank of W , which
defines the following optimization problem as in Sect.3.1:

min
{W [m],b[m]}m

‖[W [1]�, . . . , W [M]�]�‖Σ (39)

+ C
M∑

m=1

n[m]∑

i=1

max
[
0, 1−y[m]i

{
tr(W [m]�X [m]i )+b[m]

}]

is reformulated to

min
{W [m]h ,b[m]}m ,Ww

1

2
tr(WwW�w)+ 1

2

M∑

m

tr(W [m]h
�

W [m]h )

+ C
M∑

m=1

n[m]∑

i=1

max
[
1−y[m]i

{
tr(W [m]h

�
X [m]i Ww)+ b[m]

}
, 0

]
,

(40)

and we finally obtain

min
Σw�0

1

2
tr(Σw)+

M∑

m=1

L [m](α[m]∗(Σw);Σw), (41)

where

L [m](α;Σw) =
∑

i

αi − 1

2

∑

i, j

αiα j y[m]i y[m]j K [m]i j (Σw),

(42)

α[m]∗(Σw) = arg max
α∈Ω [m]

Lm(α;Σw), (43)

Ω [m] = {
α | ∀i, 0 ≤ αi ≤ C,

∑n[m]
i=1 y[m]i αi = 0

}
, (44)

and K [m]i j (Σw) = tr(Σw X [m]i
�

X [m]j ) is the i, j-th component
of the m-th modal Gram matrix. This form is the same as
(14) except that the sub-problems (SVM-QP) are solved for
respective modalities. This is a general formulation using
multi-modal feature matrices, and in the next section we
address the problem for classifying multi-modal multi-class
feature vectors which results in the same formulation.

5.2 Multi-Class Feature Vectors

Suppose in the m-th modality the feature vectors x[m]i ∈ R
h[m]

are assigned with the label l[m]i ∈ {1, . . . , w} of w classes.
We first project the feature vectors x[m] into the common
space shared across the multiple modalities by using the

modality-sensitive affine transformation W [m]h
�

x[m] + b[m]

where W [m]h ∈ R
h[m]×r is the transformation matrix into

the r -dimensional common space and b[m] ∈ R
r is the bias

vector1. Then, the projected vectors are finally classified by
applying the c-th classifier weight wc ∈ R

r (see Fig. 3) as

1 The biases in the affine model work so as to coordinate the origins
of the projections from the M-modal feature spaces. In practice, we
centerize the feature vectors by subtracting the means in order to project

them simply by W [m]h
�

x[m].
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l̂[m] = arg max
c

w�c
(
W [m]h

�
x[m] + b[m]

)+ bc (45)

= arg max
c

w�c
(
W [m]h

�
x[m]

)+ b[m]c , (46)

where b[m]c = w�c b[m] + bc as a bias for the c-th class in the
m-th modality.

The classifier weights wc are horizontally concatenated
into Ww = [w1, . . . ,ww]� ∈ R

w×r , while the feature vector
x[m] is augmented into the feature matrix X [m]c ∈ R

h[m]×w

in which only the c-th column contains x[m] and the other
columns are zeros. By using these notations, we can rewrite
the c-th classifier for the m-th modality into

w�c
(
W [m]h

�
x[m]

)+ b[m]c = tr
(
W [m]h

�
X [m]c Ww

)+ b[m]c . (47)

This corresponds to the bilinear model (1) except that the
feature matrix X [m]c is augmented from the feature vector
x[m] for respective classes to cope with w class problems.
As described in the previous section, the knowledge can be
transferred via the modality-sensitive transformation W [m]h
from the m-th modality into the common space for training
the classifier Ww.

The dimensionality of the common space into which the
feature vector is first projected is required to be small for
adequately reducing the complexity of the classifier. In addi-
tion, as is the case with the conventional multi-class SVM,
we train the multi-class classifiers based on the one-vs-rest
approach. These enable us to formulate the following opti-
mization problem for training the classifier Ww as well as
the transformations W [m]h in a manner similar to (40):

min
{W [m]h }m ,Ww,{b[m]c }cm

1

2
tr(WwW�w)+ 1

2

M∑

m

tr(W [m]h
�

W [m]h )

+C
M∑

m=1

w∑

c=1

n[m]∑

i=1

max
[
1−y[m]i,c

{
tr(W [m]h

�
X [m]i,c Ww)+b[m]c

}
,0

]
,

(48)

where y[m]i,c =
{
+1 (c = l[m]i )

−1 (c �= l[m]i )
, (49)

and the feature vector x[m]i appears w times in the form of

X [m]i,c due to the one-vs-rest approach for the multi-class prob-

lem. By introducing Σw = WwW�w , the above formulation
finally results in

min
Σw�0

1

2
tr(Σw)+

M∑

m=1

L [m](α[m]∗(Σw);Σw), (50)

where

L [m](α;Σw) =
w∑

c=1

n[m]∑

i=1

αi,c (51)

− 1

2

w∑

c,d

n[m]∑

i, j

αi,cα j,d y[m]i,c y[m]j,d K [m]i j,cd (Σw),

α[m]∗(Σw) = arg max
α∈Ω [m]

L [m](α;Σw), (52)

Ω [m] = {
α | ∀i, c, 0 ≤ αi,c ≤ C, ∀c,∑i y[m]i,c αi,c = 0

}
,

(53)

and K [m]i j,cd (Σw) is the i, j-th component of the Gram matrix

K [m]cd (Σw) = [Σw]cd K [m], and K [m] is the kernel Gram
matrix of the m-th modal feature vectors and [Σw]cd is the
c, d-th component of the matrix Σw. Note that via this opti-
mization, the dimensionality of the common space, i.e., the
rank r , is automatically determined so as to be favorably low
for classification, and it is less than the number of classes w

as in Fisher discriminant analysis (Duda et al. 2001).
By projecting the feature vectors into the common space,

the characteristics specific to the modalities are suppressed,
while enhancing the discriminative information. Thus, the
proposed cross-modal method is applicable not only to the
classification for w classes but also to the comparison across
the modalities in the common space, which is empirically
shown in the experiments (Sect.6.3); namely, the features
from multiple modalities in the same class would be pro-
jected on close positions in that common space as shown in
Fig. 3.

5.2.1 Optimization of Sub-Problem

The sub-problem (52) is slightly different from the previ-
ous one (15) in that it includes multiple equation constraints
regarding respective classes in (53). It can also be efficiently
optimized by applying the off-the-shelf SVM-SMO solver in
the following iterative manner. We decompose the QP (52)
into class-wise blocks2; we focus on the class-wise (dual)
variables and labels {αi,c, yi,c}i=1,...,n , and the optimization
with respect to the c-th class while fixing the others is given by

αc = arg max
α∈Ω Lc(α;Σw), (54)

Lc(α;Σw)=
n∑

i

αi
{
1−yi,c

∑w
d �=c

∑n
j [Σw]cd Ki j y j,dα j,d

}

− 1

2

n∑

i j

αiα j yi,c y j,c[Σw]cc Ki j , (55)

Ωc =
{
α | ∀i, 0 ≤ αi ≤ C,

∑
i yi,cαi = 0

}
. (56)

2 Hereafter, we omit the superscript [m] for simplicity.
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The off-the-shelf SMO3 is applicable to iteratively opti-
mize w-class variables {αc}c=1,...,w until convergence; it is
regarded as sequential minimal optimization with respect to
class-wise blocks. Thus, it should be noted that the follow-
ing gap derived from KKT (Fan et al. 2005) is employed for
the stopping criterion and the selection of the block to be
optimized in (54);

Δc = max
i∈I+(α)

{−yi,c∇αi Lc(α)
}− min

i∈I−(α)

{−yi,c∇αi Lc(α)
}

(57)

where I+(α) = {i |αi < C, yi,c = +1 ∨ αi > 0, yi,c = −1},
I−(α) = {i |αi < C, yi,c = −1 ∨ αi > 0, yi,c = 1}.

The optimization converges if maxc Δc < ε, and the
class-wise block to be updated by (54) is selected as
c = arg maxd Δd to efficiently minimize the gap Δc, c =
{1, .., w}.

6 Experimental Results

We applied the proposed methods to a variety of visual clas-
sification problems using feature arrays and co-occurrence
features for bilinear classification (Sect. 3) as well as using
multiple kernels for heterogeneous MKL (Sect. 4) and cross-
modal features for bilinear cross-modal learning (Sect. 5).

6.1 Bilinear Classification

For evaluating the performances, we compared the pro-
posed bilinear classifier (Sect. 3) with linear SVM (Vapnik
1998) applied to the concatenated feature vectors and bilin-
ear SVM (Pirsiavash et al. 2009) directly dealing with the
feature matrices. The bilinear SVM proposed by Pirsiavash
et al. (2009) includes an rank parameter for rank(W) ≤ k
which is determined based on two-fold cross validations
from k ∈ {5, 10} as in the paper (Pirsiavash et al. 2009). In
the case of multi-class problems, the one-vs-rest approach is
employed. All the methods were implemented by MATLAB
with libsvm (Chang and Lin 2001) on 3.33 GHz PC.

6.1.1 Toy Example

First, by using toy data, we intuitively demonstrate how the
proposed method works on feature matrices. Two types of
binary images (100×100) are provided for two-class feature
matrices (X ∈ R

100×100), as shown in Fig. 4; the images
have basically one rank with salt and pepper noise of size
5×5, and there are 100 samples in each type (class). The

3 The linear term w.r.t α in the SVM-QP is required to be slightly
modified for (55).

Fig. 4 Classifier weights on toy data. Negative and positive weights are
shown by pseudo colors from blue to red. The numbers of the classifier
ranks are shown in the parentheses. This figure is best viewed in color

obtained classifier (W ) is shown in Fig. 4, compared to those
by the other methods including SDP (4) which is feasible in
such a small dataset by using SeDuMi solver. In the linear
SVM, the concatenated linear classifier (vector) is folded into
the intrinsic matrix form and its rank is also measured. The
proposed method favorably produces the one-rank classifier
which is the same as the global optimum one by SDP, while
the classifiers by the linear SVM (Vapnik 1998) and the bilin-
ear SVM (Pirsiavash et al. 2009) are overly fitted to the data
with higher (or even full) rank. Without any hard constraint
on the rank, the proposed method recovers the essential rank
in the data with a low computational cost (0.4 sec) which
is much faster than the exhaustive SDP method (14.0 sec).
The computation time comparison to the bilinear SVM (Pir-
siavash et al. 2009) is conducted in Sect. 6.1.4 using the
larger-scale datasets than this toy set in order to show the
substantial improvements.

6.1.2 Feature Array

Next, we conducted the practical experiments on motion
classification using RWC gesture dataset (Kobayashi and
Otsu 2009) and image classification using INRIA person
dataset (Dalal and Triggs 2005). In these experiments, the
array of the (column) feature vectors extracted at tempo-
ral/spatial points is formed into the feature matrix X as shown
in Fig. 1ab.

RWC Gesture Dataset: It contains 17 types of human ges-
ture, each of which is performed four times by 48 subjects
(23 men and 25 women), as shown in Fig. 5. We extract 751-
dimensional CHLAC motion feature vector (Kobayashi and
Otsu 2009) at every frame with multiple correlation intervals
Δr ∈ {1, 3, 5}; for details of this feature, refer to (Kobayashi
and Otsu 2009). Since the numbers of frames are differ-
ent across the motion image sequences, we subsample those
frame-based features by bilinear interpolation into 50-frame
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Fig. 5 RWC gesture dataset

Table 1 Classification performances on RWC dataset

Method Rank Err. (%)

SVM 50 2.11

bilinear SVM 5.59 1.41

Ours 3.27 0.98

Ours (smooth) 3.25 1.01

Kobayashi and Otsu (2012b) – 1.9

Kobayashi and Otsu (2009) – 4.14

The performance results of the proposed methods are highlighted by
bold font

feature vectors, resulting in the feature matrix X ∈ R
751×50

of feature-vs-time (Fig. 1a). The performance is evaluated by
three-fold cross validation, and both the error rates and the
ranks of the classifiers averaged across classes are shown
in Table 1. The proposed method produces the favorable
performance compared to the other methods of linear SVM
and bilinear SVM (Pirsiavash et al. 2009) and even to the
prior works (Kobayashi and Otsu 2009, 2012b); we show the
performances reported in those papers (Kobayashi and Otsu
2009, 2012b). While the rank of the SVM classifier is 50, the
proposed classifier has around only three rank, improving the
efficiency of information compression as well as the gener-
alization performance. In this case, the smoothed classifier
(Sect.3.3) that imposes the smoothing regularization on the
temporal weight Ww produces slightly inferior performance.
This is because the feature matrices are already smoothed by
the subsampling procedure and such regularization leads to
over smoothing slightly degrading the performance.

INRIA Person Dataset: We used 2,416 person and 12,180
person-free images (64 × 128) for training, and 1,132 per-
son and 13,590 person-free images for test as shown in Fig.
6. The image is divided into 4 × 8 subregions and 324-
dimensional GLAC feature vectors proposed by Kobayashi
and Otsu (2008) are extracted at each region with the same
parameter settings as in that paper. Thereby, we obtain
the feature matrix X ∈ R

324×32 of feature-vs-space (posi-
tions) (Fig. 1b). The performance results are shown in Table
2. In the proposed method, the smoothed classifier that

Fig. 6 INRIA person dataset

Table 2 Classification performances on INRIA dataset

Method Rank EER (%)

SVM 32 0.55

bilinear SVM 10 0.71

Ours 12 0.62

Ours (smooth) 12 0.53

Kobayashi and Otsu (2008) – 0.58

Dalal and Triggs (2005) – 2.25

The performance results of the proposed methods are highlighted by
bold font

imposes the regularization on the (two-way) spatial posi-
tions for Ww slightly improves the performance. The per-
formance is comparable to SVM and is superior to the prior
works (Kobayashi and Otsu 2008; Dalal and Triggs 2005).
Note that the proposed classifier of low rank (= 12) reduces
the computational cost in the detection stage since our low-
rank classifier is decomposed into a few separable filters of
O(rank(W) × max(h, w)), compared to O(hw) in the full
rank SVM classifier.

6.1.3 Co-occurrence Feature

The bilinear classifier can directly deal with the co-occurrence
features which are inherently formed as a matrix (Fig. 1c).
In the framework of bag-of-features (Csurka et al. 2004),
the local features, such as SIFT descriptors (Lowe 2004),
are assigned with (visual) words via clustering, and the sim-
ple occurrence of the words are counted to produce the final
histogram-based feature vector. The occurrence features are
extended to the co-occurrence features of the neighboring
words in the bag-of-features framework (Ling and Soatto
2007).

For motion recognition, we follow the framework
employed by Kobayashi and Otsu (2012b) which extracts
frame-based motion features at every 10 frames and applies
k-means to cluster the features into motion words in
Fisher discriminant space; refer to (Kobayashi and Otsu
2012b) for more details. In these experiments, we count the
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Fig. 7 UCF sport action dataset

co-occurrence of the motion words along the time axis, as fol-
lows. Given w motion words, the frame-based feature at time
t with the correlation scale Δr ∈ {3, 6, 9} is assigned with
multiple motion words, the (voting) weights of which form
a vector f (t) ∈ R

3w in total (Kobayashi and Otsu 2012b).
The co-occurrence features are extracted by

F(Δt) =
∑

t

f (t) f (t +Δt)�, (58)

where Δt denotes the interval along the t axis, say Δt ∈
{0, 20} in these experiments, and those features are concate-
nated into the final feature matrix X = [F(0), F(20)]� ∈
R

6w×3w. The number of words is simply determined by
w = 10×#class.

We conducted the motion classification experiments by
using UCF sport action dataset (Rodriguez et al. 2008) and
Cambridge hand gesture dataset (Kim et al. 2007). For the
smoothed classifier (Sect.3.3), the regularization matrices
Lh, Lw are set as the graph Laplacian (Belkin and Niyogi
2003) for which the pair-wise similarities between words are
simply measured based on the 10 nearest neighbors of word
centers.

UCF Sport Action Dataset: This dataset contains nine
types of sport actions, each of which is performed by about
17 players, and the total number of sequence is 150, as shown
in Fig. 7. To enlarge the training size, the number of training
samples are doubled by adding horizontally mirrored video
clips. For evaluation, three-fold cross validation is applied
and the averaged error rates across action classes are reported
in Table 3. The proposed methods exhibit superior perfor-
mances to the other methods, and in particular, the smoothed
bilinear classifier improves the performance with quite low
rank. Then, we evaluate the robustness of the methods against
the numbers of the (motion) words, to which the size of the
feature matrix is proportional. Figure 8 shows the perfor-
mances by increasing the number of words. In the proposed
method, due to the appropriate low rank, the performances
are stably high even for larger number of words, while the
other methods degrade their performances.

Cambridge Hand Gesture Dataset: There are nine types
of hand gestures defined by three primitive hand shapes and

Table 3 Classification performances on UCF dataset

Method Rank Err. (%)

SVM 246.67 28.80

bilinear SVM 9.63 27.87

Ours 1.15 24.19

Ours (smooth) 1.11 23.73

The performance results of the proposed methods are highlighted by
bold font
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Fig. 8 Performances for various numbers of words on UCF dataset

Fig. 9 Cambridge hand gesture dataset

three primitive motions, which are performed ten times by
two subjects under five different illumination conditions, as
shown in Fig. 9. We used the sequences acquired under the
plain illumination condition for training and those under
the remaining four conditions for test. The averaged error
rates across all gesture classes over the four test condi-
tions are reported in Table 4. The proposed method pro-
duces superior performances to the others including the prior
works (Kobayashi and Otsu 2012b; Kim et al. 2007); the per-
formances reported in those papers are shown for compari-
son. Especially, the smoothed classifier is the most favorable.
Figure 10 also shows the performances on various numbers of
words, demonstrating the robustness of the proposed method
as is the case with the UCF dataset.

These experimental results show that the proposed method
robustly produces high performances, requiring users only
to set sufficiently large number of words without carefully
tuning it nor the rank of the classifier for classifying the co-
occurrence features.
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Table 4 Classification performances on Cambridge dataset

Method Rank Err. (%)

SVM 251 14.03

bilinear SVM 10 14.17

Ours 1.22 9.17

Ours (smooth) 1.33 9.03

Kobayashi and Otsu (2012b) – 11

Kim et al. (2007) – 18

The performance results of the proposed methods are highlighted by
bold font
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Fig. 10 Performances for various numbers of words on Cambridge
dataset

Table 5 Computation time (sec) in training bilinear classifiers for all
classes on various datasets

Dataset RWC INRIA UCF Cambridge

Ours 226 1659 29 35

Ours (smooth) 227 1913 20 39

Bilinear SVM 563 3565 203 52

The performance results of the proposed methods are highlighted by
bold font

6.1.4 Computation Time

Finally, we compared the proposed method to the bilinear
SVM (Pirsiavash et al. 2009) in terms of the computation
time for training the bilinear classifiers on all classes. The
comparison results on the datasets that we used in the above
experiments are shown in Table 5. The proposed method
exhibits faster computation time (roughly twice) than the
bilinear SVM, demonstrating that the proposed optimization
approach in Sect.3.2 efficiently works.

6.2 Heterogeneous Multiple Kernel Learning

Next, we evaluate the extension of the bilinear model, het-
erogeneous multiple kernel learning (Sect.4), with com-
parison to the other MKL methods: simpleMKL (Rako-
tomamonjy et al. 2008) and the method by Varma and

Ray (2007). It should be noted again that the proposed
method dealing with only diagonal matrix of Ri j =
diag

{
k1(xi1, x j1), . . . , kw(xiw, x jw)

}
(Z = I in (26))

reduces to the MKL method of Varma and Ray (2007) and it
is denoted by “diagonal”.

To demonstrate the effectiveness of the proposed kernel
(28), we conducted the comparative experiment using PAS-
CAL VOC 2007 dataset (Everingham et al. 2007) which
contains 5,011 images for training and 4,952 images for
test in 20 object categories. We used 15 types of precom-
puted features provided on the web4 of Guillaumin et al.
(2010) (for details of the features, refer to that paper), and
applied the RBF kernels to those features as kc(xic, x jc) =
exp(−||xic − x jc||2/γ ) where γ is the mean of pairwise
distances.

The following alternative forms to the proposed kernel
(28) are conceivable:

Product: Z = [Φ�1 , . . . ,Φ�w]
⇒ Ri j

cd = k�ick jd , (59)

PCA: Z = [V�1 , . . . , V�w]
⇒ Ri j

cd = k�icUcΛ
−1
c Λ−1

d U�d k jd , (60)

Inverse: Z = [U1Λ
−1
1 V�1 , . . . , UwΛ−1

w V�w]
⇒ Ri j

cd = k�ic K−1
c K−1

d k jd . (61)

Compared to (27, 28), the PCA kernel (60) loses the CCA
rotation matrix derived from Uc, while the inverse kernel (61)
additionally introduces the whitening by Λ−1

c to normalize
the magnitudes (norms) of features.

Table 6a shows the mean of average precision rates (mAP)
across the categories. The proposed kernel (28) is superior
to the other types of kernels. The inverse kernel is the worst
since it cancels out the kernel function by applying the inverse
of the Gram matrix. The difference between the proposed ker-
nel (28) and the inverse kernel (61) is small in terms of only
Λc, but the effectiveness of the kernel is completely differ-
ent; the proposed kernel significantly outperforms. The PCA
kernel is somewhat effective due to that it contains the same
diagonal component (intra kernel) as in the proposed kernel,
though the performance is inferior to the proposed kernel.
These results demonstrate that both the rotation matrix by
CCA and the magnitude preservation by PCA in the pro-
posed kernel are effective for classifications. Table 6b shows
that the proposed method is favorably competitive with the
other MKL methods. The “diagonal” method uses only the
intra kernels which are the same as the diagonal in the PCA
kernel, and the performance is similar to that of PCA kernel
in Table 6a.

4 http://lear.inrialpes.fr/people/guillaumin/data.php.
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Table 6 Classification performances on PASCAL VOC 2007 dataset

mAP (%)

(a) Kernel types

Product 42.30

PCA 45.60

Inverse 37.88

Proposed 48.64

(b) Comparison

simpleMKL 48.04

diagonal 45.83

Ours 48.64

The performance results of the proposed methods are highlighted by
bold font

Fig. 11 Oxford flower dataset

We further conducted the MKL experiments using Oxford
flower dataset (Nilsback and Zisserman 2006), Butterfly
dataset (Lazebnik et al. 2004) and Bird dataset (Lazebnik
et al. 2005). We used the RBF kernel of respective types
of the features (distances) in the same manner as described
above.

Oxford Flower Dataset: It is composed of 80 images of 17
flower categories as shown in Fig. 11. We used seven types
of precomputed pairwise distances provided in the web5 of
Nilsback and Zisserman (2008); for the details of the dis-
tances, refer to (Nilsback and Zisserman 2006, 2008). Table
7 shows the performance results by three-fold cross valida-
tions using the same predefined splits as in (Nilsback and
Zisserman 2006). For comparison, the performance reported
by Gehler and Nowozin (2009) who use the same features
and cross validation splits is also shown.

Butterfly Dataset: There are 619 images of seven butterfly
classes as shown in Fig. 12. We used the three types of pre-
computed pairwise distances provided on the web6 of Chris-
toudias et al. (2010); for the details of the distances, refer
to that paper. The classification accuracies are evaluated by
three-fold cross validations and are shown in Table 8.

5 http://www.robots.ox.ac.uk/~vgg/research/flowers/index.html.
6 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/
msorec/.

Table 7 Classification performances on Oxford flower dataset

Method Acc. (%)

simpleMKL 81.08

simpleMKL (multiclass) 82.55

diagonal 85.10

Ours 86.47

Gehler and Nowozin (2009) 85.5

The performance results of the proposed methods are highlighted by
bold font

Fig. 12 Butterfly dataset

Table 8 Classification performances on Butterfly dataset

Method Acc. (%)

simpleMKL 69.60

simpleMKL (multiclass) 67.95

diagonal 74.42

Ours 76.54

The performance results of the proposed methods are highlighted by
bold font

Bird Dataset: The dataset contains six bird classes with
100 images per class as shown in Fig. 13. For multiple ker-
nels, we also used the three types of precomputed pairwise
distances which are the same as in Butterfly dataset. Table 9
shows the performances evaluated by three-fold cross vali-
dations.

In those three datasets, the proposed method produces
superior performances to the others. Especially, in compari-
son to “diagonal”, we can see that the inter kernels between
heterogeneous RKHSs effectively contribute to improve the
performances. As a result, the proposed heterogeneous MKL
method, which combines both intra kernels (diagonal) and
inter kernels (off-diagonal) via the bilinear model, is com-
petitive to the other MKL methods (Rakotomamonjy et al.
2008; Varma and Ray 2007).

6.3 Bilinear Cross-Modal Learning

At the last, we test the bilinear cross-modal learning (Sect.5)
which is the extension of the bilinear model. In this
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Fig. 13 Bird dataset

Table 9 Classification performances on Bird dataset

Method Acc. (%)

simpleMKL 69.21

simpleMKL (multiclass) 68.71

diagonal 72.85

Ours 74.50

The performance results of the proposed methods are highlighted by
bold font

cross-modal learning, the way for evaluating classification
performances is different from those employed in the pre-
vious sections. The common space that multi-modal fea-
tures are mapped into is first learned by using training sam-
ples. Then, the multi-modal test samples of the novel classes
unknown in the training are classified by 1-NN based on
the distances between samples in the common space. For
the NN-based classification, we partition into gallery and
probe sets the modalities from which the test samples are
drawn; namely, the samples from the probe modalities are
classified according to the nearest samples of the gallery
modalities in the common space. Thus, note that the training
samples are used only for constructing/learning the common
space, not for the classification. According to such standard
evaluation protocol, we utilize only the transformation W [m]h
optimized by the proposed method (Sect.5.2) for mapping
the feature vectors into the common space, without apply-
ing the classifier Ww. We evaluate the performances of the
proposed method on two datasets of CUHK Face Sketch
dataset (Wang and Tang 2009) and Animals with Attributes
(AWA) dataset (Lampert et al. 2009).

6.3.1 CUHK Face Sketch Dataset

This dataset includes face images of 188 subjects from
CUHK student as well as 123 subjects from the AR
dataset (Martínez and Benavente 1998). Those faces are
depicted by photos and sketches drawn by an artist based
on a photo taken in a frontal pose as shown in Fig. 14. Those
two types of images are cropped and resized into 62 × 80
pixels which are directly employed for the two-modal image
feature vectors via L2 normalization. We randomly pick

Fig. 14 CUHK Face Sketch dataset

up the training 150 subjects to provide 300 training sam-
ples of 150 classes in two modalities (photo and sketch)
which are fed into the cross-modal learning. The remain-
ing 322 samples of 161 subjects which are unknown during
the training are classified in the learnt common space; 161
photo images (probe set) are classified by applying 1-NN
over 161 sketch images (gallery set), and vice versa. This
is repeated three times and the averaged performances are
reported.

The proposed method is compared to the PLS-based
method proposed by Sharma and Jacobs (2011) as well as
the multi-view discriminant analysis (MvDA) proposed by
Kan et al. (2012). Note that the PLS method relies on the one-
to-one correspondence between the two modalities of pho-
tos and sketches, while the MvDA exploits the class infor-
mation as in the proposed method. In those methods, we
set the dimensionality of the common space as 49 dimen-
sions for PLS method and 53 dimensions for MvDA, which
are determined empirically so as to produce the best results.
On the other hand, the proposed method automatically ren-
ders the optimal dimensions of the common space, and
in this experiment we obtain 44-dimensional space on an
average.

The performance results are shown in Table 10. While the
PLS method produces the superior performance in the clas-
sification of photos, the proposed method is superior in the
sketch classification and produces favorable averaged per-
formance. Those classifications are performed based on the
pair-wise distances between the photo and sketch samples,
forming the 161×161 distance matrix in the test. Those pair-
wise distances are also assigned with the labels that indicate
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Table 10 1-Rank classification accuracies (%) on CUHK dataset

Gallery: sketch Gallery: photo
Method Probe: photo Probe: sketch Mean

PLS 90.06 81.37 85.72

MvDA 82.40 80.95 81.68

Ours 85.30 86.34 85.82

The performance results of the proposed methods are highlighted by
bold font
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Fig. 15 ROC for pair-wise distances between photo and sketch sam-
ples on CUHK dataset

whether the pair of the samples belongs to the same class (+1)
or not (-1). Thereby, we can show the ROC of those distances
for analyzing the further details of the learnt common space.
The ROC shown in Fig. 15 indicates that the proposed method
provides discriminative metrics; in the common space opti-
mized by the proposed method, the samples of the same class
(subject) are mapped into the close points, while the samples
in the different classes are far away. We also measured the
k-rank performances7 as shown in Fig. 16, whereas the per-
formances in Table 10 are evaluated in 1-rank classification.
The proposed method is superior on an average to the other
methods in accordance with the ROC (Fig. 15).

6.3.2 Animals with Attributes (AWA) Dataset

It is composed of 30,475 images in 50 animal classes, and
each animal class is also described by using 85 attributes,
resulting in the 50×85 class-attribute matrix. Consequently,
there are two modalities of images and attributes; each animal
category contains only one attribute vector and a number of
images (Fig. 17).

In this experiment, we apply the non-linear kernel K [m] in
(51). For describing the images, we used the precomputed six
types of image features provided on the web8 of Lampert et

7 The accuracies are measured as follows; the sample of which k-NN
contain the gallery sample belonging to the same class is regarded to be
correctly classified.
8 http://attributes.kyb.tuebingen.mpg.de/.

al. (2009) and employed sum of χ2-kernels computed from
respective types of features; for the details, refer to (Lampert
et al. 2009). On the other hand, the attributes are given by
Osherson et al. (1991) who collected judgments from human
subjects on the relative strength of association between the 85
attributes and the animals. They are basically represented by
quantitative values, and we normalize those attribute values
in unit L1-norm, though Lampert et al. (2009) transform them
into binary values to which the (kernel) SVM can be applied
for estimating the presence of each attribute in the image.
In this study, we can deal with the quantitative attributes
themselves, since the proposed method accepts any types
of feature representation, regarding even those attributes as
the feature vectors. The Gaussian kernel is then applied to
those normalized attribute feature vectors. As a result, the
proposed method optimizes the common space by using those
two modal features represented in the kernels.

For training, we pick up randomly 10,000 image sam-
ples from the predefined 40 training classes, while using 40
attribute vectors correspondingly. Note that in this experi-
ment, two modalities have different number of samples and
different feature (kernel) representation. By using those two
modal samples, we learn the transformation W [m]h (m = 1, 2)

as well as the classifier Ww by (50), though Ww is not actu-
ally used for classification. For test on image classification,
the 10 attribute samples corresponding to the 10 test classes
are mapped into the common space by W [2]h to form the
gallery samples. On the other hand, the 6,180 image samples
belonging to the predefined 10 test classes are also mapped
into the common space via W [1]h and then are classified based
on the gallery samples; the image sample is classified by 1-
NN on the gallery (attribute) samples. The above procedure is
repeated three times and the average classification accuracy
is reported. As in CUHK dataset, the attribute classification
is also conducted by alternating the modalities for gallery
and probe.

For comparison, we apply multi-view DA (MvDA) (Kan
et al. 2012) in the same setting as the proposed method, and
the method proposed by Lampert et al. (2009) using binary
attributes and the same kernel-based image features.

Table 11 shows 1-rank classification performances. As is
the case with CUHK dataset, the k-rank performances are
also shown in Fig. 18a for image classification and Fig. 18b
for attribute classification. These results show that the pro-
posed method is superior to the other methods on both two
types of classifications. The classification using the gallery
of attributes is similar to the standard image classification,
since each class has only one gallery sample; but the test
classes are not presented in the training, making the stan-
dard classification methods inapplicable to this task. On the
other hand, the attribute classification utilizing the gallery of
images is close to the task of image retrieval that picks up
the closest image to the query represented by the attribute.
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Fig. 16 k-rank classification
accuracies on CUHK dataset
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Fig. 17 Animals with Attributes (AWA) dataset

These two kinds of tasks are seamlessly performed by using
the common space learned by the proposed method. The
dimensionality of the common space is determined automat-
ically in the proposed method; we obtain 40-dimensional
space on an average. In contrast, the MvDA requires the
dimensionality to be determined in advance and the perfor-
mance is dependent on it as shown in Fig. 19; in this exper-

Table 11 1-Rank classification accuracies (%) on AWA dataset

Gallery: attribute Gallery: image
Method Probe: image Probe: attribute

Lampert et al. (2009) 36.76 70.00

MvDA 31.92 60.00

Ours 41.43 70.00

The performance results of the proposed methods are highlighted by
bold font

iment, we employ 8-dimensional space to produce the best
performance.

7 Conclusions

We have proposed the method to optimize a low-rank bilinear
classifier for feature matrices without any hard constraint
on the rank. The classifier is optimized by minimizing the
trace norm of the classifier matrix, which contributes to the
rank reduction. The optimization is formulated in a tractable
convex form and it is computationally efficiently optimized
by the gradient descent approach. In addition, we propose
the two notable extensions of the bilinear model, regarding
multiple kernel learning and cross-modal learning.

By introducing non-linear kernel functions into the bilin-
ear method, heterogeneous multiple kernel learning (hMKL)
is proposed. The hMKL combines not only the ordinary
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(b) gallery: image, probe: attribute

Fig. 18 k-rank classification accuracies on AWA dataset
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Fig. 19 Image classification accuracies on AWA dataset by various
numbers of dimensionality in MvDA (Kan et al. 2012)

(intra) kernels in the homogeneous RKHS features but also
the inter kernels between heterogeneous RKHS features into
a new composite kernel through the bilinear model.

The cross-modal learning is related to the classification of
the features mapped from multiple modalities into the com-
mon space shared across those modalities. We formulate in
the bilinear model both the mapping and the multi-class clas-
sifiers in the common space jointly, and thus apply the pro-
posed bilinear optimization to simultaneously learn both of
them.

To evaluate the proposed methods, we conducted the
experiments on various visual classification tasks, which are
mainly categorized into (1) bilinear classification for feature
arrays and co-occurrence feature matrices, (2) multiple ker-
nel learning using multiple kernel functions, and (3) cross-
modal learning using multi-modal features in a multi-class
setting. The proposed methods exhibited favorable perfor-
mances compared to the other methods in those tasks.

Appendix: Proof of Convexity in (14)

We prove the convexity of the proposed formulation (14).
Since the constraint Σw � 0, i.e., positive semidefinite cone,
is a convex set, the convexity of the proposed optimization
problem will be established if the objective cost function J
is proven to be convex. Here, we use the following notations:

α∗(Σw) ∈ R
n := [α∗1 (Σw), · · · , α∗n (Σw)]�, (62)

K̄ (Σw) ∈ R
n×n : K̄i j (Σw) = yi y j Ki j (Σw), (63)

and then the objective cost function is rewritten by

J (Σw)= 1

2
tr(Σw)+1�α∗(Σw)− 1

2
α∗(Σw)

�K̄ (Σw)α∗(Σw).

(64)

[Derivative of J ] Before proceeding to the proof of the con-
vexity, we first show the form of the derivative of J with
respect to Σw based on the Lemma 2 in (Chapelle et al.
2002).

The derivative of J with respect to [Σw]cd , the c, d-th
component of the matrix Σw, is simply obtained by

∂ J

∂[Σw]cd
= 1

2
[Σw]cd + 1� ∂α∗(Σw)

∂[Σw]cd

−1

2
α∗(Σw)

� ∂ K̄ (Σw)

∂[Σw]cd
α∗(Σw)− α∗(Σw)

� K̄ (Σw)
∂α∗(Σw)

∂[Σw]cd
,

(65)

where δcd is the Kronecker delta and note that α∗(Σw) is the
function of Σw.

The Lagrangian function for (15) is given by

L(α, λ,β, γ ) = 1�α − 1

2
α� K̄ (Σw)α

−λ y�α + β�α + γ�(C1− α), (66)

where λ ∈ R, β ∈ R
n+ and γ ∈ R

n+ are the Lagrange
multipliers for the constraints Ω in (9). Thus, the unique
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optimizer α∗(Σw) in (15) satisfies the following conditions:

1− K̄ (Σw)α∗(Σw)− λ∗(Σw) y + β∗(Σw)− γ ∗(Σw) = 0

⇒ 1− K̄ (Σw)α∗(Σw)=λ∗(Σw) y−β∗(Σw)+γ ∗(Σw), (67)

y�α∗(Σw) = 0⇒ y� ∂α∗(Σw)

∂[Σw]cd
= 0, (68)

∀i, β∗i (Σw)α∗i (Σw) = 0

⇒ β∗i (Σw)
∂α∗i (Σw)

∂[Σw]cd
+ ∂β∗i (Σw)

∂[Σw]cd
α∗i (Σw) = 0, (69)

∀i, γ ∗i (Σw){C−α∗i (Σw)} = 0

⇒ −γ ∗i (Σw)
∂α∗i (Σw)

∂[Σw]cd
+ ∂γ ∗i (Σw)

∂[Σw]cd
{C−α∗i (Σw)} = 0, (70)

where λ∗(Σw), β∗(Σw) and γ ∗(Σw) are the optimum Lagrange
multipliers, depending on the variable Σw. Based on the fact
that either β∗i (Σw) = 0 or α∗i (Σw) = 0 in (69) and either
γ ∗i (Σw) = 0 or α∗i (Σw) = C in (70), we can further obtain the
following conditions from (69) and (70):

β∗i (Σw)
∂α∗i (Σw)

∂[Σw]cd
= − ∂β∗i (Σw)

∂[Σw]cd
α∗i (Σw) = 0, (71)

γ ∗i (Σw)
∂α∗i (Σw)

∂[Σw]cd
= ∂γ ∗i (Σw)

∂[Σw]cd
(C − α∗i (Σw)) = 0. (72)

Thus, the derivative (65) results in

∂ J

∂[Σw]cd
= 1

2
δi j − 1

2
α∗(Σw)

� ∂ K̄ (Σw)

∂[Σw]cd
α∗(Σw)

+
{

∂α∗(Σw)

∂[Σw]cd

}�{
1− K̄ (Σw)α∗(Σw)

}
(73)

= 1

2
δi j − 1

2
α∗(Σw)

� ∂ K̄ (Σw)

∂[Σw]cd
α∗(Σw)

+
{

∂α∗(Σw)

∂[Σw]cd

}�{
λ∗(Σw) y − β∗(Σw)+ γ ∗(Σw)

}

(74)

= 1

2
δi j − 1

2
α∗(Σw)

� ∂ K̄ (Σw)

∂[Σw]cd
α∗(Σw), (75)

where we use (67) for transforming (73) into (74), and use
(68), (71) and (72) to get (75) from (74).

Finally, the derivative of J with respect to Σw is given by

∇ J = 1

2
I − 1

2

∑

i, j

α∗i (Σw)α∗j (Σw)
∂ K̄i j (Σw)

∂Σw

= 1

2

{
I −

∑

i, j

α∗i (Σw)α∗j (Σw)yi y j X�i X j

}
. (76)

[Convexity of J ] Then, we prove the convexity of J by ver-
ifying the following first order condition:

J (B) ≥ J (A)+ tr {(B − A)∇ J (A)} , (77)

where A � 0, B � 0.

Proof From (64), the left-hand side in (77) is written by

J (B) = 1

2
tr(B)+ 1�α∗(B)− 1

2
α∗(B)

� K̄(B)α∗(B), (78)

while by using (76), the right-hand side in (77) results in

J (A)+ tr {(B − A)∇ J (A)}
= 1

2
tr(A)+ 1�α∗(A)− 1

2
α∗(A)

� K̄(A)α∗(A)

+ 1

2
tr(B−A)− 1

2

∑

i j

α∗i (A)α∗j(A)yi y j tr
{
(B−A)X�i X j

}

= 1

2
tr(B)+ 1�α∗(A)− 1

2
α∗(A)

� K̄(B)α∗(A). (79)

Since α∗(B) = arg maxα∈Ω {1�α− 1
2α� K̄(B)α} and α∗(A) ∈

Ω , it is shown that

1�α∗(B)− 1

2
α∗(B)

� K̄(B)α∗(B)

≥ 1�α∗(A)− 1

2
α∗(A)

� K̄(B)α∗(A). (80)

From (78–80), the inequality (77) holds. ��
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